Generalizing the inverse FFT off the unit circle

Vladimir Sukhoy¹ and Alexander Stoytchev^{1,*}

¹Department of Electrical and Computer Engineering, Iowa State University, Ames IA, 50011, USA *alexs@iastate.edu

ABSTRACT

This paper describes the first algorithm for computing the inverse chirp z-transform (ICZT) in $O(n \log n)$ time. This matches the computational complexity of the chirp z-transform (CZT) algorithm that was discovered 50 years ago. Despite multiple previous attempts, an efficient ICZT algorithm remained elusive until now. Because the ICZT can be viewed as a generalization of the inverse fast Fourier transform (IFFT) off the unit circle in the complex plane, it has numerous practical applications in a wide variety of disciplines. This generalization enables exponentially growing or exponentially decaying frequency components, which cannot be done with the IFFT. The ICZT algorithm was derived using the properties of structured matrices and its numerical accuracy was evaluated using automated tests. A modification of the CZT algorithm, which improves its numerical stability for a subset of the parameter space, is also described and evaluated.

Introduction

The Fourier transform and its inverse appear in many natural phenomena and have numerous applications. The fast Fourier transform (FFT) and the inverse FFT (or IFFT) algorithms compute the discrete versions of these transforms. Both of these algorithms run in $O(n \log n)$ time, which makes them practical. A generalization of the FFT off the unit circle, called the *chirp z-transform* (CZT), was published in 1969. A fast *inverse chirp z-transform* (ICZT) algorithm that generalizes the IFFT in a similar way has remained elusive for 50 years, despite multiple previous attempts. Here we describe the first ICZT algorithm that runs in $O(n \log n)$ time. It enables applications with spectral frequency components that are not constrained to have fixed magnitudes but also could decay or grow exponentially (see Fig. 1).

The CZT can use sample points from the entire complex plane and not only from the unit circle. More specifically, the transform distributes the samples along a logarithmic spiral contour (i.e., chirp contour) that is defined by the formula $A^{-j}W^{jk}$, where j denotes a zero-based input sample index and k denotes a zero-based output sample index. The complex numbers A and W specify the location and the direction of the spiral contour and also the spacing of the sample points along the contour.

An efficient algorithm for computing the forward chirp z-transform was described 50 years ago^{1-5} . It was derived using an index substitution, which was originally proposed by Bluestein^{1,5}, to compute the transform using fast convolution. It runs in $O(n \log n)$ time, where n is the size of the transform^{4,6-8}. Various optimizations have been proposed for the CZT algorithm⁹. Its computational complexity, however, remains fixed at $O(n \log n)$, which matches the complexity of the FFT algorithm.

The ICZT is the inverse of the CZT. That is, the ICZT maps the output of the CZT back to the input. Because the CZT is a linear transform, it can be expressed using the product of the CZT transformation matrix with the input vector. This matrix can be inverted using a standard algorithm. In algorithmic form, however, this process may require up to $O(n^3)$ operations.

Even though there are matrix inversion algorithms¹⁰ that run faster than $O(n^3)$, at least n^2 operations are necessary to compute each element of an *n*-by-*n* matrix. Thus, $O(n^2)$ is a lower bound for the complexity of any ICZT algorithm that works with an *n*-by-*n* matrix in memory.

Just like the FFT and the IFFT have the same computational complexity^{11–14} it is desirable to have an ICZT algorithm that matches the computational complexity of the CZT algorithm, i.e., $O(n \log n)$. This requirement rules out any method that needs to compute each element of the transformation matrix. This paper describes the first ICZT algorithm that runs in $O(n \log n)$ time. It states a working algorithm, explains how it was derived, and evaluates its numerical precision using automated test cases.

Related Work

Several attempts to derive an efficient ICZT algorithm have been made^{15–18}. In some cases¹⁵, a modified version of the forward CZT algorithm, in which the logarithmic spiral contour was traversed in the opposite direction, was described as the ICZT algorithm. However, this method does not really invert the CZT. It works only in some special cases, e.g., when A = 1 and $W = e^{-\frac{2\pi i}{n}}$. That is, in the cases when the CZT reduces to the DFT. In the general case, i.e., when $A, W \in \mathbb{C} \setminus \{0\}$, that method generates a transform that does not invert the CZT.

Figure 1. Visualization of three different types of frequency components that can be used with the CZT and the ICZT: (a) an exponentially decaying frequency component, (b) a frequency component with a fixed magnitude, and (c) an exponentially growing frequency component. Each point on the chirp contour determines a frequency component, where its type depends on the location of that point with respect to the unit circle. The FFT and the IFFT use only fixed-magnitude frequency components that are determined by the n-th roots of unity, which lie on the unit circle.

This paper describes an $O(n \log n)$ algorithm that computes the ICZT. The algorithm was derived by expressing the CZT formula using structured matrix multiplication and then finding a way to efficiently invert the matrices in the underlying matrix equation. The essence of the ICZT computation reduces to inverting a specially constructed Vandermonde matrix W. This problem, in turn, reduces to inverting a symmetric Toeplitz matrix \hat{W} that is derived from W.

The Gohberg–Semencul formula^{19–21} expresses the inverse of a Toeplitz matrix as the difference of two products of Toeplitz matrices. Each of the four matrices in this formula is either an upper-triangular or a lower-triangular Toeplitz matrix that is generated by either a vector \mathbf{u} or a vector \mathbf{v} . In the case of the ICZT, a symmetric Toeplitz matrix needs to be inverted. This leads to a simplified formula that expresses the inverse using only one generating vector that is also called \mathbf{u} .

In the ICZT case, it turned out that each element of the generating vector **u** can be expressed as a function of the transform parameter W. This formula led to an efficient ICZT algorithm. One building block of this algorithm is the multiplication of a Toeplitz matrix by a vector, which can be done in $O(n \log n)$, without storing the full Toeplitz matrix in memory^{22–26}. The supplementary information for this paper gives the pseudo-code for two different algorithms — based on these references — that can compute a Toeplitz–vector product in $O(n \log n)$ time. Each of these algorithms can be used as a subroutine by the ICZT algorithm.

The CZT in Structured Matrix Notation

Structured matrices can be described with significantly fewer parameters than the number of their elements^{26,27}. Some examples include: Toeplitz, Hankel, Vandermonde, Cauchy, and circulant matrices^{26,28}. Diagonal matrices are structured matrices as well, i.e., an *N*-by-*N* diagonal matrix may have no more than *N* non-zero elements. Supplementary Fig. S1 illustrates the shapes of the structured matrices used in this paper and also shows their generating vectors.

The CZT is defined⁴ using the following formula:

$$\mathbf{X}_{k} = \sum_{j=0}^{N-1} \mathbf{x}_{j} A^{-j} W^{jk}, \qquad k = 0, 1, \dots, M-1.$$
(1)

The complex numbers A and W are parameters of the transform that define the logarithmic spiral contour and the locations of the samples on it (e.g., see Fig. 2). The integer N specifies the size of the input vector x. Similarly, the integer M specifies the size of the output vector X. In general, N may not be equal to M. That is, the dimensionality of the input may not be equal to the dimensionality of the output. To analyze the complexity of the CZT algorithm it is often convenient to set $n = \max(M, N)$.

Let $\mathbf{A} = \text{diag}(A^{-0}, A^{-1}, A^{-2}, \dots, A^{-(N-1)})$ be a diagonal matrix of size N-by-N. Then, the CZT can also be expressed with the following matrix equation:

$$\mathbf{X} = \mathbf{W} \mathbf{A} \, \mathbf{x}. \tag{2}$$

Figure 2. Chirp contour with M = 32 points (**a**) and M = 64 points (**b**). The contour is specified by A = 1.1 and $W = \sqrt[M]{1.2} \times \exp\left(\frac{i2\pi}{M}\right)$, which are the transform parameters. The unfilled circle indicates the starting point, which is equal to A. The end point is equal to $AW^{-(M-1)}$. The blue points are given by the complex sequence $z_0, z_1, \ldots, z_{M-1}$, where $z_k = AW^{-k}$. The k-th element of the CZT output vector is the z-transform at z_k of the input vector \mathbf{x} , i.e., $X_k = \sum_{j=0}^{N-1} x_j z_k^{-j}$.

In this case, W is an *M*-by-*N* matrix that is defined as:

$$\boldsymbol{W} = \begin{bmatrix} W^{0\cdot0} & W^{1\cdot0} & W^{2\cdot0} & \dots & W^{(N-1)\cdot0} \\ W^{0\cdot1} & W^{1\cdot1} & W^{2\cdot1} & \dots & W^{(N-1)\cdot1} \\ W^{0\cdot2} & W^{1\cdot2} & W^{2\cdot2} & \dots & W^{(N-1)\cdot2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ W^{0\cdot(M-1)} & W^{1\cdot(M-1)} & W^{2\cdot(M-1)} & \dots & W^{(N-1)\cdot(M-1)} \end{bmatrix}.$$
(3)

Vandermonde matrix

The matrix W is Vandermonde (i.e., each row of W forms a geometric progression). In this special case, the common ratio of each of these progressions is equal to the corresponding integer power of the parameter W. The negative integer powers of the transform parameter A, which are arranged along the diagonal of the matrix A, scale the columns of W.

Because W is a special case of a Vandermonde matrix, it can be expressed as a product of a diagonal matrix, a Toeplitz matrix \hat{W} , and another diagonal matrix. It is possible to express⁴ the power of the parameter W in each element of the matrix W using the following equation:

$$jk = \frac{j^2 + k^2 - (k - j)^2}{2}.$$
(4)

This substitution was first proposed by Bluestein⁵.

Eq. (4) implies that for each $k \in \{0, 1, ..., M-1\}$ the right-hand side of Eq. (1) can be expressed⁴ as follows:

$$X_{k} = \sum_{j=0}^{N-1} x_{j} A^{-j} W^{jk} = \sum_{j=0}^{N-1} x_{j} A^{-j} W^{\frac{j^{2}+k^{2}-(k-j)^{2}}{2}} = \sum_{j=0}^{N-1} x_{j} A^{-j} W^{\frac{j^{2}}{2}} W^{\frac{k^{2}}{2}} W^{-\frac{(k-j)^{2}}{2}}.$$
(5)

The terms of this formula can be rearranged so that it can be mapped to matrix products more easily, i.e.,

$$\mathbf{X}_{k} = W^{\frac{k^{2}}{2}} \left(\sum_{j=0}^{N-1} W^{-\frac{(k-j)^{2}}{2}} \left(W^{\frac{j^{2}}{2}} \left(A^{-j} \mathbf{x}_{j} \right) \right) \right).$$
(6)

In Eq. (6), the term $W^{\frac{k^2}{2}}$ maps to an *M*-by-*M* diagonal matrix **P**. Similarly, the term $W^{\frac{j^2}{2}}$ maps to a diagonal matrix **Q** that has *N* rows and *N* columns. That is,

$$\mathbf{P} = \operatorname{diag}\left(W^{\frac{0^2}{2}}, W^{\frac{1^2}{2}}, \dots, W^{\frac{(M-1)^2}{2}}\right) \quad \text{and} \quad \mathbf{Q} = \operatorname{diag}\left(W^{\frac{0^2}{2}}, W^{\frac{1^2}{2}}, \dots, W^{\frac{(N-1)^2}{2}}\right).$$
(7)

The term A^{-j} maps to the following N-by-N diagonal matrix:

$$\mathbf{A} = \text{diag}\left(A^{-0}, A^{-1}, \dots, A^{-(N-1)}\right).$$
(8)

Finally, $W^{-\frac{(k-j)^2}{2}}$ maps to an *M*-by-*N* Toeplitz matrix \hat{W} :

$$\hat{\boldsymbol{W}} = \underbrace{\begin{bmatrix} W^{-\frac{(0-0)^2}{2}} & W^{-\frac{(0-1)^2}{2}} & \dots & W^{-\frac{(0-(N-1))^2}{2}} \\ W^{-\frac{(1-0)^2}{2}} & W^{-\frac{(1-1)^2}{2}} & \dots & W^{-\frac{(1-(N-1))^2}{2}} \\ \vdots & \vdots & \ddots & \vdots \\ W^{-\frac{((M-1)-0)^2}{2}} & W^{-\frac{((M-1)-1)^2}{2}} & \dots & W^{-\frac{((M-1)-(N-1))^2}{2}} \end{bmatrix}}_{\text{Toeplitz matrix}}$$
(9)

Since $W = P \hat{W} Q$, the CZT algorithm can be viewed as an efficient implementation of the following matrix equation:

$$\mathbf{X} = \mathbf{P}\,\hat{W}\,\mathbf{Q}\,\mathbf{A}\,\mathbf{x}.\tag{10}$$

As mentioned above, \mathbf{x} is the input vector to the CZT and \mathbf{X} is the output vector of the CZT. Supplementary Appendix A gives an example.

Because **P**, **Q**, and **A** are diagonal matrices, any product between any of them and a vector can be computed in O(n) time. Only the matrix \hat{W} is a Toeplitz matrix, i.e., each of its diagonals contains the same value. As described in the literature^{26,29}, the product of a Toeplitz matrix with a vector can be computed in $O(n \log n)$ time (see Supplementary Appendices B, C, and D). Thus, the output vector **X** can be computed in $O(n \log n)$ time if the multiplications are performed from right to left, i.e.,

$$\mathbf{X} = \mathbf{P}\left(\hat{W}(\mathbf{Q}(\mathbf{A}\mathbf{x}))\right). \tag{11}$$

Algorithm 1 gives the pseudo-code for the CZT algorithm, which computes Eq. (11) in $O(n \log n)$ time using structured matrix multiplication. To multiply the Toeplitz matrix \hat{W} by a vector, the algorithm uses the circulant embedding function TOEPLITZMULTIPLYE that is described in Supplementary Appendix B. An alternative implementation could replace line 14 with a call to TOEPLITZMULTIPLYP, which is described in Supplementary Appendix C.

Algorithm 1. CZT Algorithm. Runs in $O(n \log n)$ time.

1: CZT(\mathbf{x}, M, W, A) 2: $N \leftarrow \text{Length}(\mathbf{x});$ 3: $\mathbf{X} \leftarrow \text{EMPTYARRAY}(N)$; 4: $\mathbf{r} \leftarrow \text{EMPTYARRAY}(N);$ 5: $\mathbf{c} \leftarrow \text{EMPTYARRAY}(M);$ 6: for $k \leftarrow 0$ to N - 1 do $\mathbf{X}[k] \leftarrow W^{\frac{k^2}{2}} \cdot A^{-k} \cdot \mathbf{x}[k];$ 7: $\mathbf{r}[k] \leftarrow W^{-\frac{k^2}{2}};$ 8: 9: end for 10: for $k \leftarrow 0$ to M - 1 do $\mathbf{c}[k] \gets W^{-\frac{k^2}{2}};$ 11: 12: end for 13: // After the next line, $\text{LENGTH}(\mathbf{X}) = M$. 14: $\mathbf{X} \leftarrow \text{TOEPLITZMULTIPLYE}(\mathbf{r}, \mathbf{c}, \mathbf{X});$ 15: for $k \leftarrow 0$ to M - 1 do $\mathbf{X}[k] \leftarrow W^{\frac{k^2}{2}} \cdot \mathbf{X}[k];$ 16: 17: end for 18: return X;

The ICZT in Structured Matrix Notation

_ _

A formula for the inverse chirp z-transform exists only when M = N and can be derived by inverting the matrices in Eq. (10), i.e.,

$$\mathbf{x} = \mathbf{A}^{-1} \mathbf{Q}^{-1} \, \hat{W}^{-1} \, \mathbf{P}^{-1} \, \mathbf{X}. \tag{12}$$

Each matrix in Eq. (12) is diagonal, except for \hat{W}^{-1} . Thus, deriving an efficient ICZT algorithm reduces to finding an efficient method for inverting the symmetric Toeplitz matrix \hat{W} . The method used here is illustrated with the following example.

Let T be a non-singular 3-by-3 Toeplitz matrix generated by five complex numbers a, b, c, d, and e. Let \hat{W} be a symmetric 3-by-3 Toeplitz matrix, generated by a, b, and c. That is,

$$\mathbf{T} = \begin{bmatrix} a & b & c \\ d & a & b \\ e & d & a \end{bmatrix}, \qquad \hat{\mathbf{W}} = \begin{bmatrix} a & b & c \\ b & a & b \\ c & b & a \end{bmatrix}.$$
(13)

The Gohberg–Semencul formula^{19,20} states that the inverse matrix T^{-1} can be expressed using the following equation:

$$\mathbf{u}_{0} \mathbf{T}^{-1} = \underbrace{\begin{bmatrix} u_{0} & 0 & 0 \\ u_{1} & u_{0} & 0 \\ u_{2} & u_{1} & u_{0} \end{bmatrix}}_{\boldsymbol{\mathcal{A}}} \underbrace{\begin{bmatrix} v_{2} & v_{1} & v_{0} \\ 0 & v_{2} & v_{1} \\ 0 & 0 & v_{2} \end{bmatrix}}_{\boldsymbol{\mathcal{C}}} - \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ v_{0} & 0 & 0 \\ v_{1} & v_{0} & 0 \end{bmatrix}}_{\boldsymbol{\mathcal{B}}} \underbrace{\begin{bmatrix} 0 & u_{2} & u_{1} \\ 0 & 0 & u_{2} \\ 0 & 0 & 0 \end{bmatrix}}_{\boldsymbol{\mathcal{D}}},$$
(14)

where $\mathbf{u} = (u_0, u_1, u_2)$ is a three-element vector such that $u_0 \neq 0$ and $\mathbf{v} = (v_0, v_1, v_2)$ is another three-element vector. These two vectors are determined by the numbers a, b, c, d, and e that generate the matrix T. However, expressing the elements of u and \mathbf{v} explicitly as functions of these five numbers can be difficult. Also, \mathbf{u} and \mathbf{v} may not be unique.

In other words, Eq. (14) states the inverse of a 3-by-3 Toeplitz matrix T using four structured matrices: 1) a lower-triangular Toeplitz matrix \mathcal{A} generated by the vector u, 2) an upper-triangular Toeplitz matrix \mathcal{C} generated by the reverse of the vector v, 3) a lower-triangular Toeplitz matrix \mathcal{B} generated by the vector $(0, v_0, v_1)$, which is obtained by shifting v to the right by one element, and 4) an upper-triangular Toeplitz matrix \mathcal{D} generated by the vector $(0, u_2, u_1)$, which is obtained by shifting the reverse of **u** to the right by one element.

Supplementary Appendix E proves that the inverse of the symmetric Toeplitz matrix \hat{W} can be expressed as follows:

$$\mathbf{u}_{0} \, \hat{\boldsymbol{W}}^{-1} = \underbrace{\begin{bmatrix} u_{0} & 0 & 0 \\ u_{1} & u_{0} & 0 \\ u_{2} & u_{1} & u_{0} \end{bmatrix}}_{\boldsymbol{\mathcal{A}}} \underbrace{\begin{bmatrix} u_{0} & u_{1} & u_{2} \\ 0 & u_{0} & u_{1} \\ 0 & 0 & u_{0} \end{bmatrix}}_{\boldsymbol{\mathcal{A}}^{T}} - \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ u_{2} & 0 & 0 \\ u_{1} & u_{2} & 0 \end{bmatrix}}_{\boldsymbol{\mathcal{D}}^{T}} \underbrace{\begin{bmatrix} 0 & u_{2} & u_{1} \\ 0 & 0 & u_{2} \\ 0 & 0 & 0 \end{bmatrix}}_{\boldsymbol{\mathcal{D}}}.$$
(15)

In this case, the first two matrices are transposes of each other and so are the last two matrices. Furthermore, all four matrices are determined by one generating vector, also called \mathbf{u} , which is unique. The vector \mathbf{v} is not needed because it is equal to the reverse of u (see Supplementary Appendix E).

In general, if \hat{W} is a symmetric *n*-by-*n* Toeplitz matrix, then its inverse is given by the following formula:

$$\hat{\boldsymbol{W}}^{-1} = \frac{1}{u_0} \Big(\boldsymbol{\mathcal{A}} \boldsymbol{\mathcal{A}}^T - \boldsymbol{\mathcal{D}}^T \boldsymbol{\mathcal{D}} \Big), \tag{16}$$

where

$$\boldsymbol{\mathcal{A}} = \begin{bmatrix} u_{0} & 0 & 0 & \dots & 0 & 0 \\ u_{1} & u_{0} & 0 & \dots & 0 & 0 \\ u_{2} & u_{1} & u_{0} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ u_{n-2} & u_{n-3} & u_{n-4} & \dots & u_{0} & 0 \\ u_{n-1} & u_{n-2} & u_{n-3} & \dots & u_{1} & u_{0} \end{bmatrix}, \qquad \boldsymbol{\mathcal{D}} = \begin{bmatrix} 0 & u_{n-1} & u_{n-2} & \dots & u_{2} & u_{1} \\ 0 & 0 & u_{n-1} & u_{n-2} & \dots & u_{3} & u_{2} \\ 0 & 0 & 0 & \dots & u_{4} & u_{3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & u_{n-1} \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}.$$
(17)

If the generating vector **u** is known, then the product of the matrix \hat{W}^{-1} with a vector can be computed in $O(n \log n)$ time by implementing Eq. (16) using structured matrix multiplication. For example, this can be achieved by applying four times the algorithm described in Supplementary Appendix B or the algorithm described in Supplementary Appendix C.

Algorithm 2. ICZT algorithm. Runs in $O(n \log n)$ time.

1: $ICZT(\mathbf{X}, N, W, A)$ 2: $M \leftarrow \text{Length}(\mathbf{X})$; 3: if $M \neq N$ then 4: ERROR("M must be equal to N.");5: end if 6: $n \leftarrow N$; 7: $\mathbf{x} \leftarrow \text{EMPTYARRAY}(n)$; 8: for $k \leftarrow 0$ to n-1 do $\mathbf{x}[k] \leftarrow W^{-\frac{k^2}{2}} \cdot \mathbf{X}[k];$ // multiply \mathbf{P}^{-1} and \mathbf{X} 9: 10: end for 11: // Precompute the necessary polynomial products. 12: $\mathbf{p} \leftarrow \text{EMPTYARRAY}(n);$ 13: $p[0] \leftarrow 1;$ 14: for $k \leftarrow 1$ to n - 1 do $\mathbf{p}[k] \leftarrow \mathbf{p}[k-1] \cdot (W^k - 1);$ 15: 16: end for 17: // Compute the generating vector **u**. 18: $\mathbf{u} \leftarrow \text{EMPTYARRAY}(n)$; 19: for $k \leftarrow 0$ to n - 1 do $\mathbf{u}[k] \leftarrow (-1)^k \, \frac{W^{\frac{2k^2 - (2n-1)k + n(n-1)}{2}}}{\mathbf{p}[n-k-1] \cdot \mathbf{p}[k]} ;$ 20: 21: end for 22: $\mathbf{z} \leftarrow \text{ZEROVECTOR}(n)$; // vector with n zeros 23: $\widehat{\mathbf{u}} \leftarrow (0, \mathbf{u}[n-1], \mathbf{u}[n-2], \dots, \mathbf{u}[2], \mathbf{u}[1]);$ 24: $\widetilde{\mathbf{u}} \leftarrow (\mathrm{u}[0], \underbrace{0, 0, \dots, 0}_{n-1 \text{ zeros}});$ 25: $\mathbf{x}' \leftarrow \text{TOEPLITZMULTIPLYE}(\widehat{\mathbf{u}}, \mathbf{z}, \mathbf{x});$ // ${\cal D}$ 26: $\mathbf{x}' \leftarrow \text{TOEPLITZMULTIPLYE}(\mathbf{z}, \, \widehat{\mathbf{u}}, \, \mathbf{x}'); // \mathcal{D}^T$ 27: $\mathbf{x}'' \leftarrow \text{TOEPLITZMULTIPLYE}(\mathbf{u}, \widetilde{\mathbf{u}}, \mathbf{x}); // \boldsymbol{\mathcal{A}}^T$ 28: $\mathbf{x}'' \leftarrow \text{TOEPLITZMULTIPLYE} (\widetilde{\mathbf{u}}, \mathbf{u}, \mathbf{x}''); // \boldsymbol{A}$ 29: for $k \leftarrow 0$ to n - 1 do $\mathbf{x}[k] \leftarrow rac{\mathbf{x}''[k] - \mathbf{x}'[k]}{\mathbf{u}[0]};$ // subtract and divide by \mathbf{u}_0 30: 31: end for 32: for $k \leftarrow 0$ to n - 1 do $\mathbf{x}[k] \leftarrow A^k \cdot W^{-\frac{k^2}{2}} \cdot \mathbf{x}[k];$ // multiply by $\mathbf{A}^{-1}\mathbf{Q}^{-1}$ 33: 34: end for 35: return x;

As proven in Supplementary Appendices E and F, the generating vector $\mathbf{u} = (u_0, u_1, \dots, u_{n-1})$ is equal to the first column of \hat{W}^{-1} and its elements can be computed as follows:

$$\mathbf{u}_{k} = \left(\hat{\boldsymbol{W}}^{-1}\right)_{k+1,1} = (-1)^{k} \frac{W^{\frac{2k^{2} - (2n-1)k + n(n-1)}{2}}}{\prod_{s=1}^{n-k-1} (W^{s} - 1) \prod_{s=1}^{k} (W^{s} - 1)}.$$
(18)

The properties of this formula are further analyzed in Supplementary Appendix F using Lagrange polynomials^{30,31}.

Combining Eqs. (12) and (16) leads to the following matrix equation for the ICZT:

$$\mathbf{x} = \frac{1}{u_0} \mathbf{A}^{-1} \mathbf{Q}^{-1} \left(\mathbf{\mathcal{A}} \mathbf{\mathcal{A}}^T - \mathbf{\mathcal{D}}^T \mathbf{\mathcal{D}} \right) \mathbf{P}^{-1} \mathbf{X}.$$
 (19)

Each matrix in this equation is either a diagonal matrix or a triangular Toeplitz matrix. Thus, the result vector \mathbf{x} can be computed efficiently using structured matrix multiplication.

Algorithm 2 implements Eq. (19) without storing any matrices in the computer's memory. It requires O(n) memory and runs in $O(n \log n)$ time, where $n = 2^{\lceil \log_2(M+N-1) \rceil}$. There is an alternative version of the algorithm that uses TOEPLITZMULTIPLYP instead of TOEPLITZMULTIPLYE on lines 25–28. It also runs in $O(n \log n)$, but in that case $n = 2^{\lceil \log_2 \max(M,N) \rceil}$. Both algorithms assume that M = N.

Algorithm 2 could be optimized by reusing some partial results at the expense of making the code less modular. These optimizations, however, would not affect the overall computational complexity of the algorithm. There is one optimization, however, that is worth mentioning in more detail. The numerical accuracy of both the CZT and the ICZT can be improved if the direction of the chirp contour is reversed when the original contour is a growing logarithmic spiral, i.e., when |W| < 1. Contour reversal can be achieved by swapping the start point with the end point. That is, the new contour parameters are given by $W' = W^{-1}$ and $A' = A W^{-(M-1)}$. Supplementary Appendix G gives more details and proofs. It also describes the CZT-R algorithms that perform this reversal and are used in some of the experiments.

Results

Table 1 shows the results of the first experiment in which the chirp contour had the same shape but the number of points on the contour was doubled in each iteration. The numerical accuracy was computed using the CZT-ICZT procedure described in the Methods section. For all rows, the value of the transform parameter A was set to 1.1. The value of W was set to $\sqrt[M]{1.2} \times \exp\left(\frac{i2\pi}{M}\right)$. Thus, for all M, the points were on the same chirp contour, i.e., a 360° segment of a logarithmic spiral. This was inspired by the way the FFT adds new points when the transform size is doubled (in the FFT case, however, the points are always on the unit circle). Figure 2 shows the chirp contours for M = 32 and M = 64.

Because the matrix W is Vandermonde, it is recommended to use double precision or higher³² for numerical computations. Therefore, the last four columns of Table 1 show the average error for four different IEEE-754 floating-point precisions³³. Because some of these high-precision formats are not yet supported by modern CPUs, all floating-point formats were emulated in software using the *mpmath* library³⁴.

M	Condition	Size of the Floating-Point Numbers				
111	number κ_2	64 bits	128 bits	256 bits	512 bits	
32	6.1×10^1	2.9×10^{-15}	1.7×10^{-33}	8.0×10^{-71}	1.1×10^{-146}	
64	$8.7{\times}10^3$	2.2×10^{-14}	1.4×10^{-32}	6.5×10^{-70}	9.0×10^{-146}	
128	$2.4{\times}10^8$	3.6×10^{-12}	2.3×10^{-30}	9.8×10^{-68}	1.2×10^{-143}	
256	$2.8{\times}10^{17}$	$1.8{\times}10^{-7}$	1.1×10^{-25}	5.7×10^{-63}	8.1×10^{-139}	
512	$1.7{\times}10^{29}$	$1.6{\times}10^3$	1.3×10^{-15}	4.7×10^{-53}	6.7×10^{-129}	
1024	$6.8{\times}10^{53}$	$1.9{\times}10^{23}$	$1.9{ imes}10^5$	6.2×10^{-33}	8.8×10^{-109}	
2048	3.4×10^{110}	$7.1{\times}10^{63}$	$6.3{\times}10^{45}$	$3.3{ imes}10^8$	3.5×10^{-68}	

Table 1. Absolute numerical error for one chirp contour with M points. For all rows, the chirp contour has the same shape as in Fig. 2, but the number of points varies from M = 32 to M = 2048. Each row was computed using the CZT–ICZT procedure and averaging the results for 100 randomly selected unit-length input vectors.

Figure 3. Absolute numerical error for 5,200 chirp contours. The logarithm of the error is shown as a function of $|W|^M$ and |A| for M = 64, computed with software emulation of 128-bit floating-point numbers. The lowest point of this surface corresponds to the circular contour used by the FFT and the IFFT.

Figure 4. Four 64-point chirp contours, drawn in the complex plane. They show the four contour types defined based on the start point and the end point relative to the unit circle: Out–Out (**a**; red), In–In (**b**; green), Out–In (**c**; blue), and In–Out (**d**; black). The start point of each contour is indicated with an unfilled circle. The unit circle is drawn in gray.

For small values of M, the average numerical error is close to the machine epsilon for the corresponding floating-point precision. For large values of M, the numerical errors accumulate and the solutions become less accurate. This can be mitigated by increasing the floating-point precision. With 512 bits the computed vectors were accurate for all values of M shown in Table 1. In particular, for M = 2048 the numerical error was on the order of 10^{-68} . In other words, this problem is solvable even for large values of M.

The second column in Table 1 shows an estimate for the condition number κ_2 , which can be viewed as an upper-bound for the sensitivity of the inverse chirp z-transform to perturbations of the input vector²². Its value depends on the transform parameters but not on the input vector. The results show that the average error is significantly lower than what can be expected from the condition number. This is consistent with previous observations³⁵ that some ill-conditioned Vandermonde systems can be solved with small numerical error.

Figure 3 shows the results from the second experiment in which the magnitudes of A and W^M were uniformly sampled in the range [0.5, 2.0]. That is, 52 evenly-distributed samples for |A| and 100 evenly-distributed samples for $|W|^M$ were selected in that range. This resulted in 5,200 different chirp contours for which the absolute error was computed using the CZT–ICZT procedure. The logarithm of the error was averaged for 10 random input vectors and the results were plotted as a surface. The same 10 unit-length input vectors were used to compute all points on the surface. All results were computed for M = 64 using software emulation³⁴ of 128-bit floating-point numbers in IEEE-754 format³³.

The results show that the CZT–ICZT procedure returned a vector $\hat{\mathbf{x}}$ that was very close to the original input vector \mathbf{x} for all 5,200 contours. In other words, when the logarithm of the error is negative, the magnitude of the error is smaller than the

Figure 5. Absolute numerical error of the CZT–ICZT procedure for four values of M and three floating-point precisions. The error is shown as a function of $|W|^M$ and |A| for M = 64, 128, 256, and 512, computed using software emulation of IEEE-754 floating-point numbers with: 128 bits (**a**); 256 bits (**b**); and 512 bits (**c**). Increasing the number of bits shifts each surface down. Thus, additional bits reduce the error and increase the subset of the parameter space for which the transforms are numerically accurate (i.e., the vertical coordinate is less than zero). Each surface was computed using 5,200 chirp contours, but some points are not shown because the vertical axis was clipped at zero.

magnitude of the input vector (which was of unit length).

The points in Fig. 3 are plotted with four colors that correspond to four subsets of the parameter space, which are defined by the start and end point of the chirp contour relative to the unit circle. More specifically, red is used for contours that lie entirely outside the unit circle. Green corresponds to contours that start and end within the unit circle. Blue contours start outside the unit circle but end inside it. Finally, black contours start inside the unit circle but end outside it. Figure 4 shows one example for each of these four contour types.

The polar angle of A does not affect the error in this experiment (see Supplementary Appendix H). Thus, to simplify the evaluation, all 5,200 contours in Fig. 3 started on the positive real axis. That is, the polar angle of A was set to 0 (e.g., see the blue contour in Fig. 4c).

Figure 5 summarizes the results of the third experiment, which extends the second experiment by also varying the number of contour points and the number of bits used to compute the transforms. The three sub-figures were computed with 128, 256, and 512 bits, respectively. The ordering of the surfaces with respect to the vertical axis shows that the numerical error increases as M increases. The range of the parameter values for which the absolute numerical error is below 1 (i.e., its logarithm is negative) also shrinks as M increases. Conversely, increasing the number of bits lowers the surfaces and increases the size of the parameter region where the error is small. This shows that the problem can be solved for any M, given the right number of bits.

Supplementary Appendix I provides additional analysis and gives an error estimation formula. This formula expresses the numerical accuracy in terms of the transform parameters and the number of bits used to compute the transforms. This information can be used to select the number of bits that are sufficient to achieve the desired numerical accuracy.

Finally, it is worth emphasizing that the large scope of this evaluation was made possible by the $O(n \log n)$ computational complexity of the ICZT algorithm, which is the main contribution of this paper.

Discussion

The discrete Fourier transform (DFT) and its efficient implementation using the fast Fourier transform (FFT) are used in a large number of applications^{36–40}. Because the CZT is a generalization of the DFT and the ICZT is a generalization of the inverse DFT, the number of potential applications of the ICZT algorithm is also very large. So far, only the CZT algorithm had the same computational complexity as the FFT, i.e., $O(n \log n)$. This paper described the first ICZT algorithm that runs in $O(n \log n)$ time, which matches the computational complexity of the CZT algorithm and also of the inverse FFT.

In other words, this paper is transformative not only because it implements a transform that generalizes the inverse FFT, but also because the new algorithm has the same run-time complexity as the algorithm that it generalizes. Furthermore, this generalization enables the use of exponentially growing or decaying frequency components (see Fig. 1).

The evaluations in this paper were performed for chirp contours that are logarithmic spirals that span a 360° arc. This was done to preserve the analogy to the FFT and the IFFT. Both the CZT and the ICZT, however, can be computed for chirp contours that span smaller angular arcs or chirp contours with multiple revolutions on or off the unit circle. Future work could analyze the stability and the error properties of the algorithms in those special cases. Future work could also pursue hardware implementations of the ICZT algorithm.

Methods

The numerical accuracy of the ICZT algorithm was evaluated with three experiments. In the first experiment, the chirp contour was held fixed while the number of points on it was doubled in each iteration. In the second experiment, the number of points was held fixed while the contour parameters were sampled uniformly on a grid. The third experiment varied both the number of points and the contour parameters. All three experiments used the procedure described below.

CZT-ICZT procedure. The main operation in all experiments consisted of the following five steps: 1) generate each element of a random input vector \mathbf{x} using uniform sampling in the range [-1, 1); 2) normalize the vector \mathbf{x} to have unit length; 3) use the CZT algorithm to compute the vector $\hat{\mathbf{X}}$ from the vector \mathbf{x} ; 4) use the ICZT algorithm to compute the vector $\hat{\mathbf{x}}$ from the vector $\hat{\mathbf{x}}$; and 5) compute the absolute numerical error as the Euclidean distance between the vectors \mathbf{x} and $\hat{\mathbf{x}}$. This sequence of steps is repeated several times and the results are averaged to compute the mean error. In all three experiments the transforms were computed for the square case in which M = N for invertibility reasons.

The length of the vector \mathbf{x} is determined by the transform parameter M. In the experiments, M was always a power of 2, but this is not a restriction of the algorithms, which can run for any M. In other words, the dependency algorithms, which are described in the supplementary information, check the sizes of their input vectors and pad them with zeros when necessary.

First experiment. The value of M was varied from 32 to 2048 such that it was always a power of 2. Each number reported in Table 1 was averaged over 100 random input vectors \mathbf{x} . These vectors were held fixed for each row of Table 1, which was achieved by using a fixed random seed to initialize the pseudo-random number generator. Each row corresponds to a different value of M, which, in the square case, determines the matrix size and also the lengths of the vectors \mathbf{x} , $\mathbf{\hat{X}}$, and $\mathbf{\hat{x}}$. The input vectors were different for different rows because they had different lengths, i.e., different M. The CZT and the ICZT were computed using Algorithm 1 and Algorithm 2, respectively.

The second column of Table 1 reports the condition number²² for the transform matrix WA. It depends on the transform parameters but not on the input vector. The condition number is the same for both the CZT and the ICZT.

Condition number. The condition number κ_2 is equal to the product of the norms of the CZT matrix WA and the ICZT matrix $(WA)^{-1}$. That is, $\kappa_2 = ||WA|| \cdot ||(WA)^{-1}||$. This is equivalent to $\kappa_2 = \sigma_{\max}/\sigma_{\min}$, where σ_{\max} is the maximum singular value and σ_{\min} is the minimum singular value of the matrix WA. The estimates for the values of κ_2 were computed using standard double-precision floating-point numbers in IEEE-754 format with the *numpy* library.

Floating-point precisions. Because the transform matrix can have very high condition numbers, the remaining columns of Table 1 report the average numerical error for four different floating-point precisions, i.e., for 64, 128, 256, and 512 bits. In all cases, the number of precision bits, p, was derived according to the IEEE-754 (2008) standard³³.

That is, for the four storage widths used here the value of p was set to 53, 113, 237, and 489, respectively. Because some of these high-precision formats are not yet implemented by modern processors or standard compilers, all floating-point operations were emulated in software using the *mpmath* library³⁴. This library implements complex exponentiation in a way that slightly boosts its numerical precision. For example, for 64-bit floating-point numbers the numerical error could be one or two orders of magnitude lower than what can be obtained by using a hardware implementation. This slight shift does not affect the overall behavior of the numerical error as the value of M increases.

The code for all experiments was implemented in Python, version 2.7. The *numpy* library was used to generate random numbers for the input vectors. In all cases, 64-bit floating point random numbers were generated and promoted to higher floating-point precisions if necessary.

Second experiment. In this case, M was held fixed at 64, but the transform parameters A and W were varied. More specifically, 52 values for A were uniformly sampled in the interval [0.5, 2]. Similarly, 100 values of $|W|^M$ were uniformly sampled from the interval [0.5, 2]. Both 0.5 and 2 were included among the values for |A| and $|W|^M$. This resulted in 5,200 chirp contours, each specified by an (A, W) pair.

For each (A, W) pair, Fig. 3 shows the average absolute numerical error of the CZT–ICZT procedure computed using 10 random vectors. These 10 vectors were the same for all points of the surface. The results were computed using 128-bit floating-point numbers. As proven in Supplementary Appendix H, the polar angle of A does not affect the magnitude of the numerical error in this experiment. Therefore, the experimental design was simplified by setting the polar angle of A to zero for all contours. Only the magnitude of A was varied. In other words, the starting point of each of the 5,200 contours used to generate Fig. 3 was on the positive real axis between 0.5 and 2.

The construction of the grid includes the point (0,0), which corresponds to |A| = 1 and |W| = 1 in the logarithmic space. Thus, the lowest point of the surface in Fig. 3 corresponds to the circular contour used by the FFT and the IFFT. The decimal logarithm of the numerical error in this case is -32.72. For comparison, for this point, the logarithm of the error computed using regular FFT followed by IFFT is -34.2. The difference is due to the fact that Algorithms 1 and 2 use FFT and IFFT multiple times, which increases the error.

Algorithms that reverse the direction of the chirp contour. To improve the numerical stability, experiment 2 used the CZT-R and ICZT-R algorithms described in Supplementary Appendix G), which reverse the direction of the chirp contour when |W| < 1. These algorithms were not used in experiment 1 because all contours used in that experiment were decaying logarithmic spirals (i.e., blue contours), which don't need to be reversed. Experiment 3 also used the CZT-R and ICZT-R algorithms.

Third experiment. This experiment systematically varied the number of contour points and the size of the floating-point numbers used to compute the transforms. The results are summarized in Fig. 5, which has three sub-figures for 128, 256, and 512 bits, respectively. Each sub-figure contains 4 surfaces, which correspond to M = 64, 128, 256, and 512. The lowest surface in Fig. 5a is the same as the surface shown in Fig. 3. All surfaces in all sub-figures were computed using the same discretization of the parameters A and W that was used in the second experiment. For each surface, the figure shows only the subset of points for which the numerical error does not exceed the magnitude of the unit-length input vector. That is, vertical values above 0 on the logarithmic scale are not shown.

The vertical coordinate of each point in Fig. 5 was computed by averaging the numerical error for 10 unit-length input vectors. The lowest points of the nested surfaces in each sub-figure are very close to each other and are slightly above the machine epsilon for the corresponding floating-point precision. Once again, these points correspond to the circular chirp contours used by the FFT and the IFFT. All three axes in each sub-figure are scaled logarithmically. The units on the vertical axes are different for each of the three sub-figures.

Chirp contours. In all experiments, a chirp contour is defined as a logarithmic spiral that spans a 360° arc. To preserve the analogy with the FFT and the IFFT, the transform parameter W was selected such that doubling M keeps the previous contour points the same and distributes the new points between them. More specifically, going from a contour with M points to a contour with 2M points is accomplished by keeping the original M points intact, inserting M - 1 new points in the middle of each angular interval and adding 1 last point in the middle of the angular interval between the previous end point and the start point. The start point of the contour is equal to A. The last point is given by $AW^{-(M-1)}$. An example contour is shown in Fig. 2.

Unlike the start point, which is always fixed, the last point depends on the value of M. Because historically⁴ the points on the chirp contour were mapped to the z-transform (negative powers) and not to the power series (positive powers), the end point is assumed to be $AW^{-(M-1)}$. To make it easier to relate points to parameter values, however, Fig. 3 and Fig. 5 use $\log_2(|W|^M)$. The reason the power is not M - 1 is to ensure that there is a one-to-one mapping between chirp contours and grid points for different values of M. For example, a vertical line through all four surfaces in Fig. 5c maps to the same logarithmic spiral contour, even though each contour has a different number of points.

Alternative CZT and ICZT implementation. The paper describes two alternative versions of the ICZT algorithm. The default version is shown in Algorithm 2. All results reported in the paper use this version or the modified version that reverses the chirp contour (see Supplementary Appendix G). The alternative version performs the Toeplitz–vector products on lines 25–28 using a different $O(n \log n)$ algorithm that is based on Pustylnikov's decomposition^{23,24} (see Supplementary Appendix C). The results obtained with that algorithm are numerically very similar to those obtained with the default algorithm and are not reported in the paper.

The paper also describes two alternative versions of the CZT algorithm. Algorithm 1 is the default version. The alternative version replaces line 14 in Algorithm 1 with a call to TOEPLITZMULTIPLYP, which uses Pustylnikov's decomposition and is described in Supplementary Appendix C. The numerical performance of this algorithm is similar to the performance of the default CZT algorithm. These results are also not reported in the paper.

Data availability

The data sets that were collected in order to generate the figures in the paper and in the Supplementary Information are available from the corresponding author on reasonable request.

References

- 1. Bluestein, L. A linear filtering approach to the computation of discrete Fourier transform. In *Proceedings of the Northeast Electronic Research and Engineering Meeting (NEREM)*, 218–219 (Boston, MA, 1968).
- 2. Rabiner, L. & Schafer, R. The use of an FFT algorithm for signal processing. In *Proceedings of the Northeast Electronic Research and Engineering Meeting (NEREM)*, 224–225 (Boston, MA, 1968).
- Rabiner, L., Schafer, R. & Rader, C. The chirp z-transform algorithm and its application. *Bell Systems Technical Journal* 48, 1249–1292 (1969).
- Rabiner, L., Schafer, R. & Rader, C. The chirp z-transform algorithm. *IEEE Transactions on Audio and Electroacoustics* 17, 86–92 (1969).
- **5.** Bluestein, L. A linear filtering approach to the computation of discrete Fourier transform. *IEEE Transactions on Audio and Electroacoustics* **18**, 451–455 (1970).
- 6. Rabiner, L. The chirp z-transform a lesson in serendipity. *IEEE Signal Processing Magazine* 21, 118–119 (2004).
- 7. Rabiner, L. & Gold, B. Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ, 1975).
- 8. Oppenheim, A. & Schafer, R. *Discrete-Time Signal Processing* (Prentice Hall, Upper Saddle River, NJ, 2009), 3 edn. Chapter 9.
- 9. Martin, G. Chirp z-transform spectral zoom optimization with MATLAB. *Sandia National Laboratories Report SAND2005-*7084 (2005).
- 10. Strassen, V. Gaussian elimination is not optimal. Numerische Mathematik 13, 354–356 (1969).
- Cormen, T., Leiserson, C. & Rivest, R. Introduction to Algorithms (The MIT Press, Cambridge, MA, 1990). Chapter 32: Polynomials and the FFT.
- 12. Bracewell, R. The Fourier Transform and Its Applications (McGraw-Hill, New York, NY, 2000), 3 edn. Chapter 11.
- 13. Smith, J. Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications (W3K Publishing, 2007), 2 edn.
- Cooley, J. & Tukey, J. An algorithm for the machine calculation of complex Fourier series. *Mathematics of Computation* 19, 297–301 (1965).
- **15.** Frickey, D. Using the inverse chirp-z transform for time-domain analysis of simulated radar signals. Tech. Rep., Idaho National Engineering Lab., Idaho Falls, ID (1995).
- 16. Mersereau, R. *Digital reconstruction of multidimensional signals from their projections*. Ph.D. thesis, Massachusetts Institute of Technology (1973). Chapter 5.
- 17. Mersereau, R. An algorithm for performing an inverse chirp z-transform. *IEEE Transactions on Acoustics, Speech and Signal Processing* 22, 387–388 (1974).
- Gelzer, A. & Ulyanov, V. Features of chirp z-transform in a panoramic vector network analyzer in the implementation of option time domain (in Russian). *Reports of Tomsk State University of Control Systems and Radioelectronics* 24, 162–165 (2011). Part 1.
- Gohberg, I. & Semencul, A. On the inversion of finite Toeplitz matrices and their continuous analogs (in Russian). *Mat. issled.* 2, 201–233 (1972).
- **20.** Gohberg, I. & Feldman, I. *Convolution Equations and Projection Methods for Their Solution*. Translations of Mathematical Monographs (American Mathematical Society, Providence, RI, 1974).
- **21.** Trench, W. An algorithm for the inversion of finite Toeplitz matrices. *Journal of the Society for Industrial and Applied Mathematics* **12**, 515–522 (1964).
- 22. Golub, G. & Van Loan, C. Matrix Computations (Johns Hopkins University Press, Baltimore, MD, 1996), 3 edn.
- 23. Pustylnikov, L. On the algebraic structure of the spaces of Toeplitz and Hankel matrices (in Russian). *Soviet Math. Dokl.* 21, 141–144 (1980).
- 24. Pustylnikov, L. Toeplitz and Hankel matrices and their applications (in Russian). Uspekhi Mat. Nauk 39, 53–84 (1984).
- 25. Ng, M. Iterative Methods for Toeplitz Systems (Oxford University Press, Oxford, UK, 2004).
- 26. Pan, V. Structured Matrices and Polynomials: Unified Superfast Algorithms (Springer Science & Business Media, New York, 2012).
- 27. Bini, D. & Pan, V. Polynomial and Matrix Computations. Vol. 1. Fundamental Algorithms (Birkhäuser, Boston, MA, 1994).

- 28. Davis, P. Circulant Matrices (John Wiley & Sons, New York, 1979).
- **29.** Gohberg, I. & Olshevsky, V. Complexity of multiplication with vectors for structured matrices. *Linear Algebra and Its Applications* **202**, 163–192 (1994).
- **30.** Abramowitz, M. & Stegun, I. *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables* (National Bureau of Standards, Washington, DC, 1972), 10 edn.
- 31. Acton, F. Numerical Methods that Work (Math. Association of America, Washington, DC, 1990), 2 edn.
- **32.** Press, W., Teukolsky, S., Vetterling, W. & Flannery, B. *Numerical Recipes* (Cambridge Univ. Press, Cambridge, MA, 2007), 3 edn.
- **33.** Institute of Electrical and Electronics Engineers (IEEE). IEEE standard for floating-point arithmetic (IEEE 754-2008). Technical Standard (2008). See Table-3.5.
- **34.** Johansson, F. *mpmath: a Python library for arbitrary-precision floating-point arithmetic (v. 1.0.0)* http://mpmath.org/(2017).
- **35.** Björck, Å. & Pereyra, V. Solution of Vandermonde systems of equations. *Mathematics of Computation* **24**, 893–903 (1970).
- **36.** Heideman, M., Johnson, D. & Burrus, S. Gauss and the history of the fast Fourier transform. *Archive for History of Exact Sciences* **34**, 265–277 (1985).
- 37. Bracewell, R. Numerical transforms. Science 248, 697–704 (1990).
- 38. Dongarra, J. & Sullivan, F. Introduction to the top 10 algorithms. Computing in Science & Engineering 2, 22–23 (2000).
- **39.** Rockmore, D. The FFT: an algorithm the whole family can use. *Computing in Science & Engineering* **2**, 60–64 (2000).
- 40. Brigham, O. The Fast Fourier Transform and Its Applications (Prentice Hall, Englewood Cliffs, NJ, 1988).

Acknowledgements

We would like to thank James Oliver, the former director of the Virtual Reality Applications Center at ISU, for creating the research environment in which we could pursue this work over the past three years.

Author Contributions

A.S. conceived the idea. V.S. developed the ICZT algorithm, wrote the evaluation code, and generated the tables and the figures. A.S. and V.S. designed the experiments. A.S. advised on all experiments and supervised the work. Both authors wrote the paper.

Additional information

Supplementary information accompanies this paper.

Competing Interests: V.S. and A.S. are inventors on Patent Cooperation Treaty serial no. PCT/US18/43468 covering systems and methods that use the ICZT.

Supplementary Information for "Generalizing the inverse FFT off the unit circle"

Vladimir Sukhoy¹ & Alexander Stoytchev^{1,*}

PRELIMINARIES

The supplementary information consists of nine appendices that provide additional theoretical proofs, algorithms, and numerical error models for the CZT and the ICZT algorithms. The main paper refers to each appendix using its assigned letter, e.g., Supplementary Appendix B.

The supplementary information also contains 21 theorems, lemmas, and corollaries. The same index counter is used for all three categories, e.g., Lemma 6 comes after Theorem 5, even though Lemma 6 is the first lemma in the text. The numbering starts at 1 because there are no theorems, lemmas, or corollaries in the main paper. To improve readability and to avoid confusion, the numbering of the formulas continues uninterrupted from the main paper.

The appendices and the main text refer to different types of structured matrices. Figure S1 illustrates the general shape of these matrices and shows their generating vectors.

SUMMARY OF THE SUPPLEMENTARY APPENDICES

Appendix A gives an example with a 3×3 CZT and ICZT. The example uses expanded matrix notation to visualize the structured matrix equations that describe the CZT and the ICZT. It also shows how the inverse matrix \hat{W}^{-1} can be expressed as the difference between two products of triangular Toeplitz matrices.

Appendix B describes a popular method for multiplying a Toeplitz matrix by a vector in $O(n \log n)$ time that uses circulant matrix embedding. This is the default approach that is used by both the CZT algorithm and the ICZT algorithm.

Appendix C describes another method for multiplying a Toeplitz matrix by a vector that uses Pustylnikov's formula. It also runs in $O(n \log n)$ time and can be used to implement alternative versions of the CZT and the ICZT algorithms.

Appendix D shows how to multiply a circulant matrix by a vector in $O(n \log n)$ time using FFT and IFFT. It also shows how to multiply a skew-circulant matrix by a vector in $O(n \log n)$ time. These subroutines are used by the Toeplitz– vector multiplication algorithms in Appendices B and C.

Appendix E shows how to express the inverse of a symmetric Toeplitz matrix. It proves a special case of the Gohberg– Semencul formula, which uses only one generating vector instead of two vectors. It also proves that this generating vector, **u**, is equal to the first column of the inverse matrix \hat{W}^{-1} .

Appendix F proves the formula for the elements of the generating vector **u**. This formula and the results from the previous appendix are used by the ICZT algorithm.

Appendix G describes alternative versions of the CZT and the ICZT algorithms that have improved numerical stability for chirp contours that are growing logarithmic spirals. These versions should be used in all cases when the transform parameter W has a magnitude that is less than 1, i.e., |W| < 1. Depending on the values of M, A, and W, these algorithms can reduce the numerical error by several orders of magnitude. Experimental results that confirm these findings are also included in this appendix.

Appendix H proves how changing the polar angle of the transform parameter A affects the polar angles of all elements in the CZT input vector \mathbf{x} . In addition, it shows how a change in A affects the polar angles of the elements in the ICZT output vector \mathbf{x} . This appendix also proves that these changes do not affect the norm of \mathbf{x} , which was used to simplify the experimental design described in the Methods section.

Appendix I gives approximation formulas for the absolute numerical error of the CZT and the ICZT algorithms. It also gives error formulas for their sequential application, i.e., CZT followed by ICZT or ICZT followed by CZT. Empirical results that confirm these formulas are also provided in this appendix.

¹ Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA. Correspondence and requests for materials should be addressed to A.S. (email: alexs@iastate.edu).

Matrix Type	Matrix Shape	Generating Vector(s)		
Diagonal	$\left[\begin{array}{rrrr} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array}\right]$	$\mathbf{d} = (a, b, c)$		
Toeplitz	$\left[\begin{array}{rrrr}a&b&c\\d&a&b\\e&d&a\end{array}\right]$	$\mathbf{r} = (a, b, c)$ $\mathbf{c} = (a, d, e)$		
Upper-Triangular Toeplitz	$\left[\begin{array}{rrrr}a&b&c\\0&a&b\\0&0&a\end{array}\right]$	$\mathbf{r} = (a, b, c)$ $\mathbf{c} = (a, 0, 0)$		
Lower-Triangular Toeplitz	$\left[\begin{array}{rrrr}a&0&0\\d&a&0\\e&d&a\end{array}\right]$	$\mathbf{r} = (a, 0, 0)$ $\mathbf{c} = (a, d, e)$		
Symmetric Toeplitz	$\left[\begin{array}{rrrr}a&b&c\\b&a&b\\c&b&a\end{array}\right]$	$\mathbf{r} = (a, b, c)$ $\mathbf{c} = (a, b, c)$		
Circulant	$\left[\begin{array}{rrrr}a&c&b\\b&a&c\\c&b&a\end{array}\right]$	$\mathbf{r} = (a, c, b)$ or $\mathbf{c} = (a, b, c)$		
Skew-Circulant	$\left[\begin{array}{rrrr}a & -c & -b\\b & a & -c\\c & b & a\end{array}\right]$	$\mathbf{r} = (a, -c, -b)$ or $\mathbf{c} = (a, b, c)$		
Vandermonde	$\begin{bmatrix} a^0 & a^1 & a^2 \\ b^0 & b^1 & b^2 \\ c^0 & c^1 & c^2 \end{bmatrix}$	$\mathbf{v} = (a, b, c)$		

Figure S1. Illustration of the matrix shapes and the generating vector(s) for the different types of structured matrices used in this paper. The diagonal matrix requires only one vector, i.e., the main diagonal **d**. The Toeplitz matrix and most other matrices shown here can be generated using their first row, **r**, and their first column, **c**. The upper-triangular Toeplitz matrix can be fully described using only its first row, but keeping both **r** and **c** makes it possible to use algorithms intended for a more general Toeplitz matrix. Similarly, the lower-triangular Toeplitz matrix can be described using only its first column, but the algorithms described here use both **r** and **c**. This also applies to the symmetric Toeplitz matrix, for which $\mathbf{r} = \mathbf{c}$. The circulant and the skew-circulant matrices can be specified using either their first row or their first column, which leads to alternative versions of the algorithms (here only **c** is used). The Vandermonde matrix can be generated using only one vector, **v**, that is equal to its second column. This is possible because each row of the matrix is a (different) geometric progression. The DFT matrix (not shown) is another structured matrix that is a special case of a Vandermonde matrix (see Appendix D for an example).

SUPPLEMENTARY APPENDIX A: Example

In the 3-by-3 case, the CZT can be expressed with the following matrix equation:

$$\underbrace{\begin{bmatrix} X_0 \\ X_1 \\ X_2 \end{bmatrix}}_{\mathbf{X}} = \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 1 & W^1 & W^2 \\ 1 & W^2 & W^4 \end{bmatrix}}_{\mathbf{W}} \underbrace{\begin{bmatrix} A^{-0} & 0 & 0 \\ 0 & A^{-1} & 0 \\ 0 & 0 & A^{-2} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}}_{\mathbf{X}}.$$
(20)

Using Bluestein's substitution⁵, we can express the Vandermonde matrix W as a product of a diagonal matrix \mathbf{P} , a Toeplitz matrix \hat{W} , and another diagonal matrix \mathbf{Q} , i.e.,

$$\underbrace{\begin{bmatrix} X_0 \\ X_1 \\ X_2 \end{bmatrix}}_{\mathbf{X}} = \underbrace{\begin{bmatrix} W^{\frac{0^2}{2}} & 0 & 0 \\ 0 & W^{\frac{1^2}{2}} & 0 \\ 0 & 0 & W^{\frac{2^2}{2}} \end{bmatrix}}_{\mathbf{P}} \underbrace{\begin{bmatrix} 1 & W^{-\frac{1}{2}} & W^{-2} \\ W^{-\frac{1}{2}} & 1 & W^{-\frac{1}{2}} \\ W^{-2} & W^{-\frac{1}{2}} & 1 \end{bmatrix}}_{\mathbf{\hat{W}}} \underbrace{\begin{bmatrix} W^{\frac{0^2}{2}} & 0 & 0 \\ 0 & W^{\frac{1^2}{2}} & 0 \\ 0 & 0 & W^{\frac{2^2}{2}} \end{bmatrix}}_{\mathbf{Q}} \underbrace{\begin{bmatrix} A^{-0} & 0 & 0 \\ 0 & A^{-1} & 0 \\ 0 & 0 & A^{-2} \end{bmatrix}}_{\mathbf{X}} \underbrace{\begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}}_{\mathbf{X}}.$$
 (21)

In this case, the expanded matrix equation for the ICZT looks like this:

$$\underbrace{\begin{bmatrix} \mathbf{x}_{0} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} A^{0} & 0 & 0 \\ 0 & A^{1} & 0 \\ 0 & 0 & A^{2} \end{bmatrix}}_{\mathbf{A}^{-1}} \underbrace{\begin{bmatrix} W^{-\frac{0^{2}}{2}} & 0 & 0 \\ 0 & W^{-\frac{1^{2}}{2}} & 0 \\ 0 & 0 & W^{-\frac{2^{2}}{2}} \end{bmatrix}}_{\mathbf{Q}^{-1}} \underbrace{\begin{bmatrix} \hat{W}_{1,1}^{-1} & \hat{W}_{1,3}^{-1} & \hat{W}_{1,3}^{-1} \\ \hat{W}_{2,1}^{-1} & \hat{W}_{2,2}^{-1} & \hat{W}_{2,3}^{-1} \\ \hat{W}_{3,1}^{-1} & \hat{W}_{3,2}^{-1} & \hat{W}_{3,3}^{-1} \end{bmatrix}}_{\mathbf{P}^{-1}} \underbrace{\begin{bmatrix} W^{-\frac{0^{2}}{2}} & 0 & 0 \\ 0 & W^{-\frac{1^{2}}{2}} & 0 \\ 0 & 0 & W^{-\frac{2^{2}}{2}} \end{bmatrix}}_{\mathbf{X}} \underbrace{\begin{bmatrix} \mathbf{X}_{0} \\ \mathbf{X}_{1} \\ \mathbf{X}_{2} \end{bmatrix}}_{\mathbf{X}}.$$
 (22)

The inverse matrix \hat{W}^{-1} is given in Eq. (79). The ICZT algorithm, however, does not construct this matrix explicitly. As proven in Theorem 5, \hat{W}^{-1} can be expressed as follows:

$$\mathbf{u}_{0} \, \hat{\boldsymbol{W}}^{-1} = \underbrace{\begin{bmatrix} u_{0} & 0 & 0 \\ u_{1} & u_{0} & 0 \\ u_{2} & u_{1} & u_{0} \end{bmatrix}}_{\boldsymbol{\mathcal{A}}} \underbrace{\begin{bmatrix} u_{0} & u_{1} & u_{2} \\ 0 & u_{0} & u_{1} \\ 0 & 0 & u_{0} \end{bmatrix}}_{\boldsymbol{\mathcal{A}}^{T}} - \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ u_{2} & 0 & 0 \\ u_{1} & u_{2} & 0 \end{bmatrix}}_{\boldsymbol{\mathcal{D}}^{T}} \underbrace{\begin{bmatrix} 0 & u_{2} & u_{1} \\ 0 & 0 & u_{2} \\ 0 & 0 & 0 \end{bmatrix}}_{\boldsymbol{\mathcal{D}}},$$
(23)

where the generating vector $\mathbf{u} = (u_0, u_1, u_2)$ is given by Eq. (78). For these values of the elements of \mathbf{u} , Eq. (23) has the following form:

$$\mathbf{u}_{0} \, \hat{\boldsymbol{W}}^{-1} = \underbrace{\begin{bmatrix} \frac{W^{3}}{(W-1)(W^{2}-1)} & 0 & 0\\ -\frac{W^{\frac{3}{2}}}{(W-1)^{2}} & \frac{W^{3}}{(W-1)(W^{2}-1)} & 0\\ \frac{W^{2}}{(W-1)(W^{2}-1)} & -\frac{W^{\frac{3}{2}}}{(W-1)^{2}} & \frac{W^{3}}{(W-1)(W^{2}-1)} \end{bmatrix}}{A} \underbrace{\begin{bmatrix} \frac{W^{3}}{(W-1)(W^{2}-1)} & -\frac{W^{\frac{3}{2}}}{(W-1)(W^{2}-1)} \\ 0 & 0 & \frac{W^{3}}{(W-1)(W^{2}-1)} \\ -\frac{W^{2}}{(W-1)(W^{2}-1)} & 0 \\ \frac{W^{2}}{(W-1)(W^{2}-1)} & 0 \\ \frac{W^{2}}{(W-1)(W^{2}-1)} & 0 \\ \frac{W^{2}}{(W-1)(W^{2}-1)} & \frac{W^{2}}{(W-1)(W^{2}-1)} \\ 0 & 0 \\ \frac{W^{2}}{(W-1)(W^{2}-1)} & 0$$

The Toeplitz matrices \mathcal{A} , \mathcal{A}^T , \mathcal{D}^T , and \mathcal{D} are not constructed explicitly either. Instead, the vector \mathbf{x} in Eq. (22), where \hat{W}^{-1} is expressed as in Eq. (24), is computed in $O(n \log n)$ time by exploiting the structure of these matrices.

Supplementary Appendix B: Computing a Toeplitz–Vector Product Using Circulant Matrix Embedding

This appendix describes a popular method for multiplying a square Toeplitz matrix by a vector²² (see p. 202). This method can be extended to work with rectangular Toeplitz matrices as well. This is the default method that is used by both the CZT algorithm and the ICZT algorithm described in the main paper.

A. Example with M = N = 3

Let **T** be a 3-by-3 Toeplitz matrix that is generated by its first row $\mathbf{r} = (r_0, r_1, r_2)$ and its first column $\mathbf{c} = (c_0, c_1, c_2)$, where $r_0 = c_0$. We wish to compute the product of **T** with the vector $\mathbf{x} = (x_0, x_1, x_2)^T$, i.e.,

$$\mathbf{T}\mathbf{x} = \begin{bmatrix} c_0 & r_1 & r_2 \\ c_1 & c_0 & r_1 \\ c_2 & c_1 & c_0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix} = \mathbf{y}.$$
 (25)

To do this, we start by embedding the matrix \mathbf{T} into an 8by-8 circulant matrix $\hat{\mathbf{T}}$ (which is also a Toeplitz matrix). The vector \mathbf{x} is padded with five zeros at the end, which results in an eight-element vector $\hat{\mathbf{x}}$. Then, the vector \mathbf{y} is equal to the first three elements of $\hat{\mathbf{y}} = \hat{\mathbf{T}} \hat{\mathbf{x}}$. More formally,

$$\hat{\mathbf{T}}\,\hat{\mathbf{x}} = \begin{bmatrix} c_{0} \ r_{1} \ r_{2} \ 0 \ 0 \ 0 \ 0 \ c_{2} \ c_{1} \\ c_{1} \ c_{0} \ r_{1} \ r_{2} \ 0 \ 0 \ 0 \ c_{2} \\ c_{2} \ c_{1} \ c_{0} \ r_{1} \ r_{2} \ 0 \ 0 \ 0 \ c_{2} \\ c_{2} \ c_{1} \ c_{0} \ r_{1} \ r_{2} \ 0 \ 0 \ 0 \\ 0 \ c_{2} \ c_{1} \ c_{0} \ r_{1} \ r_{2} \ 0 \ 0 \\ 0 \ c_{2} \ c_{1} \ c_{0} \ r_{1} \ r_{2} \ 0 \ 0 \\ 0 \ c_{2} \ c_{1} \ c_{0} \ r_{1} \ r_{2} \ 0 \\ 0 \ c_{2} \ c_{1} \ c_{0} \ r_{1} \ r_{2} \ 0 \\ 0 \ c_{2} \ c_{1} \ c_{0} \ r_{1} \ r_{2} \ 0 \\ 0 \ c_{2} \ c_{1} \ c_{0} \ r_{1} \ r_{2} \ 0 \\ 0 \ c_{2} \ c_{1} \ c_{0} \ r_{1} \ r_{2} \ c_{0} \\ 0 \ c_{1} \ c_{1} \ r_{2} \ c_{1} \ c_{0} \ c_{1} \ c_{1} \ r_{2} \ c_{1} \ c_{0} \ c_{1} \ c_{1$$

The circulant matrix $\hat{\mathbf{T}}$ is generated by its first column $\hat{\mathbf{c}}$, where $\hat{\mathbf{c}} = (c_0, c_1, c_2, 0, 0, 0, r_2, r_1)$. The number of zeros inserted after c_2 is equal to 8 - 5 = 3, where 8 is the size of the matrix $\hat{\mathbf{T}}$ and 5 is the number of free parameters in \mathbf{r} and \mathbf{c} (5 = 3 + 3 - 1, because $r_0 = c_0$). Given $\hat{\mathbf{c}}$ and $\hat{\mathbf{x}}$, the vector $\hat{\mathbf{y}} = \hat{\mathbf{T}} \hat{\mathbf{x}}$ can be computed efficiently as described below. The last five elements of $\hat{\mathbf{y}}$ are computed but are then discarded, which is indicated with \boxtimes in Eq. (26).

B. The General Case for a Rectangular Toeplitz Matrix

Let **T** be an *M*-by-*N* Toeplitz matrix that is generated by its first row $\mathbf{r} = (r_0, r_1, r_2, ..., r_{N-2}, r_{N-1})$ and its first column $\mathbf{c} = (c_0, c_1, c_2, ..., c_{M-2}, c_{M-1})$, assuming that $r_0 = c_0$. Also, let **x** be a column vector of length *N*.

To compute $\mathbf{y} = \mathbf{T} \mathbf{x}$, we start by embedding \mathbf{T} into an *n*-by-*n* circulant matrix $\hat{\mathbf{T}}$, where $n = 2^{\lceil \log_2(M+N-1) \rceil}$. This matrix is generated by its first column $\hat{\mathbf{c}}$, which has *n* elements that are defined as follows:

$$\hat{\mathbf{c}} = (\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{M-1}, 0, 0, \dots, 0, \mathbf{r}_{N-1}, \dots, \mathbf{r}_2, \mathbf{r}_1).$$
 (27)

Note that r_0 , which is equal to c_0 , is not used in this formula. The number of zeros inserted in \hat{c} between c_{M-1} and r_{N-1} is equal to n - (M+N-1). The vector \mathbf{x} is padded with n-N zeros at the end, which results in a vector $\hat{\mathbf{x}}$ of length n. Given $\hat{\mathbf{c}}$ and $\hat{\mathbf{x}}$, the product $\hat{\mathbf{y}} = \hat{\mathbf{T}} \hat{\mathbf{x}}$ can be computed in $O(n \log n)$ time using two FFTs and one IFFT (see Algorithm S4 in Appendix D).

Because the original matrix \mathbf{T} appears as a sub-matrix of $\hat{\mathbf{T}}$ in its upper-left corner and because \mathbf{x} is padded with the appropriate number of zeros, the first M elements of $\hat{\mathbf{y}}$ are equal to \mathbf{y} , i.e., $y_k = \hat{y}_k$ for each $k \in \{0, 1, 2, \dots, M-1\}$.

To summarize, the product of an *M*-by-*N* Toeplitz matrix **T** and a vector **x** of length *N* can be computed using the following four steps: 1) go from the Toeplitz matrix **T**, which is generated by the vectors **r** and **c**, to the circulant matrix $\hat{\mathbf{T}}$ by forming its first column $\hat{\mathbf{c}}$ using Eq. (27); 2) pad the vector **x** with n - N zeros at the end to get the vector $\hat{\mathbf{x}}$; 3) pass $\hat{\mathbf{c}}$ and $\hat{\mathbf{x}}$ to Algorithm S4, which computes $\hat{\mathbf{y}}$; and 4) set **y** to the first *M* elements of $\hat{\mathbf{y}}$. Note that neither the Toeplitz matrix **T** nor the circulant matrix $\hat{\mathbf{T}}$ is constructed explicitly; only their generating vectors are used to perform the necessary computations.

Algorithm S1 gives the pseudo-code for the procedure described above. The computational complexity of this algorithm is $O(n \log n)$. The function name is TOEPLITZMULTIPLYE, where 'E' abbreviates circulant 'embedding'. Algorithm S2 gives the pseudo-code for the helper function ZEROPAD that pads an array with zeros at the end such that the new length of the array is equal to n. This function is used in the next appendix as well.

There are several variations of the circulant embedding procedure that are equivalent to the one described above. In some of the other versions the first column $\hat{\mathbf{c}}$ of $\hat{\mathbf{T}}$ is equal to a cyclic shift of the elements of the vector $\hat{\mathbf{c}}$ that is defined in Eq. (27). For example, Pan²⁶ (see p. 66) constructs $\hat{\mathbf{c}}$ as follows:

$$\hat{\mathbf{c}} = (\mathbf{r}_{N-1}, \dots, \mathbf{r}_2, \mathbf{r}_1, \mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{M-1}, 0, 0, \dots, 0).$$
 (28)

In this case, the n - (M+N-1) zeros are inserted at the end. The vector **x** is still padded with n-N zeros at the end. However, the result vector **y** is extracted from $\hat{\mathbf{y}}$ as follows:

$$\mathbf{y} = (\hat{y}_{N-1}, \, \hat{y}_N, \, \hat{y}_{N+1}, \dots, \, \hat{y}_{N+M-2}).$$
(29)

For example, if M = N = 3, then Eq. (26) could be replaced with the following expression:

The original matrix \mathbf{T} is still embedded in $\hat{\mathbf{T}}$ (indicated with the highlighted region), but it is no longer in the upper-left corner. Similarly, the result vector \mathbf{y} , which is of length M, starts at offset N-1=2 in the vector $\hat{\mathbf{y}}$.

Algorithm S1. Multiply a Toeplitz matrix by a vector using circulant embedding. Runs in $O(n \log n)$ time.

1: TOEPLITZMULTIPLYE($\mathbf{r}, \mathbf{c}, \mathbf{x}$) 2: // Compute the product $\mathbf{y} = \mathbf{T}\mathbf{x}$ of a Toeplitz matrix \mathbf{T} 3: // and a vector \mathbf{x} , where \mathbf{T} is specified by its first row 4: // $\mathbf{r} = (r[0], r[1], r[2], \dots, r[N-1])$ and its first column 5: // $\mathbf{c} = (c[0], c[1], c[2], \dots, c[M-1])$, where r[0] = c[0]. 6: $N \leftarrow \text{Length}(\mathbf{r})$; 7: $M \leftarrow \text{Length}(\mathbf{c});$ 8: ASSERT(r[0] = c[0]);9: ASSERT(LENGTH(\mathbf{x}) = N); 10: $n \leftarrow 2^{\lceil \log_2(M+N-1) \rceil}$: 11: // Form an array $\hat{\mathbf{c}}$ by concatenating \mathbf{c} , n - (M+N-1)12: // zeros, and the reverse of the last N-1 elements of **r**. 13: $\hat{\mathbf{c}} \leftarrow \text{ZEROARRAY}(n);$ 14: for $k \leftarrow 0$ to M-1 do $\hat{\mathbf{c}}[k] \leftarrow \mathbf{c}[k];$ 15: 16: **end for** 17: for $k \leftarrow 1$ to N-1 do $\hat{\mathbf{c}}[n-k] \leftarrow \mathbf{r}[k];$ 18: 19: end for 20: // $\hat{\mathbf{c}} = (c[0], c[1], ..., c[M-1], 0, ..., 0, r[N-1], ..., r[2], r[1]);$ 21: $\mathbf{\hat{x}} \leftarrow \text{ZEROPAD}(\mathbf{x}, n);$ // call Algorithm S2 22: $\mathbf{\hat{y}} \leftarrow CIRCULANTMULTIPLY(\mathbf{\hat{c}}, \mathbf{\hat{x}})$; // call Algorithm S4 23: // The result is the first M elements of $\hat{\mathbf{y}}$. 24: $\mathbf{y} \leftarrow \text{EMPTYARRAY}(M)$; 25: for $k \leftarrow 0$ to M - 1 do $\mathbf{y}[k] \leftarrow \hat{\mathbf{y}}[k];$ 26: 27: end for 28: return y;

Algorithm S2. Pad an array to length n by appending zeros.

1: ZEROPAD(\mathbf{x} , n) 2: $m \leftarrow \text{LENGTH}(\mathbf{x})$; 3: ASSERT($m \le n$); 4: $\hat{\mathbf{x}} \leftarrow \text{EMPTYARRAY}(n)$; 5: for $k \leftarrow 0$ to m - 1 do 6: $\hat{\mathbf{x}}[k] \leftarrow \mathbf{x}[k]$; 7: end for 8: for $k \leftarrow m$ to n - 1 do 9: $\hat{\mathbf{x}}[k] \leftarrow 0$; 10: end for 11: return $\hat{\mathbf{x}}$;

SUPPLEMENTARY APPENDIX C: COMPUTING A TOEPLITZ–VECTOR PRODUCT USING PUSTYLNIKOV'S DECOMPOSITION

This appendix describes another algorithm for multiplying a Toeplitz matrix by a vector that uses Pustylnikov's decomposition^{23, 24} (see also pages 40 and 66 in references 25 and 26, respectively). This method can also be used by the CZT and the ICZT algorithms described in the main paper.

A. Example with M = N = 3

Let $\mathbf{c} = (c_0, c_1, c_2)$ be the first column and $\mathbf{r} = (r_0, r_1, r_2)$ be the first row of a 3-by-3 Toeplitz matrix \mathbf{T} , where $c_0 = r_0$. Once again, we wish to compute the product of \mathbf{T} with the vector $\mathbf{x} = (x_0, x_1, x_2)^T$, i.e.,

$$\mathbf{T} \mathbf{x} = \begin{bmatrix} c_0 & r_1 & r_2 \\ c_1 & c_0 & r_1 \\ c_2 & c_1 & c_0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix} = \mathbf{y}.$$
 (31)

The matrix \mathbf{T} is square, but the number of its rows, or columns, is not a power of 2. Thus, the first step is to pad \mathbf{T} and to embed it into a larger 4-by-4 Toeplitz matrix $\hat{\mathbf{T}}$. The matrix $\hat{\mathbf{T}}$ is generated by its first column and its first row, which can be derived from the first column \mathbf{c} of \mathbf{T} by padding it with a single zero and from the first row \mathbf{r} of \mathbf{T} by padding it with a single zero as well. The vector \mathbf{x} is also padded with a zero at the end to produce the vector $\hat{\mathbf{x}}$, which is of size 4. This padding transforms Eq. (31) as follows:

$$\hat{\mathbf{T}}\,\hat{\mathbf{x}} = \begin{bmatrix} \mathbf{c}_{0} & \mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{0} \\ \mathbf{c}_{1} & \mathbf{c}_{0} & \mathbf{r}_{1} & \mathbf{r}_{2} \\ \mathbf{c}_{2} & \mathbf{c}_{1} & \mathbf{c}_{0} & \mathbf{r}_{1} \\ \hline \mathbf{0} & \mathbf{c}_{2} & \mathbf{c}_{1} & \mathbf{c}_{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{0} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{y}}_{0} \\ \hat{\mathbf{y}}_{1} \\ \hat{\mathbf{y}}_{2} \\ \hat{\mathbf{y}}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{0} \\ \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \mathbf{x} \end{bmatrix} \mathbf{y}$$
(32)

The padding is necessary because the multiplication algorithm relies on FFT and IFFT, which in this text are described as recursive algorithms that expect the size of their input vector to be a power of 2.

The next step uses Pustylnikov's decomposition to express the padded Toeplitz matrix $\hat{\mathbf{T}}$ as the sum of two matrices $\hat{\mathbf{T}}'$ and $\hat{\mathbf{T}}''$, which are defined as follows:

$$\hat{\mathbf{T}}' = \begin{bmatrix} c_0' & c_3' & c_2' & c_1' \\ c_1' & c_0' & c_3' & c_2' \\ c_2' & c_1' & c_0' & c_3' \\ c_3' & c_2' & c_1' & c_0' \end{bmatrix} = \frac{1}{2} \begin{bmatrix} c_0 & 0 + r_1 & c_2 + r_2 & c_1 + 0 \\ c_1 + 0 & c_0 & 0 + r_1 & c_2 + r_2 \\ c_2 + r_2 & c_1 + 0 & c_0 & 0 + r_1 \\ 0 + r_1 & c_2 + r_2 & c_1 + 0 & c_0 \end{bmatrix},$$
(33)

$$\hat{\mathbf{T}}'' = \begin{bmatrix} c_0'' & -c_3'' & -c_2'' & -c_1'' \\ c_1'' & c_0'' & -c_3'' & -c_2'' \\ c_2'' & c_1'' & c_0'' & -c_3'' \\ c_3'' & c_2'' & c_1'' & c_0'' \end{bmatrix} = \frac{1}{2} \begin{bmatrix} c_0 & r_1 - 0 & r_2 - c_2 & 0 - c_1 \\ c_1 - 0 & c_0 & r_1 - 0 & r_2 - c_2 \\ c_2 - r_2 & c_1 - 0 & c_0 & r_1 - 0 \\ 0 - r_1 & c_2 - r_2 & c_1 - 0 & c_0 \end{bmatrix}.$$
(34)

The matrix $\hat{\mathbf{T}}'$ is circulant. The matrix $\hat{\mathbf{T}}''$ is skew-circulant²⁸. Some authors^{26,27} use the term *f*-circulant with f = -1 to refer to a skew-circulant matrix.

Using these two matrices, Eq. (32) can be computed in two steps as follows:

$$\hat{\mathbf{T}}\,\hat{\mathbf{x}} = \hat{\mathbf{T}}'\,\hat{\mathbf{x}} + \hat{\mathbf{T}}''\,\hat{\mathbf{x}}
= \begin{bmatrix} c_0' & c_3' & c_2' & c_1' \\ c_1' & c_0' & c_3' & c_2' \\ c_2' & c_1' & c_0' & c_3' \\ c_3' & c_2' & c_1' & c_0' \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} c_0'' & -c_3'' & -c_2'' \\ c_1'' & c_0'' & -c_3'' & -c_2'' \\ c_2'' & c_1'' & c_0'' & -c_3'' \\ c_3'' & c_2'' & c_1'' & c_0'' \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ 0 \end{bmatrix}.$$
(35)

Both $\hat{\mathbf{y}}' = \hat{\mathbf{T}}' \hat{\mathbf{x}}$ and $\hat{\mathbf{y}}'' = \hat{\mathbf{T}}'' \hat{\mathbf{x}}$ can be computed efficiently as described below. The partial results $\hat{\mathbf{y}}'$ and $\hat{\mathbf{y}}''$ are then added to get the result vector \mathbf{y} , i.e.,

$$\begin{bmatrix} \hat{\mathbf{y}}'_0\\ \hat{\mathbf{y}}'_1\\ \hat{\mathbf{y}}'_2\\ \hat{\mathbf{y}}'_3 \end{bmatrix} + \begin{bmatrix} \hat{\mathbf{y}}''_0\\ \hat{\mathbf{y}}''_1\\ \hat{\mathbf{y}}''_2\\ \hat{\mathbf{y}}''_3 \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{y}}_0 + \hat{\mathbf{y}}''_0\\ \hat{\mathbf{y}}_1' + \hat{\mathbf{y}}''_1\\ \hat{\mathbf{y}}_2' + \hat{\mathbf{y}}''_2\\ \boxtimes \end{bmatrix} = \begin{bmatrix} \mathbf{y}_0\\ \mathbf{y}_1\\ \mathbf{y}_2\\ \boxtimes \end{bmatrix} \mathbf{y}$$
(36)

The last element of $\hat{\mathbf{y}} = \hat{\mathbf{y}}' + \hat{\mathbf{y}}''$ is not needed (and is not computed), it appears only because of the padding.

B. The General Case for a Rectangular Toeplitz Matrix

In the general case, the matrix \mathbf{T} is an *M*-by-*N* Toeplitz matrix, the vector \mathbf{x} is of size *N*, and the result vector \mathbf{y} is of size *M*. The matrix \mathbf{T} is generated by its first column $\mathbf{c} = (c_0, c_1, \ldots, c_{M-1})$ and its first row $\mathbf{r} = (r_0, r_1, \ldots, r_{N-1})$, where it is assumed that $c_0 = r_0$.

The first step is to go from the matrix $\hat{\mathbf{T}}$ to the matrix $\hat{\mathbf{T}}$ of size *n*-by-*n*, where $n = 2^{\lceil \log_2 \max(M,N) \rceil}$. That is, $\hat{\mathbf{T}}$ is a square Toeplitz matrix and *n* is a power of two. The first column of $\hat{\mathbf{T}}$ can be constructed by padding \mathbf{c} with n-M zeros. Similarly, the first row of $\hat{\mathbf{T}}$ can be constructed by padding \mathbf{r} with n-N zeros. The vector \mathbf{x} is also padded with n-N zeros to create the vector $\hat{\mathbf{x}}$.

Given the padded vectors **c** and **r**, which are now both of length *n*, we can use Pustylnikov's formula to calculate the first column $\mathbf{c}' = (c'_0, c'_1, \ldots, c'_{n-1})$ of the circulant matrix $\hat{\mathbf{T}}'$ and the first column $\mathbf{c}'' = (c''_0, c''_1, \ldots, c''_{n-1})$ of the skew-circulant matrix $\hat{\mathbf{T}}''$ as follows:

$$\mathbf{c}_{k}' = \frac{1}{2} \begin{cases} \mathbf{c}_{0}, & \text{if } k = 0, \\ \mathbf{c}_{k} + \mathbf{r}_{n-k}, & \text{if } k \in \{1, 2, \dots, n-1\}, \end{cases}$$
(37)

$$\mathbf{c}_{k}^{\prime\prime} = \frac{1}{2} \begin{cases} \mathbf{c}_{0}, & \text{if } k = 0, \\ \mathbf{c}_{k} - \mathbf{r}_{n-k}, & \text{if } k \in \{1, 2, \dots, n-1\}. \end{cases}$$
(38)

In other words, $\hat{\mathbf{T}}'$ and $\hat{\mathbf{T}}''$ have the following form:

$$\hat{\mathbf{T}}' = \begin{bmatrix} c_0' & c_{n-1}' & c_{n-2}' & \cdots & c_2' & c_1' \\ c_1' & c_0' & c_{n-1}' & \cdots & c_3' & c_2' \\ c_2' & c_1' & c_0' & \cdots & c_4' & c_3' \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{n-2}' & c_{n-3}' & c_{n-4}' & \cdots & c_0' & c_{n-1}' \\ c_{n-1}' & c_{n-2}' & c_{n-3}' & \cdots & c_1' & c_0' \end{bmatrix}, \quad (39)$$

$$\hat{\mathbf{T}}'' = \begin{bmatrix} c_0'' & -c_{n-1}'' & -c_{n-2}'' & -c_1'' \\ c_1'' & c_0'' & -c_{n-1}'' & \cdots & -c_3'' & -c_2'' \\ c_2'' & c_1'' & c_0'' & \cdots & -c_4'' & -c_3'' \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{n-2}'' & c_{n-3}'' & c_{n-4}'' & \cdots & c_0'' & -c_{n-1}'' \\ c_{n-1}'' & c_{n-2}'' & c_{n-3}'' & \cdots & c_1'' & c_0'' \end{bmatrix}. \quad (40)$$

Similarly to the example above, the product $\hat{\mathbf{y}} = \hat{\mathbf{T}} \hat{\mathbf{x}}$ can be computed in two steps:

$$\hat{\mathbf{y}} = \hat{\mathbf{T}}\,\hat{\mathbf{x}} = (\hat{\mathbf{T}}' + \hat{\mathbf{T}}'')\,\hat{\mathbf{x}} = \hat{\mathbf{T}}'\,\hat{\mathbf{x}} + \hat{\mathbf{T}}''\,\hat{\mathbf{x}}.$$
 (41)

The product $\hat{\mathbf{y}}' = \hat{\mathbf{T}}' \hat{\mathbf{x}}$ is computed in $O(n \log n)$ time using Algorithm S4. The product $\hat{\mathbf{y}}'' = \hat{\mathbf{T}}'' \hat{\mathbf{x}}$ is also computed in $O(n \log n)$ time using Algorithm S7. Finally, the first Melements of $\hat{\mathbf{y}}'$ and $\hat{\mathbf{y}}''$ are added together to compute the result vector \mathbf{y} , i.e.,

$$\mathbf{y} = (\hat{\mathbf{y}}'_0 + \hat{\mathbf{y}}''_0, \ \hat{\mathbf{y}}'_1 + \hat{\mathbf{y}}''_1, \ \dots, \ \hat{\mathbf{y}}'_{M-1} + \hat{\mathbf{y}}''_{M-1}).$$
(42)

Algorithm S3 gives the pseudo-code for the procedure described above. The function name is TOEPLITZMULTIPLYP, where 'P' abbreviates 'Pustylnikov'. The algorithm runs in $O(n \log n)$ time. Once again, neither $\hat{\mathbf{T}}'$ nor $\hat{\mathbf{T}}''$ is constructed explicitly; only the generating vectors \mathbf{c}' and \mathbf{c}'' are computed, which correspond to their first columns. The last n-Melements of $\hat{\mathbf{y}}'$ and $\hat{\mathbf{y}}''$ are computed, but they are not used to compute \mathbf{y} .

In contrast to the circulant embedding approach described in Appendix B, Algorithm S3 does not embed T into only one square matrix with $n = 2^{\lceil \log_2(M+N-1) \rceil}$. Instead, it uses two square matrices, each with $n = 2^{\lceil \log_2 \max(M,N) \rceil}$.

Algorithm S3. Multiply a Toeplitz matrix by a vector using Pustylnikov's decomposition. Runs in $O(n \log n)$ time.

1: TOEPLITZMULTIPLYP($\mathbf{r}, \mathbf{c}, \mathbf{x}$) 2: // Compute the product $\mathbf{y} = \mathbf{T} \mathbf{x}$ of a Toeplitz matrix \mathbf{T} 3: // and a vector \mathbf{x} where \mathbf{T} is specified by its first row 4: // $\mathbf{r} = (r[0], r[1], r[2], \dots, r[N-1])$ and its first column 5: // $\mathbf{c} = (c[0], c[1], c[2], \dots, c[M-1])$, where r[0] = c[0]. 6: $N \leftarrow \text{Length}(\mathbf{r});$ 7: $M \leftarrow \text{Length}(\mathbf{c});$ 8: ASSERT(r[0] = c[0]);9: ASSERT(LENGTH(\mathbf{x}) = N);) 10: $n \leftarrow 2^{\lceil \log_2(\max(M,N)) \rceil};$ 11: if $N \neq n$ then $\mathbf{r} \leftarrow \text{ZEROPAD}(\mathbf{r}, n);$ 12: $\mathbf{x} \leftarrow \text{ZEROPAD}(\mathbf{x}, n);$ 13: 14: end if 15: if $M \neq n$ then $\mathbf{c} \leftarrow \text{ZEROPAD}(\mathbf{c}, n);$ 16: 17: end if 18: $\mathbf{c}' \leftarrow \text{EMPTYARRAY}(n);$ 19: $\mathbf{c}'' \leftarrow \text{EMPTYARRAY}(n);$ 20: $c'[0] \leftarrow 0.5 \cdot c[0];$ 21: $c''[0] \leftarrow 0.5 \cdot c[0];$ 22: for $k \leftarrow 1$ to n-1 do $c'[k] \leftarrow 0.5 \cdot (c[k] + r[n-k]);$ 23: $\mathbf{c}''[k] \leftarrow 0.5 \cdot (\mathbf{c}[k] - \mathbf{r}[n-k]);$ 24: 25: end for 26: $\mathbf{y}' \leftarrow \text{CIRCULANTMULTIPLY}(\mathbf{c}', \mathbf{x});$ 27: $\mathbf{y}'' \leftarrow \text{SKEWCIRCULANTMULTIPLY}(\mathbf{c}'', \mathbf{x});$ 28: $\mathbf{y} \leftarrow \text{EMPTYARRAY}(M)$; 29: for $k \leftarrow 0$ to M - 1 do $\mathbf{y}[k] \leftarrow \mathbf{y}'[k] + \mathbf{y}''[k];$ 30: 31: end for 32: return y;

SUPPLEMENTARY APPENDIX D: Multiplying a Circulant or a Skew-Circulant Matrix by a Vector Using FFT and IFFT

The algorithm described in Appendix B relies on another algorithm for computing the product of a circulant matrix with a vector in $O(n \log n)$ time. In addition to this, the algorithm described in Appendix C needs to compute the product of a skew-circulant matrix with a vector in $O(n \log n)$ time. This appendix describes both of these algorithms for *n*-by-*n* matrices, where *n* is a power of two. It is assumed that appropriate padding has already been applied (i.e., see lines 10–21 in Algorithm S1 and lines 10–17 in Algorithm S3).

A. Multiplying a Circulant Matrix by a Vector

A circulant matrix is a square matrix with columns that are generated by successive circular shifts of its first column.

Let G be a 4-by-4 circulant matrix that is generated by its first column $\mathbf{c} = (c_0, c_1, c_2, c_3)$, i.e.,

$$\mathbf{G} = \begin{bmatrix} c_0 & c_3 & c_2 & c_1 \\ c_1 & c_0 & c_3 & c_2 \\ c_2 & c_1 & c_0 & c_3 \\ c_3 & c_2 & c_1 & c_0 \end{bmatrix}.$$
 (43)

The matrix **G** can be diagonalized²⁸ (see p. 73) using the DFT matrix **F** and the inverse DFT matrix \mathbf{F}^{-1} . In the 4-by-4 case these two matrices have the following form:

$$\mathbf{F} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 \\ 1 & \omega^3 & \omega^6 & \omega^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix},$$
(44)
$$\mathbf{F}^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \omega^{-3} \\ 1 & \omega^{-2} & \omega^{-4} & \omega^{-6} \\ 1 & \omega^{-3} & \omega^{-6} & \omega^{-9} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix},$$
(45)

where $\omega = e^{-\frac{2\pi i}{4}} = \cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2}) = -i$. Both matrices are symmetric, i.e., each is equal to its own transpose: $\mathbf{F}^T = \mathbf{F}$ and $(\mathbf{F}^{-1})^T = \mathbf{F}^{-1}$.

The matrix **G** can be expressed, i.e., diagonalized, using the following product of three matrices:

$$\mathbf{G} = \mathbf{F}^{-1} \mathbf{\Lambda} \, \mathbf{F}. \tag{46}$$

The diagonal matrix Λ is defined as follows:

$$\mathbf{\Lambda} = \text{diag}(\mathbf{\lambda}) = \begin{bmatrix} \lambda_0 & 0 & 0 & 0\\ 0 & \lambda_1 & 0 & 0\\ 0 & 0 & \lambda_2 & 0\\ 0 & 0 & 0 & \lambda_2 \end{bmatrix}.$$
 (47)

Furthermore, the vector $\boldsymbol{\lambda} = (\lambda_0, \lambda_1, \lambda_2, \lambda_3)^T$, which contains the eigenvalues of **G**, is equal to the product of the DFT matrix **F** with the column vector **c**, i.e., $\boldsymbol{\lambda} = \mathbf{F}\mathbf{c}$.

The expanded form of Eq. (46) is shown below:

$$\mathbf{G} = \mathbf{F}^{-1} \mathbf{\Lambda} \mathbf{F}$$

$$= \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix} \begin{bmatrix} \lambda_0 & 0 & 0 & 0 \\ 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & \lambda_2 & 0 \\ 0 & 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & -1 \end{bmatrix} . \quad (48)$$

The vector $\boldsymbol{\lambda}$ has the following structure:

$$\boldsymbol{\lambda} = \mathbf{F}\mathbf{c} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} c_0 + c_1 + c_2 + c_3 \\ c_0 - ic_1 - c_2 + ic_3 \\ c_0 - ic_1 - c_2 - ic_3 \\ c_0 + ic_1 - c_2 - ic_3 \end{bmatrix} = \begin{bmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}.$$
(49)

The product between the circulant matrix **G** and the vector $\mathbf{x} = (x_0, x_1, x_2, x_3)^T$ can be expressed as follows:

$$\mathbf{y} = \mathbf{G}\mathbf{x} = \mathbf{F}^{-1}\mathbf{\Lambda} \mathbf{F}\mathbf{x}$$

= $\mathbf{F}^{-1} (\operatorname{diag}(\mathbf{\lambda}) (\mathbf{F}\mathbf{x}))$
= $\mathbf{F}^{-1} (\operatorname{diag}(\mathbf{F}\mathbf{c}) (\mathbf{F}\mathbf{x})).$ (50)

The same approach works²⁸ for an *n*-by-*n* matrix **G**. Thus, the vector \mathbf{y} can be computed efficiently using two FFTs and one IFFT as follows:

$$\mathbf{y} = \text{IFFT}(\text{FFT}(\mathbf{c}) \times \text{FFT}(\mathbf{x})), \tag{51}$$

where \times denotes element-by-element multiplication. Algorithm S4 implements this formula. It runs in $O(n \log n)$ time.

A circulant matrix can also be generated by circular shifts of its first row instead of its first column. Thus, there is an alternative formula for y that diagonalizes G using its first row $\mathbf{r} = (c_0, c_{n-1}, c_{n-2}, \dots, c_1)$, i.e.,

$$\mathbf{y} = \mathbf{G}\mathbf{x} = \mathbf{F}^{-1} \mathbf{\Lambda} \mathbf{F} \mathbf{x}$$

= $n \mathbf{F}^{-1} (\operatorname{diag}(\mathbf{r} \mathbf{F}^{-1}) (\mathbf{F} \mathbf{x}))$
= $n \mathbf{F}^{-1} (\operatorname{diag}(\mathbf{F}^{-1} \mathbf{r}^{T}) (\mathbf{F} \mathbf{x})).$ (52)

This formula can also be computed in $O(n \log n)$ time using one FFT and two IFFTs as follows:

$$\mathbf{y} = n \text{ IFFT}(\text{ IFFT}(\mathbf{r}) \times \text{FFT}(\mathbf{x})).$$
(53)

Note that in this case there is an extra multiplication by n for all elements of the result vector y. This is due to the normalization by 1/n in the definition of \mathbf{F}^{-1} (see Eq. (45)).

For the sake of completeness, Algorithm S5 and Algorithm S6 give the pseudo-code for the *Fast Fourier Transform* (FFT) and the *Inverse Fast Fourier Transform* (IFFT). Both the FFT and the IFFT run in $O(n \log n)$ time^{11, 14}.

A	gorithm	S4.	Multiply	а	circulant	matrix	by	а	vector.	
---	---------	-----	----------	---	-----------	--------	----	---	---------	--

1: CIRCULANTMULTIPLY(\mathbf{c}, \mathbf{x}) // runs in $O(n \log n)$ time 2: // Compute the product $\mathbf{y} = \mathbf{G}\mathbf{x}$ of a circulant matrix \mathbf{G} 3: // and a vector \mathbf{x} , where \mathbf{G} is generated by its first column 4: // $\mathbf{c} = (\mathbf{c}[0], \mathbf{c}[1], \dots, \mathbf{c}[n-1]).$ 5: $n \leftarrow \text{LENGTH}(\mathbf{c});$ 6: ASSERT(LENGTH(\mathbf{x}) = n); 7: $\mathbf{C} \leftarrow \text{FFT}(\mathbf{c});$ 8: $\mathbf{X} \leftarrow \text{FFT}(\mathbf{x});$ 9: $\mathbf{Y} \leftarrow \text{EMPTYARRAY}(n);$ 10: for $k \leftarrow 0$ to n - 1 do 11: $\mathbf{Y}[k] \leftarrow \mathbf{C}[k] \cdot \mathbf{X}[k];$ 12: end for 13: $\mathbf{y} \leftarrow \text{IFFT}(\mathbf{Y});$ 14: return $\mathbf{y};$

Algorithm S5. FFT algorithm. Runs in $O(n \log n)$ time.

```
1: FFT(\mathbf{x})
 2: n \leftarrow \text{Length}(\mathbf{x});
 3: if n = 1 then
           return x:
 4:
 5: end if
 6: \mathbf{x}_{\mathbf{E}} \leftarrow (\mathbf{x}[0], \mathbf{x}[2], \dots, \mathbf{x}[n-2]);
                                                                              // even
 7: \mathbf{x_o} \leftarrow (x[1], x[3], \dots, x[n-1]);
                                                                              // odd
 8: \mathbf{y}' \leftarrow \text{FFT}(\mathbf{x}_{\mathbf{E}});
 9: \mathbf{y}'' \leftarrow \text{FFT}(\mathbf{x}_0);
10: \mathbf{y} \leftarrow \text{EMPTYARRAY}(n);
11: for k \leftarrow 0 to n/2 - 1 do
           \mathbf{w} \leftarrow e^{-\frac{i2\pi k}{n}}:
12:
           \mathbf{v}[k]
                                      \leftarrow \mathbf{y}'[k] + \mathbf{w} \cdot \mathbf{y}''[k];
13.
           \mathbf{y}[k + (n/2)] \leftarrow \mathbf{y}'[k] - \mathbf{w} \cdot \mathbf{y}''[k];
14:
15: end for
16: return y;
```

Algorithm S6. IFFT algorithm. Runs in $O(n \log n)$ time.

1: IFFT(\mathbf{y}) 2: $n \leftarrow \text{LENGTH}(\mathbf{y});$ 3: if n = 1 then 4: return y; 5: **end if** 6: $\mathbf{y}_{\mathbf{E}} \leftarrow (\mathbf{y}[0], \mathbf{y}[2], \dots, \mathbf{y}[n-2]);$ // even 7: $\mathbf{y_0} \leftarrow (y[1], y[3], \dots, y[n-1]);$ // odd 8: $\mathbf{x}' \leftarrow \text{IFFT}(\mathbf{y}_{E});$ 9: $\mathbf{x}'' \leftarrow \text{IFFT}(\mathbf{y}_0);$ 10: $\mathbf{x} \leftarrow \text{EMPTYARRAY}(n)$; 11: for $k \leftarrow 0$ to n/2 - 1 do $\mathbf{w} \leftarrow e^{\frac{i2\pi k}{n}}$: 12: $\mathbf{x}[k]$ $\leftarrow (\mathbf{x}'[k] + \mathbf{w} \cdot \mathbf{x}''[k])/2;$ 13. $\mathbf{x}[k + (n/2)] \leftarrow (\mathbf{x}'[k] - \mathbf{w} \cdot \mathbf{x}''[k])/2;$ 14: 15: end for 16: return x:

B. Multiplying a Skew-Circulant Matrix by a Vector

A skew-circulant matrix is a square matrix obtained by negating each element above the main diagonal of a circulant matrix²⁸. A skew-circulant matrix is also often called an f-circulant matrix with f = -1, e.g., see references 26 and 27.

Let S be a 4-by-4 skew-circulant matrix that is generated by its first column $\mathbf{c} = (c_0, c_1, c_2, c_3)$, i.e.,

$$\mathbf{S} = \begin{bmatrix} c_0 & -c_3 & -c_2 & -c_1 \\ c_1 & c_0 & -c_3 & -c_2 \\ c_2 & c_1 & c_0 & -c_3 \\ c_3 & c_2 & c_1 & c_0 \end{bmatrix}.$$
 (54)

The matrix S can be expressed as the following $product^{26,28}$ of three matrices:

$$\mathbf{S} = \mathbf{H}^{-1}\hat{\mathbf{G}}\,\mathbf{H},\tag{55}$$

where $\hat{\mathbf{G}}$ is a circulant matrix and both \mathbf{H} and \mathbf{H}^{-1} are diagonal matrices.

The matrix **H** is defined as follows:

$$\mathbf{H} = \operatorname{diag}(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{-\frac{1i\pi}{4}} & 0 & 0 \\ 0 & 0 & e^{-\frac{2i\pi}{4}} & 0 \\ 0 & 0 & 0 & e^{-\frac{3i\pi}{4}} \end{bmatrix},$$
(56)

where $\sigma = e^{-\frac{\pi n}{n}}$. The inverse matrix \mathbf{H}^{-1} is equal to

$$\mathbf{H}^{-1} = \operatorname{diag}(\sigma^{0}, \sigma^{-1}, \sigma^{-2}, \sigma^{-3}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \mathrm{e}^{\frac{1i\pi}{4}} & 0 & 0 \\ 0 & 0 & \mathrm{e}^{\frac{2i\pi}{4}} & 0 \\ 0 & 0 & 0 & \mathrm{e}^{\frac{3i\pi}{4}} \end{bmatrix}.$$
 (57)

The circulant matrix $\hat{\mathbf{G}}$ is generated by its first column $\hat{\mathbf{c}}$, which is equal to the product of \mathbf{H} with the column vector \mathbf{c} , i.e., $\hat{\mathbf{c}} = \mathbf{H} \mathbf{c}$. Thus, $\hat{\mathbf{G}}$ has the following form:

$$\hat{\mathbf{G}} = \begin{bmatrix} c_0 \, \sigma^0 & c_3 \, \sigma^3 & c_2 \, \sigma^2 & c_1 \, \sigma^1 \\ c_1 \, \sigma^1 & c_0 \, \sigma^0 & c_3 \, \sigma^3 & c_2 \, \sigma^2 \\ c_2 \, \sigma^2 & c_1 \, \sigma^1 & c_0 \, \sigma^0 & c_3 \, \sigma^3 \\ c_3 \, \sigma^3 & c_2 \, \sigma^2 & c_1 \, \sigma^1 & c_0 \, \sigma^0 \end{bmatrix}.$$
(58)

Combining Eq. (55) with Eq. (50) leads to the following formula for computing the product of the skew-circulant matrix **S** with the vector $\mathbf{x} = (x_0, x_1, x_2, x_3)^T$:

$$\mathbf{y} = \mathbf{S}\mathbf{x} = \mathbf{H}^{-1}\hat{\mathbf{G}}\,\mathbf{H}\,\mathbf{x} = \mathbf{H}^{-1}\,\mathbf{F}^{-1}\,\hat{\mathbf{\Lambda}}\,\mathbf{F}\,\mathbf{H}\,\mathbf{x}$$
$$= \mathbf{H}^{-1}\big(\mathbf{F}^{-1}\,\mathrm{diag}(\mathbf{F}\,\mathbf{H}\,\mathbf{c})\,(\mathbf{F}\,\mathbf{H}\,\mathbf{x})\big)$$
$$= \mathbf{H}^{-1}\big(\mathbf{F}^{-1}\,\mathrm{diag}(\mathbf{F}\,\hat{\mathbf{c}})\,(\mathbf{F}\,\hat{\mathbf{x}})\big), \tag{59}$$

where $\hat{\mathbf{c}} = \mathbf{H} \mathbf{c}$ and $\hat{\mathbf{x}} = \mathbf{H} \mathbf{x}$.

The same method can be applied if **S** is an *n*-by-*n* skewcirculant matrix²⁸. In this case, Eq. (59) can be computed efficiently using two FFTs and one IFFT, i.e.,

$$\mathbf{y} = \mathbf{H}^{-1} \big(\operatorname{IFFT} \big(\operatorname{FFT}(\hat{\mathbf{c}}) \times \operatorname{FFT}(\hat{\mathbf{x}}) \big) \big), \tag{60}$$

where \times denotes elementwise multiplication. Algorithm S7 implements this approach. It runs in $O(n \log n)$ time.

Because **H** and \mathbf{H}^{-1} are diagonal matrices, multiplying each of them by a vector reduces to scaling the elements of the vector, which can be done in O(n) time. This scaling does not affect the computational complexity of Algorithm S7.

Algorithm S7. Multiply a skew-circulant matrix by a vector

	oritanin D7. Manapiy a skew	eneurant maarx of a veetor.
1:	SKEWCIRCULANTMULTIPL	$X(\mathbf{c}, \mathbf{x})$ // in $O(n \log n)$ time
2:	$n \leftarrow \text{LENGIH}(\mathbf{C}),$	
3:	$ASSERT(LENGTH(\mathbf{x}) = n);$	
4:	$\mathbf{\hat{c}} \leftarrow \text{EmptyArray}(n);$	
5:	$\mathbf{\hat{x}} \leftarrow \text{EmptyArray}(n);$	
6:	for $k \leftarrow 0$ to $n-1$ do	
7:	$\hat{\mathbf{c}}[k] \leftarrow \mathbf{c}[k] \cdot e^{-\frac{ik\pi}{n}};$	// $\mathbf{\hat{c}} = \mathbf{H} \mathbf{c}$
8:	$\hat{\mathbf{x}}[k] \leftarrow \mathbf{x}[k] \cdot e^{-\frac{i\kappa\kappa}{n}};$	// $\mathbf{\hat{x}} = \mathbf{H} \mathbf{x}$
9:	end for	
10:	$\mathbf{y} \leftarrow CirculantMultiply$	$\mathcal{K}(\mathbf{\hat{c}}, \mathbf{\hat{x}});$ // call Algorithm S4
11:	for $k \leftarrow 0$ to $n-1$ do	
12:	$\mathbf{y}[k] \leftarrow \mathbf{y}[k] \cdot e^{\frac{ik\pi}{n}};$	// multiply by \mathbf{H}^{-1}
13:	end for	
14:	return y;	

SUPPLEMENTARY APPENDIX E: Expressing the Inverse Matrix \hat{W}^{-1}

This appendix shows how to express the inverse matrix \hat{W}^{-1} using structured matrices so that any product between this matrix and a vector can be computed in $O(n \log n)$ time.

Let **T** be an *n*-by-*n* Toeplitz matrix generated by the vector $\mathbf{r} = (r_0, r_1, r_2, \ldots, r_{n-1})$ that specifies its first row and by the vector $\mathbf{c} = (c_0, c_1, c_2, \ldots, c_{n-1})$ that specifies its first column, where it is assumed that $r_0 = c_0$. The inverse matrix \mathbf{T}^{-1} may not be Toeplitz. Nevertheless, the Gohberg–Semencul formula^{19,20} makes it possible to express \mathbf{T}^{-1} using upper-triangular and lower-triangular Toeplitz matrices.

In other words, the formula states that there exist a vector $\mathbf{u} = (u_0, u_1, u_2, \dots, u_{n-1})$ such that $u_0 \neq 0$ and a vector $\mathbf{v} = (v_0, v_1, v_2, \dots, v_{n-1})$ that satisfy the following matrix equation:

$$\mathbf{u}_{0}\mathbf{T}^{-1} = \begin{bmatrix} u_{0} & 0 & 0 & \dots & 0 & 0 \\ u_{1} & u_{0} & 0 & \dots & 0 & 0 \\ u_{2} & u_{1} & u_{0} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ u_{n-2} & u_{n-3} & u_{n-4} & \dots & u_{0} & 0 \\ u_{n-1} & u_{n-2} & u_{n-3} & \dots & u_{1} & u_{0} \end{bmatrix} \begin{bmatrix} v_{n-1} & v_{n-2} & v_{n-3} & \dots & v_{1} & v_{0} \\ 0 & v_{n-1} & v_{n-2} & \dots & v_{2} & v_{1} \\ 0 & 0 & v_{n-1} & \dots & v_{3} & v_{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & v_{n-1} & v_{n-2} \\ 0 & 0 & 0 & \dots & 0 & v_{n-1} \end{bmatrix} \\ - \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ v_{0} & 0 & 0 & \dots & 0 & 0 \\ v_{1} & v_{0} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ v_{n-3} & v_{n-4} & v_{n-5} & \dots & 0 & 0 \\ v_{n-2} & v_{n-3} & v_{n-4} & \dots & v_{0} & 0 \end{bmatrix} \begin{bmatrix} 0 & u_{n-1} & u_{n-2} & \dots & u_{2} & u_{1} \\ 0 & 0 & u_{n-1} & \dots & u_{3} & u_{2} \\ 0 & 0 & 0 & \dots & 0 & u_{n-1} \\ 0 & 0 & 0 & \dots & 0 & u_{n-1} \\ 0 & 0 & 0 & \dots & 0 & u_{n-1} \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} \\ = \mathcal{AC} - \mathcal{BD}. \tag{61}$$

The Gohberg–Semencul formula uses two vectors \mathbf{u} and \mathbf{v} to describe the inverse of a square Toeplitz matrix. As proven below, however, the vector \mathbf{u} is not unique in that formula and can be scaled by a non-zero constant without affecting the inverse matrix. In turn, this result is used to prove that if the Toeplitz matrix is symmetric, then its inverse can be generated using only one specifically scaled vector \mathbf{u} . Furthermore, this vector is equal to the first column of the inverse matrix.

Theorem 1. (*The vector* **u** *is not unique.*) Let **T** be a nonsingular n-by-n Toeplitz matrix. Let $\mathbf{u} = (u_0, u_1, \dots, u_{n-1})$ and $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ be two vectors that determine the inverse matrix \mathbf{T}^{-1} in the Gohberg–Semencul formula, i.e.,

$$\mathbf{u}_0 \mathbf{T}^{-1} = \mathcal{A} \mathcal{C} - \mathcal{B} \mathcal{D}, \tag{62}$$

where \mathcal{A} , \mathcal{B} , \mathcal{C} , and \mathcal{D} are specified in Eq. (61).

Then, the Gohberg–Semencul formula also holds for all vectors $\hat{\mathbf{u}}$ obtained by multiplying the vector \mathbf{u} with a non-zero scaling coefficient. More formally, for each $\alpha \neq 0$, the following equation holds:

$$\hat{\mathbf{u}}_0 \mathbf{T}^{-1} = \hat{\boldsymbol{\mathcal{A}}} \boldsymbol{\mathcal{C}} - \boldsymbol{\mathcal{B}} \, \hat{\boldsymbol{\mathcal{D}}},\tag{63}$$

where $\hat{\mathcal{A}} = \alpha \mathcal{A}$, $\hat{\mathcal{D}} = \alpha \mathcal{D}$, and

$$\mathbf{\hat{u}} = (\hat{\mathbf{u}}_0, \hat{\mathbf{u}}_1, \dots, \hat{\mathbf{u}}_{n-1}) = (\alpha \mathbf{u}_0, \alpha \mathbf{u}_1, \dots, \alpha \mathbf{u}_{n-1}) = \alpha \mathbf{u}.$$
(64)

Proof. Because $\alpha \neq 0$, it can be factored out and canceled from both sides of Eq. (63), which leads to Eq. (62). That is,

$$\underbrace{\overset{\alpha}{\underbrace{u_0}}}_{\hat{u}_0} \mathbf{T}^{-1} = \underbrace{(\alpha, \mathcal{A})}_{\hat{\mathcal{A}}} \mathcal{C} - \mathcal{B} \underbrace{(\alpha, \mathcal{D})}_{\hat{\mathcal{D}}} = \alpha (\mathcal{A}\mathcal{C} - \mathcal{B}\mathcal{D}). \quad (65)$$

Theorem 2. Let \mathbf{T} be a non-singular Toeplitz matrix and let \mathbf{T}^{-1} be its inverse that is generated by the vectors \mathbf{u} and \mathbf{v} in the Gohberg–Semencul formula. Then, the first row of \mathbf{T}^{-1} is equal to the reverse of the vector \mathbf{v} .

Proof. Let $\mathbf{a} = (u_0, 0, \dots, 0)$ be the first row of \mathcal{A} and let $\mathbf{b} = (0, 0, \dots, 0)$ be the first row of \mathcal{B} in Eq. (61). Then, the first row of the inverse matrix \mathbf{T}^{-1} can be expressed as follows:

$$\frac{1}{\mathbf{u}_0} \left(\mathbf{a} \, \boldsymbol{\mathcal{C}} - \underbrace{\mathbf{b}}_{\mathbf{0}} \right) = \frac{1}{\mathbf{\mu}_0} \left(\mathbf{\mu}_0 \, \mathbf{v}_{n-1}, \, \mathbf{\mu}_0 \, \mathbf{v}_{n-2}, \dots, \, \mathbf{\mu}_0 \, \mathbf{v}_0 \right).$$
(66)

Theorem 3. Let \mathbf{T}^{-1} be the inverse of an n-by-n Toeplitz matrix \mathbf{T} . Then, the first column of \mathbf{T}^{-1} can be expressed as the product of the vector \mathbf{u} with the scalar v_{n-1}/u_0 .

Proof. Let $\mathbf{c} = (\mathbf{v}_{n-1}, 0, \dots, 0)^T$ be the first column of \mathcal{C} and let $\mathbf{d} = (0, 0, \dots, 0)^T$ be the first column of \mathcal{D} in Eq. (61). Then, the first column of \mathbf{T}^{-1} is equal to:

$$\frac{1}{u_0} \left(\mathbf{\mathcal{A}} \mathbf{c} - \underbrace{\mathbf{\mathcal{B}} \mathbf{d}}_{\mathbf{0}} \right) = \frac{\mathbf{v}_{n-1}}{u_0} \mathbf{u}.$$
 (67)

Theorem 4. Let \hat{W} be a symmetric non-singular Toeplitz matrix. Let \mathbf{u} and \mathbf{v} be two vectors that generate the inverse matrix \hat{W}^{-1} using the Gohberg–Semencul formula such that $\mathbf{u}_0 = \mathbf{v}_{n-1}$. Then, the vector \mathbf{u} is equal to the reverse of the vector \mathbf{v} , i.e.,

$$\mathbf{u} = (u_0, u_1, \dots, u_{n-1}) = (v_{n-1}, v_{n-2}, \dots, v_0).$$
(68)

Proof. Because the matrix \hat{W} is symmetric, its inverse is also symmetric. This implies that the first column of \hat{W}^{-1} is equal to its first row. Combining the condition that $u_0 = v_{n-1}$ with Theorem 2 and Theorem 3 shows that Eq. (68) holds. More formally,

$$\underbrace{\frac{\mathbf{v}_{n-1}}{\mathbf{u}_0}}_{\mathbf{u}_0} \mathbf{u} = \left(\mathbf{v}_{n-1}, \mathbf{v}_{n-2}, \dots, \mathbf{v}_0\right)^T.$$
(69)

Theorem 5. Let \hat{W} be a symmetric non-singular Toeplitz matrix. Then, there is a vector $\mathbf{u} = (u_0, u_1, \dots, u_{n-1})$ in which $u_0 \neq 0$ such that \hat{W}^{-1} can be expressed as follows:

$$\hat{\boldsymbol{W}}^{-1} = \frac{1}{u_0} \Big(\boldsymbol{\mathcal{A}} \boldsymbol{\mathcal{A}}^T - \boldsymbol{\mathcal{D}}^T \boldsymbol{\mathcal{D}} \Big).$$
(70)

Moreover, the vector **u** is equal to the first column of the inverse matrix \hat{W}^{-1} .

Proof. Theorem 1 implies that \mathbf{u} can be scaled by a factor α . In particular, if we set $\alpha = v_{n-1}/u_0$, then the value of u_0 after scaling is equal to v_{n-1} . Then, Theorem 4 implies that the scaled vector \mathbf{u} is equal to the reverse of the vector \mathbf{v} . Plugging these values into Eq. (61) leads to Eq. (70). Since $u_0 = v_{n-1}$, Theorem 3 implies that \mathbf{u} is the first column of $\hat{\mathbf{W}}^{-1}$.

SUPPLEMENTARY APPENDIX F: Expressing the Generating Vector **u**

A general formula for the elements of the vector **u** can be derived from special cases for the first several values of n and then proven by induction for all n. Because **u** determines \hat{W}^{-1} , this is sufficient to formulate the ICZT algorithm using structured matrix multiplication.

A. Special Cases of the Formula for the Generating Vector ${\bf u}$

1) Special Case for n = 1: In this degenerate case both \hat{W} and \hat{W}^{-1} are equal to [1]. Also, $\mathbf{u} = (u_0) = (1)$.

2) Special Case for n = 2: Suppose that n = 2. Then, \hat{W} is a 2-by-2 matrix that is defined by Eq. (9). That is,

$$\hat{\boldsymbol{W}} = \begin{bmatrix} W^{-\frac{(0-0)^2}{2}} & W^{-\frac{(0-1)^2}{2}} \\ W^{-\frac{(1-0)^2}{2}} & W^{-\frac{(1-1)^2}{2}} \end{bmatrix} = \begin{bmatrix} 1 & W^{-\frac{1}{2}} \\ W^{-\frac{1}{2}} & 1 \end{bmatrix}, \quad (71)$$

which is well-defined for each $W \in \mathbb{C} \setminus \{0\}$.

By definition, the product of a matrix with its inverse is equal to the identity matrix, i.e., $\hat{W}\hat{W}^{-1}=\mathbf{I}$. Theorem 5 implies that the first column of \hat{W}^{-1} is equal to a twoelement vector $\mathbf{u} = (u_0, u_1)^T$. Therefore, the elements of \mathbf{u} can be expressed as functions of the transform parameter Wby solving the following linear system:

$$\underbrace{\begin{bmatrix} 1 & W^{-\frac{1}{2}} \\ W^{-\frac{1}{2}} & 1 \end{bmatrix}}_{\hat{W}} \underbrace{\begin{bmatrix} u_0 \\ u_1 \end{bmatrix}}_{\mathbf{u}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
 (72)

This leads to the following formulas for u_0 and u_1 :

$$u_0 = \frac{W}{W-1}, \qquad u_1 = -\frac{W^{\frac{1}{2}}}{W-1}.$$
 (73)

To summarize, the column vector **u**, which is equal to the first column of the inverse matrix \hat{W}^{-1} , can be expressed as:

$$\mathbf{u} = \left[\frac{W}{W-1}, -\frac{W^{\frac{1}{2}}}{W-1}\right]^{T}.$$
 (74)

Plugging **u** into Eq. (70) leads to the correct value for \hat{W}^{-1} :

$$\hat{\boldsymbol{W}}^{-1} = \frac{1}{u_0} \left(\begin{bmatrix} u_0 & 0 \\ u_1 & u_0 \end{bmatrix} \begin{bmatrix} u_0 & u_1 \\ 0 & u_0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ u_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & u_1 \\ 0 & 0 \end{bmatrix} \right)$$
$$= \frac{1}{u_0} \left(\begin{bmatrix} u_0 & u_0 & u_0 & u_1 \\ u_1 & u_0 & u_1 + u_1 + u_0 & u_0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & u_1 + u_1 \end{bmatrix} \right)$$
$$= \begin{bmatrix} \frac{W}{W-1} & -\frac{W^{\frac{1}{2}}}{W-1} \\ -\frac{W^{\frac{1}{2}}}{W-1} & \frac{W}{W-1} \end{bmatrix}, \qquad W \notin \{0,1\}.$$
(75)

3) Special Case for n = 3: In this case, \hat{W} is a 3-by-3 Toeplitz matrix. From Eq. (9) we know that each element of \hat{W} is a function of the transform parameter W. More formally,

$$\hat{\boldsymbol{W}} = \begin{bmatrix} W^{-\frac{(0-0)^2}{2}} & W^{-\frac{(0-1)^2}{2}} & W^{-\frac{(0-2)^2}{2}} \\ W^{-\frac{(1-0)^2}{2}} & W^{-\frac{(1-1)^2}{2}} & W^{-\frac{(1-2)^2}{2}} \\ W^{-\frac{(2-0)^2}{2}} & W^{-\frac{(2-1)^2}{2}} & W^{-\frac{(2-2)^2}{2}} \end{bmatrix} = \begin{bmatrix} 1 & W^{-\frac{1}{2}} & W^{-\frac{1}{2}} \\ W^{-\frac{1}{2}} & 1 & W^{-\frac{1}{2}} \\ W^{-2} & W^{-\frac{1}{2}} & 1 \end{bmatrix}$$
(76)

Similarly to the 2-by-2 case, the vector \mathbf{u} is a solution to the following linear system:

$$\underbrace{\begin{bmatrix} 1 & W^{-\frac{1}{2}} & W^{-2} \\ W^{-\frac{1}{2}} & 1 & W^{-\frac{1}{2}} \\ W^{-2} & W^{-\frac{1}{2}} & 1 \end{bmatrix}}_{\hat{W}} \underbrace{\begin{bmatrix} u_0 \\ u_1 \\ u_2 \end{bmatrix}}_{\mathbf{u}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$
(77)

In this case, the elements of \mathbf{u} can be expressed in terms of the transform parameter W as shown below:

$$\mathbf{u} = \begin{bmatrix} \frac{W^3}{(W-1)(W^2-1)} \\ -\frac{W^{\frac{3}{2}}}{(W-1)(W-1)} \\ \frac{W^2}{(W-1)(W^2-1)} \end{bmatrix}.$$
 (78)

Plugging this vector into Eq. (70) leads to the inverse matrix \hat{W}^{-1} (see Appendix A). In contrast to the 2-by-2 case, the 3-by-3 inverse matrix is no longer Toeplitz because the elements along its main diagonal are not identical, i.e.,

$$\hat{\boldsymbol{W}}^{-1} = \begin{bmatrix} \frac{W^3}{(W-1)(W^2-1)} & -\frac{W^{\frac{3}{2}}}{(W-1)^2} & \frac{W^2}{(W-1)(W^2-1)} \\ -\frac{W^{\frac{3}{2}}}{(W-1)^2} & \frac{W^2+1}{(W-1)^2} & -\frac{W^{\frac{3}{2}}}{(W-1)^2} \\ \frac{W^2}{(W-1)(W^2-1)} & -\frac{W^{\frac{3}{2}}}{(W-1)^2} & \frac{W^3}{(W-1)(W^2-1)} \end{bmatrix}.$$
(79)

Repeating this process for other values of n allowed us to derive a general formula for the elements of \mathbf{u} . The next two sections state and prove this formula.

B. General Formula for the Generating Vector u

In the general case, for each $k \in \{0, 1, 2, ..., n-1\}$, the elements of the vector **u** can be computed using the following formula:

$$\mathbf{u}_{k} = \left(\hat{\boldsymbol{W}}^{-1}\right)_{k+1,1} = (-1)^{k} \frac{W^{\frac{2k^{2} - (2n-1)k + n(n-1)}{2}}}{\prod_{s=1}^{n-k-1} (W^{s} - 1) \prod_{s=1}^{k} (W^{s} - 1)},$$
(80)

which is proven in the next section. For each k, the value of u_k can be computed in O(1) using precomputed values of the products of polynomials that appear in the denominator of Eq. (80). These values can be computed in a separate loop that runs in O(n).

The vector **u** can then be plugged into Eq. (70) to compute the inverse matrix \hat{W}^{-1} . It can also be used as an input to $O(n \log n)$ algorithms that compute the product of \hat{W}^{-1} with a vector, without actually storing \hat{W}^{-1} in memory. This approach is used by the $O(n \log n)$ ICZT algorithm that is shown in Algorithm 2.

C. Proof of the General Formula for the Generating Vector u

This section shows that for each $n \in \mathbb{N}$ the vector **u**, which is defined by Eq. (80), is indeed the generating vector for the inverse matrix \hat{W}^{-1} . Theorem 5 implies that this can be done by showing that **u** is the first column of \hat{W}^{-1} .

In the proofs it is necessary to distinguish between the vector $\mathbf{u} = (u_0, u_1, \dots, u_{n-1})$ of length n and the vector $\mathbf{u} = (u_0, u_1, \dots, u_{n-1}, u_n)$ of length n+1. Thus, the number of dimensions will be indicated with a left superscript for both \mathbf{u} and its elements. Using this notation, the k-th element of ${}^{n}\mathbf{u} = \{{}^{n}u_0, {}^{n}u_1, \dots, {}^{n}u_{n-1}\}$ is given by:

$${}^{n}\mathbf{u}_{k} = (-1)^{k} \frac{W^{\frac{2k^{2} - (2n-1)k + n(n-1)}{2}}}{\prod_{s=1}^{n-k-1} (W^{s} - 1) \prod_{s=1}^{k} (W^{s} - 1)}.$$
 (81)

The following lemma expresses $^{n+1}u_k$ in terms of nu_k .

Lemma 6. Let $n \in \mathbb{N}$ and let $k \in \{0, 1, 2, ..., n-1\}$. Then, $^{n+1}u_k$ can be derived from nu_k as follows:

$$^{n+1}\mathbf{u}_k = {^n}\mathbf{u}_k \ \frac{W^{n-k}}{W^{n-k}-1}.$$
 (82)

Proof. Replacing n with n+1 in Eq. (81) leads to:

$${}^{n+1}\mathbf{u}_{k} = (-1)^{k} \frac{W^{\frac{2k^{2} - (2(n+1)-1)k + (n+1)(n+1-1)}{2}}}{\prod_{s=1}^{n+1} (W^{s} - 1) \prod_{s=1}^{k} (W^{s} - 1)}.$$
 (83)

Let p/2 and q/2 be the powers of W in the numerators of Eqs. (81) and (83), respectively. Then, q is equal to:

$$q = 2k^{2} - (2(n+1)-1)k + (n+1)(n+1-1)$$

= $2k^{2} - (2n+2-1)k + (n-1+2)n$
= $2k^{2} - (2n-1)k + n(n-1) + 2(n-k).$ (84)

Therefore,

$$W^{\frac{q}{2}} = W^{\frac{p}{2}} W^{n-k}.$$
 (85)

Eqs. (81) and (83) have similar denominators except that the first product in Eq. (81) goes from 1 to n-k-1, while in Eq. (83) it goes from 1 to n-k. Thus, the denominator of Eq. (83) has one extra term, which is equal to $(W^{n-k}-1)$. Combining this with Eq. (85) leads to Eq. (82).

The next lemma expresses ${}^{n}u_{k-1}$ in terms of ${}^{n}u_{k}$.

Lemma 7. Let $n \in \mathbb{N}$ and let $k \in \{1, 2, ..., n-1\}$. Then, $^{n}\mathbf{u}_{k-1}$ can be expressed as follows:

$${}^{n}\mathbf{u}_{k-1} = -{}^{n}\mathbf{u}_{k} \ \frac{W^{k} - 1}{W^{n-k} - 1} W^{n-2k+\frac{1}{2}}.$$
 (86)

Proof. Replacing k with k - 1 in Eq. (81) leads to the following:

$$\mathbf{u}_{k-1} = (-1)^{k-1} \frac{W^{\frac{2(k-1)^2 - (2n-1)(k-1) + n(n-1)}{2}}}{\prod_{s=1}^{n-(k-1)-1} (W^s - 1) \prod_{s=1}^{k-1} (W^s - 1)}.$$
 (87)

Let p/2 be the power of W in the numerator of Eq. (81) and q/2 be the power of W in the numerator of Eq. (87). Then, q can be expressed in terms of p using the following formula:

$$q = 2(k-1)^{2} - (2n-1)(k-1) + n(n-1)$$

= $2k^{2} - 4k + 2 - (2n-1)k + 2n - 1 + n(n-1)$
= $\underbrace{2k^{2} - (2n-1)k + n(n-1)}_{p} + 2n - 4k + 1.$ (88)

Therefore,

$$W^{\frac{q}{2}} = W^{\frac{p}{2}} W^{n-2k+\frac{1}{2}}.$$
(89)

The first product in the denominator of Eq. (87) is equal to:

$$\prod_{s=1}^{n-(k-1)-1} (W^s - 1) = (W^{n-k} - 1) \prod_{s=1}^{n-k-1} (W^s - 1).$$
(90)

In this form, it is almost the same as the corresponding product in Eq. (81), except for the extra term $(W^{n-k}-1)$. The second product in the denominator of Eq. (87) is equal to:

$$\prod_{s=1}^{k-1} (W^s - 1) = \frac{1}{(W^k - 1)} \prod_{s=1}^k (W^s - 1), \qquad (91)$$

which has one more term, i.e., $1/(W^k-1)$, than the corresponding product in Eq. (81).

Combining Eqs. (89), (90), and (91) leads to Eq. (86). \Box

The following lemma states a recursive formula for $^{n+1}u_k$, which is expressed in terms of nu_k and $^nu_{k-1}$.

Lemma 8. For each $n \in \mathbb{N}$ and each $k \in \{1, 2, ..., n-1\}$, the value of $^{n+1}u_k$ can be expressed as follows:

$${}^{n+1}\mathbf{u}_k = \frac{{}^{n}\mathbf{u}_k W^n - {}^{n}\mathbf{u}_{k-1} W^{k-\frac{1}{2}}}{W^n - 1}.$$
 (92)

Proof. Using Lemma 6, the left-hand side of Eq. (92) can be expressed in terms of ${}^{n}u_{k}$ as follows:

$$^{n+1}\mathbf{u}_{k} = {^{n}\mathbf{u}_{k}} \frac{W^{n-k}}{W^{n-k}-1}.$$
 (93)

Using Lemma 7, which expresses ${}^{n}u_{k-1}$ in terms of ${}^{n}u_{k}$, the right-hand side of Eq. (92) can be stated as shown below:

$$\frac{{}^{n}\mathbf{u}_{k}W^{n} - (-{}^{n}\mathbf{u}_{k})\frac{W^{k} - 1}{W^{n-k} - 1}W^{n-2k+\frac{1}{2}}W^{k-\frac{1}{2}}}{W^{n} - 1}.$$
 (94)

The rest of the proof shows that Eq. (94) is equal to Eq. (93). The expression in Eq. (94) can be simplified as follows:

$${}^{n}\mathbf{u}_{k}\left[\frac{W^{n}(W^{n-k}-1)+(W^{k}-1)W^{n-k}}{(W^{n-k}-1)(W^{n}-1)}\right].$$
(95)

Expanding the numerator leads to:

$$\mathbf{u}_{k} \; \frac{W^{n}W^{n-k} - \mathcal{W}^{n} + \mathcal{W}^{n} - W^{n-k}}{(W^{n-k} - 1)(W^{n} - 1)}. \tag{96}$$

Finally, we get

n

$${}^{n}\mathbf{u}_{k} \frac{W^{n-k}(W^{n-1})}{(W^{n-k}-1)(W^{n-1})},$$
(97)

which completes the proof.

Let ${}^{n}P(x)$ be the following polynomial:

$${}^{n}P(x) = \sum_{k=0}^{n-1} {}^{n}p_{k} x^{k} = \sum_{k=0}^{n-1} {}^{n}\mathbf{u}_{k} W^{-\frac{k^{2}}{2}} x^{k}, \qquad (98)$$

where the k-th coefficient ${}^{n}p_{k}$ is obtained by multiplying the k-th element of the vector ${}^{n}\mathbf{u}$ by $W^{-\frac{k^{2}}{2}}$. In other words,

$${}^{n}p_{k} = {}^{n}\mathbf{u}_{k} W^{-\frac{k^{2}}{2}}.$$
(99)

Let ${}^{n}F(x)$ be another polynomial that is defined as follows:

$${}^{n}F(x) = \sum_{j=0}^{n-1} y_j f_j(x), \qquad (100)$$

where

$$f_j(x) = \prod_{\substack{0 \le k \le n \\ k \ne j}} \frac{(x - x_k)}{(x_j - x_k)}.$$
 (101)

That is, ${}^{n}F(x)$ is the Lagrange polynomial^{30,31} that interpolates the *n* points $(x_0, y_0), (x_1, y_1), \ldots, (x_{n-1}, y_{n-1})$. In particular, if $x_0 = W^0, x_1 = W^1, \ldots, x_{n-1} = W^{n-1}$, then Eq. (101) becomes:

$$f_j(x) = \prod_{\substack{0 \le k < n \\ k \ne j}} \frac{(x - W^k)}{(W^j - W^k)}.$$
 (102)

Furthermore, if $y_0 = 1$ and $y_1 = y_2 = \cdots = y_{n-1} = 0$, then only $f_0(x)$ contributes to ${}^{n}F(x)$ and Eq. (100) simplifies to only one product that will be denoted with ${}^{n}L(x)$, i.e.,

$${}^{n}L(x) = \prod_{k=1}^{n-1} \frac{(x - W^{k})}{(1 - W^{k})}.$$
(103)

For n+1, the formula for ${}^{n+1}P(x)$ uses the elements of ${}^{n+1}\mathbf{u}$ instead of the elements of ${}^{n}\mathbf{u}$. Also, the formula for ${}^{n+1}L(x)$ includes one more fractional term. More formally,

$$^{n+1}P(x) = \sum_{k=0}^{n} {}^{n+1}p_k x^k = \sum_{k=0}^{n} {}^{n+1}\mathbf{u}_k W^{-\frac{k^2}{2}} x^k,$$
 (104)

$${}^{n+1}L(x) = \prod_{k=1}^{n} \frac{(x - W^k)}{(1 - W^k)} = {}^{n}L(x) \frac{(x - W^n)}{(1 - W^n)}.$$
 (105)

We will use mathematical induction to show that ${}^{n}P(x) = {}^{n}L(x)$ for each $n \in \mathbb{N}$. The following lemma proves that ${}^{1}P(x) = {}^{1}L(x)$, which is the base case of the induction.

Lemma 9. Both ${}^{1}P(x)$ and ${}^{1}L(x)$ are equal to 1, i.e.,

$${}^{1}P(x) = {}^{1}L(x) = 1.$$
 (106)

Proof. The product that defines ${}^{n}L(x)$ in Eq. (103) becomes degenerate when n = 1 and evaluates to 1, i.e., ${}^{1}L(x) = 1$. Similarly, for n = 1, Eq. (98) simplifies to:

$${}^{1}P(x) = \sum_{k=0}^{1-1} {}^{1}\mathbf{u}_{k} W^{-\frac{k^{2}}{2}} x^{k} = {}^{1}\mathbf{u}_{0} W^{-\frac{0^{2}}{2}} x^{0} = {}^{1}\mathbf{u}_{0}.$$
 (107)

This formula evaluates to 1, which follows from Eq. (81), i.e.,

$${}^{1}P(x) = (-1)^{0} \frac{W^{\frac{0-0+0}{2}}}{\prod_{s=1}^{1-0-1} (W^{s}-1) \prod_{s=1}^{0} (W^{s}-1)} = 1.$$
(108)

The following lemma proves an inductive formula that expresses the coefficients of the Lagrange polynomial $^{n+1}L(x)$ in terms of the coefficients of $^{n}L(x)$.

Lemma 10. Let ${}^{n}\ell_{k}$ be the k-th coefficient of the Lagrange polynomial ${}^{n}L(x)$ that is defined in Eq. (103), i.e.,

$${}^{n}L(x) = \sum_{k=0}^{n-1} {}^{n}\ell_{k} x^{k} = \prod_{k=1}^{n-1} \frac{(x-W^{k})}{(1-W^{k})}.$$
 (109)

Then, for each $n \in \mathbb{N}$ and each $k \in \{0, 1, 2, ..., n\}$, the value of ${}^{n+1}\ell_k$ in ${}^{n+1}L(n)$ is given by the following formula:

$${}^{n+1}\ell_k = \begin{cases} \frac{{}^{n}\ell_0 W^n}{W^n - 1}, & \text{if } k = 0, \\ \frac{{}^{n}\ell_k W^n - {}^{n}\ell_{k-1}}{W^n - 1}, & \text{if } k \in \{1, 2, \dots, n-1\}, \\ -\frac{{}^{n}\ell_{n-1}}{W^n - 1}, & \text{if } k = n. \end{cases}$$
(110)

Proof. Expanding Eq. (105) in terms of ${}^{n}\ell_{k}$ leads to:

$${}^{n+1}L(x) = {}^{n}L(x) \frac{(x-W^{n})}{(1-W^{n})} = \sum_{k=0}^{n-1} {}^{n}\ell_{k} x^{k} \frac{(x-W^{n})}{(1-W^{n})}$$
$$= -\sum_{k=0}^{n-1} \frac{{}^{n}\ell_{k}}{W^{n}-1} x^{k+1} + \sum_{k=0}^{n-1} \frac{{}^{n}\ell_{k} W^{n}}{W^{n}-1} x^{k}.$$
(111)

The terms in Eq. (111) can be grouped by the powers of x. The coefficients of the resulting polynomial are equal to the coefficients ${}^{n+1}\ell_k$ of ${}^{n+1}L(x)$. More formally,

$${}^{n+1}L(x) = -\frac{{}^{n}\ell_{k}}{W^{n}-1} x^{n} - \sum_{k=0}^{n-2} \frac{{}^{n}\ell_{k}}{W^{n}-1} x^{k+1} + \sum_{k=0}^{n-1} \frac{{}^{n}\ell_{k}W^{n}}{W^{n}-1} x^{k}$$

$$= -\frac{{}^{n}\ell_{n-1}}{W^{n}-1} x^{n} - \sum_{k=1}^{n-1} \frac{{}^{n}\ell_{k-1}}{W^{n}-1} x^{k}$$

$$+ \sum_{k=1}^{n-1} \frac{{}^{n}\ell_{k}W^{n}}{W^{n}-1} x^{k} + \frac{{}^{n}\ell_{0}W^{n}}{W^{n}-1} x^{0}$$

$$= \underbrace{-\frac{{}^{n}\ell_{n-1}}{W^{n}-1}}_{n+1\ell_{n}} x^{n} + \sum_{k=1}^{n-1} \underbrace{-\frac{{}^{n}\ell_{k}W^{n}-n\ell_{k-1}}{W^{n}-1}}_{n+1\ell_{k}} x^{k} + \underbrace{-\frac{{}^{n}\ell_{0}W^{n}}{W^{n}-1}}_{n+1\ell_{0}} x^{0}$$

$$= \sum_{k=0}^{n} {}^{n+1}\ell_{k} x^{k}. \qquad (112)$$

The next lemma expresses the coefficients of ${}^{n+1}P(x)$ in terms of the coefficients of ${}^{n}P(x)$.

Lemma 11. Let $n \in \mathbb{N}$ and $k \in \{0, 1, 2, ..., n\}$. Then, each coefficient of the polynomial $^{n+1}P(x)$ can be computed using the following formula:

$${}^{n+1}p_k = \begin{cases} \frac{{}^{n}p_0 W^n}{W^n - 1}, & \text{if } k = 0, \\ \frac{{}^{n}p_k W^n - {}^{n}p_{k-1}}{W^n - 1}, & \text{if } k \in \{1, 2, \dots, n-1\}, \\ -\frac{{}^{n}p_{n-1}}{W^n - 1}, & \text{if } k = n. \end{cases}$$
(113)

Proof. The three cases of Eq. (113) are considered separately.

1) Suppose that k = 0. Then, Eq. (99) implies that ${}^{n+1}p_0$ can be expressed as follows:

$$^{n+1}p_0 = ^{n+1}u_0 W^{-\frac{0^2}{2}} = ^{n+1}u_0.$$
 (114)

Using Lemma 6 this derivation can be continued as follows:

$${}^{n+1}p_0 = {}^{n}\mathbf{u}_0 \, \frac{W^{n-0}}{W^{n-0} - 1} = \underbrace{{}^{n}\mathbf{u}_0 \, W^{-\frac{0^2}{2}}}_{{}^{n}p_0} \, \frac{W^n}{W^n - 1}, \quad (115)$$

which proves the first case in Eq. (113).

2) Suppose that $k \in \{1, 2, ..., n-1\}$. Then, Lemma 8 and Eq. (99) imply that ${}^{n+1}p_k$ can be expressed as follows:

$${}^{n+1}p_k = {}^{n+1}\mathbf{u}_k W^{-\frac{k^2}{2}} = \frac{{}^{n}\mathbf{u}_k W^n - {}^{n}\mathbf{u}_{k-1} W^{k-\frac{1}{2}}}{W^n - 1} W^{-\frac{k^2}{2}}.$$
(116)

Using basic algebra, this can be simplified as follows:

$${}^{n+1}p_{k} = \frac{{}^{n}\mathbf{u}_{k} W^{-\frac{k^{2}}{2}} W^{n} - {}^{n}\mathbf{u}_{k-1} W^{-\frac{k^{2}}{2} + k - \frac{1}{2}}}{W^{n} - 1}$$
$$= \frac{{}^{n}p_{k} W^{n} - {}^{n}\mathbf{u}_{k-1} W^{-\frac{(k-1)^{2}}{2}}}{W^{n} - 1}$$
$$= \frac{{}^{n}p_{k} W^{n} - {}^{n}p_{k-1}}{W^{n} - 1}.$$
(117)

3) Suppose that k = n. Then, using Eqs. (81) and (99), ${}^{n+1}p_n$ can be expressed as follows:

$${}^{n+1}p_n = {}^{n+1}u_n W^{-\frac{n^2}{2}}$$

$$= (-1)^n \frac{W^{\frac{2n^2 - (2(n+1)-1)n + (n+1)(n+1-1)}{2}}}{\prod_{s=1}^{n} (W^s - 1) \prod_{s=1}^{n} (W^s - 1)} W^{-\frac{n^2}{2}}$$

$$= (-1)^1 (-1)^{n-1} \frac{W^{\frac{n^2}{2}}}{\prod_{s=1}^{n} (W^s - 1)} W^{-\frac{n^2}{2}}.$$
(118)

Because $n^2 = (n-1)^2 + 2n - 1$, this derivation can be continued as shown below:

$${}^{n+1}p_n = -\frac{(-1)^{n-1}W^{\frac{(n-1)^2}{2}}W^{\frac{(2n-4)}{2}}}{(W^n - 1)\prod_{s=1}^{n-1}(W^s - 1)}W^{-\frac{(n-1)^2}{2}}W^{-\frac{(2n-4)}{2}}}{(W^n - 1)\prod_{s=1}^{n-1}(W^s - 1)} = -\frac{(-1)^{n-1}W^{\frac{2(n-1)^2-(2n-1)(n-1)+n(n-1)}{2}}}{\prod_{s=1}^{n-(n-1)-1}\prod_{s=1}^{n-1}(W^s - 1)} \cdot \frac{W^{-\frac{(n-1)^2}{2}}}{W^n - 1}}{W^n - 1}.$$

$$\underbrace{W^{n-1}}_{n_{n-1}}$$
(119)

Therefore,

$${}^{n+1}p_n = -\frac{{}^n \mathbf{u}_{n-1} W^{-\frac{(n-1)^2}{2}}}{W^n - 1} = -\frac{{}^n p_{n-1}}{W^n - 1}.$$
 (120)

The following theorem completes the inductive argument by showing that ${}^{n}L(x) = {}^{n}P(x)$ for each integer n.

Theorem 12. For each $n \in \mathbb{N}$ and each $x \in \mathbb{C}$, the values of ${}^{n}L(x)$ and ${}^{n}P(x)$ are equal, i.e.,

$${}^{n}L(x) = {}^{n}P(x).$$
 (121)

Proof. The proof is by mathematical induction. Lemma 9 proved Eq. (121) for n = 1, which forms the base case of the induction. The inductive step is formed by Lemma 11 and Lemma 10, which showed that ${}^{n+1}L(x)$ can be derived from the coefficients of ${}^{n}L(x)$ using the same formula that derives ${}^{n+1}P(x)$ from the coefficients of ${}^{n}P(x)$. This implies that ${}^{n+1}P(x) = {}^{n+1}L(x)$ whenever ${}^{n}L(x) = {}^{n}P(x)$.

Taken together, the base case and the inductive step complete the inductive proof and show that ${}^{n}L(x) = {}^{n}P(x)$ for each $n \in \mathbb{N}$ and each $x \in \mathbb{C}$.

The next theorem combines the results from this section to show that the vector **u** is indeed the first column of the inverse matrix \hat{W}^{-1} . This result follows from Theorem 12 when x is a power of W, i.e., $x \in \{W^0, W^1, W^2, \dots, W^{n-1}\}$.

Theorem 13. The vector $\mathbf{u} = (u_0, u_1, \dots, u_{n-1})$ is equal to the first column of the inverse matrix \hat{W}^{-1} , i.e.,

$$\hat{\boldsymbol{W}}\mathbf{u} = \begin{bmatrix} W^{-\frac{(0-0)^2}{2}} & W^{-\frac{(0-1)^2}{2}} & \dots & W^{-\frac{(0-(n-1))^2}{2}} \\ W^{-\frac{(1-0)^2}{2}} & W^{-\frac{(1-1)^2}{2}} & \dots & W^{-\frac{(1-(n-1))^2}{2}} \\ \vdots & \vdots & \ddots & \vdots \\ W^{-\frac{((n-1)-0)^2}{2}} & W^{-\frac{((n-1)-1)^2}{2}} & \dots & W^{-\frac{((n-1)-(n-1))^2}{2}} \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{n-1} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$
(122)

Proof. Eq. (122) can be restated as follows:

$$(\hat{\boldsymbol{W}}\mathbf{u})_{j} = \sum_{k=0}^{n-1} \mathbf{u}_{k} W^{-\frac{(k-j)^{2}}{2}} = \begin{cases} 1, & \text{if } j = 0, \\ 0, & \text{if } j \in \{1, 2, \dots, n-1\}. \end{cases}$$
(123)

The sum in Eq. (123) can be expressed using ${}^{n}P(W^{j})$, i.e.,

$$\sum_{k=0}^{n-1} \mathbf{u}_k W^{-\frac{(k-j)^2}{2}} = \sum_{k=0}^{n-1} \mathbf{u}_k W^{-\frac{k^2}{2}} (W^j)^k W^{-\frac{j^2}{2}}$$
$$= {}^n P(W^j) W^{-\frac{j^2}{2}}.$$
(124)

Theorem 12 showed that ${}^{n}P(x) = {}^{n}L(x)$. Therefore,

$$(\hat{\boldsymbol{W}}\mathbf{u})_{j} = {}^{n}P(W^{j}) W^{-\frac{j^{2}}{2}} = {}^{n}L(W^{j}) W^{-\frac{j^{2}}{2}}$$
$$= \prod_{k=1}^{n-1} \frac{(W^{j} - W^{k})}{(1 - W^{k})} W^{-\frac{j^{2}}{2}}.$$
(125)

If j = 0, then Eq. (125) evaluates to 1. Alternatively, if $j \in \{1, 2, ..., n-1\}$, then it evaluates to 0 because there is at least one zero factor in the product. More formally,

$$(\hat{\boldsymbol{W}}\mathbf{u})_{j} = \prod_{k=1}^{n-1} \frac{(W^{j} - W^{k})}{(1 - W^{k})} W^{-\frac{j^{2}}{2}} = \begin{cases} 1, & \text{if } j = 0, \\ 0, & \text{if } 1 \le j \le n-1, \end{cases}$$
(126)

which shows that Eq. (122) holds.

 \square

Supplementary Appendix G: CZT and ICZT Algorithms that Reverse the Contour Direction When |W| < 1

This appendix describes alternative versions of the CZT and the ICZT algorithms that improve the numerical accuracy of the computed transforms. This is achieved by reversing the direction of the chirp contour when |W| < 1 and keeping the original direction when $|W| \ge 1$. The parameters for the reversed contour are $W' = W^{-1}$ and $A' = A W^{-(M-1)}$.

This appendix also proves that this parameter adjustment does not affect the mathematical definitions of the CZT and the ICZT. In other words, the modified algorithms compute the same transforms, but the numerical precision of their results can improve by several orders of magnitude when the magnitude of the transform parameter W is less than 1.

The following lemma shows that the Vandermonde matrix W associated with the parameter W can be mapped to the Vandermonde matrix W' associated with $W' = W^{-1}$.

Lemma 14. Let W be a non-zero complex number and let W be the M-by-N Vandermonde matrix defined by Eq. (3), *i.e.*, the element in the *i*-th row and *j*-th column of W is:

$$W_{i,j} = W^{ij}, \tag{127}$$

for each $i \in \{0, 1, ..., M-1\}$ and each $j \in \{0, 1, ..., N-1\}$. Also, let W' be the Vandermonde matrix specified by the same formula but using W^{-1} instead of W. That is,

$$\boldsymbol{W}' = \begin{bmatrix} W^{-0\cdot0} & W^{-1\cdot0} & W^{-2\cdot0} & \cdots & W^{-(N-1)\cdot0} \\ W^{-0\cdot1} & W^{-1\cdot1} & W^{-2\cdot1} & \cdots & W^{-(N-1)\cdot1} \\ W^{-0\cdot2} & W^{-1\cdot2} & W^{-2\cdot2} & \cdots & W^{-(N-1)\cdot2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ W^{-0\cdot(M-1)} & W^{-1\cdot(M-1)} & W^{-2\cdot(M-1)} & \cdots & W^{-(N-1)\cdot(M-1)} \end{bmatrix}$$
(128)

Furthermore, let S be the N-by-N diagonal matrix generated by the last row of the matrix W, i.e.,

$$S = \operatorname{diag} \left(W^{0 \cdot (M-1)}, W^{1 \cdot (M-1)}, \dots, W^{(N-1) \cdot (M-1)} \right).$$
(129)

Then, the matrix W can be expressed as the following triple matrix product:

$$\boldsymbol{W} = \boldsymbol{J} \, \boldsymbol{W}' \, \boldsymbol{S},\tag{130}$$

where J denotes the M-by-M exchange matrix, i.e.,

$$\boldsymbol{J} = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{bmatrix}.$$
 (131)

Proof. The matrix product W'S has the following form:

$$\boldsymbol{W}'\boldsymbol{S} = \begin{bmatrix} W^{0\cdot(M-1)} & W^{1\cdot(M-1)} & W^{2\cdot(M-1)} & \cdots & W^{(N-1)\cdot(M-1)} \\ W^{0\cdot(M-2)} & W^{1\cdot(M-2)} & W^{2\cdot(M-2)} & \cdots & W^{(N-1)\cdot(M-2)} \\ W^{0\cdot(M-3)} & W^{1\cdot(M-3)} & W^{2\cdot(M-3)} & \cdots & W^{(N-1)\cdot(M-3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ W^{0\cdot0} & W^{1\cdot0} & W^{2\cdot0} & \cdots & W^{(N-1)\cdot0} \end{bmatrix},$$
(132)

which follows from the definitions of W' and S. Each element of this matrix is given by the following formula:

$$(\mathbf{W}'\mathbf{S})_{i,j} = \sum_{k=0}^{N-1} W'_{i,k} S_{k,j} = W^{-ij} W^{j(M-1)} = W^{j(M-1-i)},$$
(133)

for each $i \in \{0, 1, \dots, M-1\}$ and each $j \in \{0, 1, \dots, N-1\}$.

This implies that the matrix product W'S is equal to the matrix obtained by reversing the rows of the matrix W. This operation can be formalized using the exchange matrix J, i.e.,

$$JW = W'S. \tag{134}$$

Because the matrix J is its own inverse, it follows that Eq. (130) can be derived by pre-multiplying both sides of the previous equation by J, i.e., W = JJW = JW'S.

The next lemma shows how the diagonal matrix **A**, which is associated with the parameter A, can be mapped to the diagonal matrix **A'** that is associated with $A' = A W^{-(M-1)}$.

Lemma 15. Let A and W be two non-zero complex numbers. Let A be the diagonal matrix defined by Eq. (8), i.e.,

$$\mathbf{A} = \text{diag}\left(A^{-0}, A^{-1}, \dots, A^{-(N-1)}\right).$$
(135)

Also, let \mathbf{A}' be the following N-by-N diagonal matrix:

$$\mathbf{A}' = \operatorname{diag} \left(A^{-0} W^{0(M-1)}, \dots, A^{-(N-1)} W^{(N-1)(M-1)} \right).$$
(136)

Then, the matrix \mathbf{A}' can be expressed as the product of the matrix \mathbf{A} and the matrix \mathbf{S} defined by Eq. (129), i.e.,

$$\mathbf{A}' = \boldsymbol{S} \, \mathbf{A} = \mathbf{A} \, \boldsymbol{S}. \tag{137}$$

Proof. Both A and S are diagonal matrices. This implies that both matrices are invariant with respect to transposition. Thus,

$$\boldsymbol{S} \, \boldsymbol{A} = \boldsymbol{S}^T \boldsymbol{A}^T = (\boldsymbol{A} \, \boldsymbol{S})^T = \boldsymbol{A} \, \boldsymbol{S}. \tag{138}$$

In other words, each diagonal element of the matrix product S A is equal to the product of the corresponding elements of S and A; all other elements of S A are zero. Thus,

$$(\mathbf{S}\,\mathbf{A})_{i,j} = \begin{cases} A^{-j}\,W^{j(M-1)}, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$
(139)

Therefore, $S \mathbf{A} = \mathbf{A}'$, which completes the proof.

The following theorem proves that computing the CZT without contour reversal is mathematically equivalent to computing the CZT with contour reversal and then reversing the order of the elements in the output vector.

Theorem 16. Let M and N be two positive integers and let $A, W \in \mathbb{C} \setminus \{0\}$ be two non-zero complex numbers. Let $\mathbf{x} = (x_0, x_1, x_2, \dots, x_{N-1}) \in \mathbb{C}^N$ be a complex input vector for a CZT that is parametrized by M, W, and A. Let \mathbf{X} be the CZT output vector. More formally,

$$\mathbf{X} = \mathbf{CZT}(\mathbf{x}, M, W, A). \tag{140}$$

Let $A' = AW^{-(M-1)}$ and $W' = W^{-1}$ be the parameters for the reversed chirp contour. Let \mathbf{X}' be the output vector of a CZT that is parametrized by M, W', and A'. That is,

$$\mathbf{X}' = \mathbf{CZT}(\mathbf{x}, M, W', A').$$
(141)

Then, \mathbf{X} can be obtained by reversing the order of the elements in \mathbf{X}' . More formally,

$$\mathbf{X} = (X_0, X_1, \dots, X_{M-1}) = (X'_{M-1}, X'_{M-2}, \dots, X'_0) = \mathbf{J}\mathbf{X}'.$$
(142)

In other words, reversing the direction of the chirp contour reverses the order of the elements in the output vector.

Proof. Eq. (140) has the following matrix form:

$$\mathbf{X} = \mathbf{W} \mathbf{A} \mathbf{x},\tag{143}$$

where W is the Vandermonde matrix defined by Eq. (3) and A is the diagonal matrix defined by equation Eq. (8). Similarly, the vector X' can be expressed as follows:

$$\mathbf{X}' = \mathbf{W}' \,\mathbf{A}' \,\mathbf{x}.\tag{144}$$

From Lemma 14 it follows that the matrix W in Eq. (143) can be replaced with the matrix product J W' S, i.e.,

$$\mathbf{X} = \boldsymbol{J} \, \boldsymbol{W}' \, \boldsymbol{S} \, \mathbf{A} \, \mathbf{x}. \tag{145}$$

From Lemma 15 it follows that $\mathbf{A} = \mathbf{S}^{-1} \mathbf{A}'$. Therefore,

$$\mathbf{X} = \boldsymbol{J} \boldsymbol{W}' \boldsymbol{S} \boldsymbol{S}^{-1} \mathbf{A}' \mathbf{x} = \boldsymbol{J} \boldsymbol{W}' \mathbf{A}' \mathbf{x} = \boldsymbol{J} \mathbf{X}', \quad (146)$$

which proves that the vector \mathbf{X} can be obtained by reversing the elements of the vector \mathbf{X}' .

The next theorem proves that computing the ICZT without contour reversal is theoretically equivalent to computing the ICZT with reversal of both the contour and the input vector. The theorem is stated for the square case, i.e., when M = N.

Theorem 17. Let N be a positive integer and let A and W be two non-zero complex numbers. Let $\mathbf{X} = (X_0, X_1, \dots, X_{N-1})$ be a complex vector that is used as an input to an ICZT parametrized by N, W, and A. Let \mathbf{x} be the result of this transform. More formally,

$$\mathbf{x} = \mathrm{ICZT}(\mathbf{X}, N, W, A). \tag{147}$$

Let $A' = AW^{-(M-1)}$ and $W' = W^{-1}$ be the parameters for the reversed chirp contour, where M = N. Let \mathbf{x}' be the output vector of the ICZT parameterized by N, W', and A' for which the input vector is set to \mathbf{JX} . That is,

$$\mathbf{x}' = \mathrm{ICZT}(\boldsymbol{J}\mathbf{X}, N, W', A').$$
(148)

Then, \mathbf{x} and \mathbf{x}' are equal, i.e., $\mathbf{x} = \mathbf{x}'$.

Proof. This result can be proven by expressing x and x' in matrix form and showing that the two expressions are equal.

From Eqs. (130) and (137) it follows that $W' = J W S^{-1}$ and A' = S A. Thus, the vector \mathbf{x}' is equal to:

$$\mathbf{x}' = (\mathbf{A}')^{-1} (\mathbf{W}')^{-1} \mathbf{J} \mathbf{X}$$

= $(\mathbf{S} \mathbf{A})^{-1} (\mathbf{J} \mathbf{W} \mathbf{S}^{-1})^{-1} \mathbf{J} \mathbf{X}$
= $\mathbf{A}^{-1} \mathbf{S}'^{-1} \mathbf{S}' \mathbf{W}^{-1} \mathbf{J} \mathbf{J}' \mathbf{X}$
= $\mathbf{A}^{-1} \mathbf{W}^{-1} \mathbf{X}$. (149)

Similarly, the vector **x** can be derived by inverting the matrix expression for the CZT, i.e.,

$$\mathbf{x} = (\boldsymbol{W} \mathbf{A})^{-1} \mathbf{X} = \mathbf{A}^{-1} \boldsymbol{W}^{-1} \mathbf{X}.$$
 (150)

This completes the proof, because Eqs. (149) and (150) are equal. $\hfill\square$

Algorithm S8 gives the pseudo-code for the alternative version of the CZT algorithm that reverses the direction of the chirp contour when |W| < 1. It is implemented as a wrapper around Algorithm 1. Similarly, Algorithm S9 shows the pseudo-code for the alternative version of the ICZT algorithm, which also reflects the direction of the chirp contour when |W| < 1. The computational complexity of both algorithms remains unchanged, i.e., it is still $O(n \log n)$.

For improved numerical accuracy, lines 6 and 7 in both Algorithm S8 and Algorithm S9 should be computed with higher precision if possible. The reason is that even a small numerical error in the computed values of A' and W' affects all subsequent operations.

Algorithm S8. CZT algorithm that reverses the direction of the chirp contour when |W| < 1. Runs in $O(n \log n)$ time.

1: CZT-R(\mathbf{x}, M, W, A)
2: if $ W \ge 1$ then
3: $\mathbf{X} \leftarrow \mathbf{CZT}(\mathbf{x}, M, W, A);$ // original contour
4: else
5: // Swap the start and the end point of the chirp contour.
6: $A' \leftarrow A W^{-(M-1)};$
7: $W' \leftarrow 1/W;$
8: $\mathbf{X}' \leftarrow \mathbf{CZT}(\mathbf{x}, M, W', A');$ // reversed contour
9: $\mathbf{X} \leftarrow \text{EmptyArray}(M);$
10: for $k \leftarrow 0$ to $M-1$ do // reverse the output vector
11: $X[k] \leftarrow X'[M-1-k];$
12: end for
13: end if

14: return X;

Algorithm S9. ICZT algorithm that reverses the direction of the chirp contour when |W| < 1. Runs in $O(n \log n)$ time.

1:	$ICZT-R(\mathbf{X}, N, W, A)$
2:	$M \leftarrow \text{Length}(\mathbf{X});$
3:	if $ W \ge 1$ then
4:	$\mathbf{x} \leftarrow \text{ICZT}(\mathbf{X}, N, W, A);$ // original contour
5:	else
6:	$A' \leftarrow A W^{-(M-1)};$
7:	$W' \leftarrow 1/W;$
8:	$\mathbf{X}' \leftarrow EmptyArray(M);$
9:	for $k \leftarrow 0$ to $M-1$ do // reverse the input vector
10:	$\mathbf{X}'[k] \leftarrow \mathbf{X}[M - 1 - k];$
11:	end for
12:	$\mathbf{x} \leftarrow \text{ICZT}(\mathbf{X}', N, W', A');$ // reversed contour
13:	end if
14:	return x;

The following example illustrates Theorem 16. In the 3-by-3 case, the CZT can be expressed as follows:

$$\underbrace{\begin{bmatrix} X_0 \\ X_1 \\ X_2 \end{bmatrix}}_{\mathbf{X}} = \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ 1 & W^1 & W^2 \\ 1 & W^2 & W^4 \end{bmatrix}}_{\mathbf{W}} \underbrace{\begin{bmatrix} A^{-0} & 0 & 0 \\ 0 & A^{-1} & 0 \\ 0 & 0 & A^{-2} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}}_{\mathbf{x}}.$$
(151)

Previously, it was shown that W = JW'S, $A = S^{-1}A'$, and X' = W'A'x. Thus, Eq. (151) can be stated as follows:

$$\underbrace{\begin{bmatrix} X_{0} \\ X_{1} \\ X_{2} \end{bmatrix}}_{\mathbf{X}} = \underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}}_{\mathbf{X}} \underbrace{\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & W^{-1} & W^{-2} \\ 1 & W^{-2} & W^{-4} \end{bmatrix}}_{\mathbf{W}'} \underbrace{\begin{bmatrix} W^{0} & 0 & 0 & 0 \\ 0 & W^{2} & 0 \\ 0 & 0 & W^{4} \end{bmatrix}}_{\mathbf{S}} \underbrace{\begin{bmatrix} W^{-0} & 0 & 0 & 0 \\ 0 & W^{-2} & 0 \\ 0 & 0 & W^{-4} \end{bmatrix}}_{\mathbf{S}'} \underbrace{\begin{bmatrix} A^{-0}W^{0} & 0 & 0 & 0 \\ 0 & 0 & M^{-2}W^{4} \end{bmatrix}}_{\mathbf{A}'} \underbrace{\begin{bmatrix} X_{0} \\ X_{1} \\ X_{2} \end{bmatrix}}_{\mathbf{X}'} \mathbf{X}'$$

$$= \underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}}_{\mathbf{J}} \underbrace{\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & W^{-1} & W^{-2} \\ 1 & W^{-2} & W^{-4} \end{bmatrix}}_{\mathbf{W}'} \underbrace{\begin{bmatrix} A^{-0}W^{0} & 0 & 0 & 0 \\ 0 & A^{-1}W^{2} & 0 \\ 0 & 0 & A^{-2}W^{4} \end{bmatrix}}_{\mathbf{X}'} \underbrace{\begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \end{bmatrix}}_{\mathbf{X}}$$

$$= \underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}}_{\mathbf{J}} \underbrace{\begin{bmatrix} X'_{0} \\ X'_{1} \\ X'_{2} \end{bmatrix}}_{\mathbf{X}'}.$$
(152)

To summarize, if the CZT is computed for a reversed chirp contour, i.e., $\mathbf{X}' = \mathbf{W}' \mathbf{A}' \mathbf{x}$, then the output vector $\mathbf{X} = \mathbf{W} \mathbf{A} \mathbf{x}$ for the original contour can be computed by reversing the order of the elements in the vector \mathbf{X}' , i.e., $\mathbf{X} = \mathbf{J} \mathbf{X}'$.

The next example illustrates Theorem 17, which showed that $\mathbf{x}' = (\mathbf{A}')^{-1} (\mathbf{W}')^{-1} \mathbf{J} \mathbf{X} = \mathbf{A}^{-1} \mathbf{W}^{-1} \mathbf{X} = \mathbf{x}$. For the 3-by-3 ICZT case, this equation has the following form:

$$\begin{bmatrix} \mathbf{x}'_{0} \\ \mathbf{x}'_{1} \\ \mathbf{x}'_{2} \end{bmatrix} = \underbrace{\begin{bmatrix} A^{0} W^{-0} & 0 & 0 \\ 0 & A^{1} W^{-2} & 0 \\ 0 & 0 & A^{2} W^{-4} \end{bmatrix}}_{\mathbf{x}'} \underbrace{\begin{bmatrix} (\mathbf{w}')_{1,1}^{-1} & (\mathbf{w}')_{1,2}^{-1} & (\mathbf{w}')_{2,3}^{-1} \\ (\mathbf{w}')_{3,1}^{-1} & (\mathbf{w}')_{3,2}^{-1} & (\mathbf{w}')_{3,3}^{-1} \end{bmatrix}}_{\mathbf{w}'')_{3,3}} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}} \begin{bmatrix} \mathbf{X}_{0} \\ \mathbf{X}_{1} \\ \mathbf{X}_{2} \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} A^{0} & 0 & 0 \\ 0 & A^{1} & 0 \\ 0 & 0 & A^{2} \end{bmatrix}}_{\mathbf{A}^{-1}} \underbrace{\begin{bmatrix} W^{-0} & 0 & 0 \\ 0 & W^{-2} & 0 \\ 0 & 0 & W^{-4} \end{bmatrix}}_{\mathbf{A}^{-1}} \underbrace{\begin{bmatrix} W^{-0} & 0 & 0 \\ 0 & W^{2} & 0 \\ 0 & 0 & W^{4} \end{bmatrix}}_{\mathbf{W}^{-1}} \underbrace{\begin{bmatrix} W_{1,1}^{-1} & W_{1,2}^{-1} & W_{1,3}^{-1} \\ \mathbf{W}_{2,1}^{-1} & W_{2,2}^{-1} & W_{2,3}^{-1} \end{bmatrix}}_{\mathbf{W}^{-1}} \underbrace{\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}}_{\mathbf{W}^{-1}} \underbrace{\begin{bmatrix} A^{0} & 0 & 0 \\ 0 & 0 & W^{4} \end{bmatrix}}_{\mathbf{W}^{-1}} \underbrace{\begin{bmatrix} A^{0} & 0 & 0 \\ 0 & W^{2} & 0 \\ 0 & 0 & W^{4} \end{bmatrix}}_{\mathbf{W}^{-1}} \underbrace{\begin{bmatrix} W^{-1} & W_{1,2}^{-1} & W_{1,3}^{-1} \\ W^{-1} & W^{-1} & W^{-1} \end{bmatrix}}_{\mathbf{W}^{-1}} \underbrace{\begin{bmatrix} W^{-1} & W_{1,2}^{-1} & W_{1,3}^{-1} \\ W^{-1} & W^{-1} & W^{-1} \end{bmatrix}}_{\mathbf{W}^{-1}} \underbrace{\begin{bmatrix} X_{0} \\ X_{1} \\ X_{2} \end{bmatrix}}_{\mathbf{X}} \underbrace{\begin{bmatrix} X_{0} \\ X_{1} \\ X_{2} \end{bmatrix}}_{\mathbf{X}^{-1}} \underbrace{\begin{bmatrix} X_{0} \\ X_{1} \\ X_{1} \end{bmatrix}}_{\mathbf{$$

This result follows from $(\mathbf{A}')^{-1} = \mathbf{A}^{-1} \mathbf{S}^{-1}$ and $(\mathbf{W}')^{-1} = (\mathbf{J} \mathbf{W} \mathbf{S}^{-1})^{-1} = \mathbf{S} \mathbf{W}^{-1} \mathbf{J}$, and also from the fact that the matrix \mathbf{J} is its own inverse. In other words, when computing the ICZT for the reversed chirp contour, the elements of the input vector need to be reversed in order to get the same result as the ICZT for the original chirp contour.

Figure S2. Absolute numerical error of the CZT algorithm, computed without contour reversal (a) and with contour reversal (b). The difference between (a) and (b) is shown in (c). The surfaces were generated for M = 64 as functions of the transform parameters A and W, which were discretized as described in the Methods section. Each of the 5,200 points on each surface was computed by averaging the numerical errors over 10 random unit-length input vectors.

Without Contour Reversal

With Contour Reversal

Difference

Figure S3. Absolute numerical error of the ICZT algorithm, computed without contour reversal (a) and with contour reversal (b). The difference between (a) and (b) is shown in (c). The surfaces were generated for M = 64 as functions of the transform parameters A and W, which were discretized as described in the Methods section. Each of the 5,200 points on each surface was computed by averaging the numerical errors over 10 random unit-length input vectors.

Figure S2 compares the numerical accuracy of the CZT algorithm with and without contour reversal. The surface in Fig. S2a was computed with Algorithm 1, which does not reverse the contour. The surface in Fig. S2b was computed with Algorithm S8, which reverses the direction of the chirp contour when |W| < 1. The difference between these two surfaces is shown in Fig. S2c, where positive values indicate that the error in (a) is higher than the error in (b).

The numerical error is equal to $\|\hat{\mathbf{X}} - \mathbf{X}\|$, where $\hat{\mathbf{X}}$ is the computed output vector and \mathbf{X} is the true but unknown output vector. In this experiment, $\hat{\mathbf{X}}$ was computed using 128-bit floating-point numbers and \mathbf{X} was computed with 1024-bit numbers. In both cases, the mpmath library³⁴ was used to software-emulate these high-precision floating-point numbers. The values of \mathbf{X} for both Fig. S2a and Fig. S2b were computed with Algorithm 1, i.e., without contour reversal.

Figure S3 summarizes the results of a similar experiment for the ICZT. The error is given by $\|\hat{\mathbf{x}} - \mathbf{x}\|$, where $\hat{\mathbf{x}}$ is the computed output vector and \mathbf{x} is the true but unknown output vector. The value of $\hat{\mathbf{x}}$ was computed with 128-bit precision in Fig. S3a and Fig. S3b, using Algorithm 2 and Algorithm S9, respectively. For both of these figures, \mathbf{x} was computed with 1024-bit precision using only Algorithm 2, i.e., ICZT without contour reversal. Figure S3c shows the pointwise difference between the two surfaces, i.e., $(\mathbf{c}) = (\mathbf{a}) - (\mathbf{b})$. The difference is zero when |W| > 1. For contours with |W| < 1, however, the difference is positive and can be as high as 7 orders of magnitude in this case, i.e., when M = 64.

These results may be explained by an asymmetry in the con-

dition number of the matrix \hat{W} (see Eq. (9)). For |W| < 1, the condition number grows much faster than for |W| > 1.

In log space, the contour reversal can be expressed as:

$$\begin{bmatrix} \log W' \\ \log A' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -(M-1) & 1 \end{bmatrix} \begin{bmatrix} \log W \\ \log A \end{bmatrix}.$$
 (154)

The eigenvectors of this matrix are (0,1) and $(1,\frac{M-1}{2})$. The surfaces in Figs. S2 and S3 are bent along two lines that correspond to these two eigenvectors. The first line is $\log_2 |W|^M = 0$; the second line is $\log_2 |A| = \frac{M-1}{2M} \log_2 |W|^M$. To summarize, this appendix showed that the numerical

To summarize, this appendix showed that the numerical accuracy of both the CZT and the ICZT can be improved by several orders of magnitude for chirp contours that are growing logarithmic spirals, i.e., when |W| < 1. In those cases, the revised algorithms reverse the direction of the chirp contour. Furthermore, this contour reversal must be accompanied by a reversal of the order of the elements in the vector **X**, which is either the CZT output vector or the ICZT input vector.

To make the contour reversal rules easier to remember, one can apply the following guidelines that use the four contour colors from Fig. 4. A blue contour should never be reversed because it is always a decaying logarithmic spiral. A green contour should be reversed only if it describes a growing spiral and left unchanged if it describes a decaying spiral. Similarly, a red contour should be reversed if it describes a growing spiral and left unchanged otherwise. Finally, a black contour (i.e., one that starts inside the unit circle and ends outside the unit circle) should always be reversed, which transforms it into a blue contour. In short, all chirp contours that are growing spirals should be reversed.

SUPPLEMENTARY APPENDIX H:

LINK BETWEEN THE POLAR ANGLE OF THE PARAMETER AAND THE VECTOR **x** IN BOTH THE CZT AND THE ICZT

Theorem 18. Let W be a non-zero complex number. Also, let A and B be two non-zero complex numbers such that $|A| = |B| = \mu$. Moreover, let $\alpha = \arg(A)$ be the polar angle of A and let $\beta = \arg(B)$ be the polar angle of B, i.e.,

$$A = |A| e^{i\alpha} = \mu e^{i\alpha}, \qquad (155)$$

$$B = |B| e^{i\beta} = \mu e^{i\beta}.$$
(156)

Finally, let M and N be two positive integers.

Let $\mathbf{x} = (\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{N-1}) \in \mathbb{C}^N$ be a complex vector of length N. Let $\mathbf{X}^A = (\mathbf{X}_0^A, \mathbf{X}_1^A, \mathbf{X}_2^A, \dots, \mathbf{X}_{M-1}^A) \in \mathbb{C}^M$ be the complex vector of length M that is equal to the CZT of \mathbf{x} parametrized by M, W, and A. More formally,

$$\mathbf{X}^{A} = \mathbf{CZT}(\mathbf{x}, M, W, A) = \mathbf{W} \mathbf{A} \mathbf{x}, \qquad (157)$$

where W is the Vandermonde matrix generated by the parameter W as defined by Eq. (3) and A is the diagonal matrix generated by the first N negative integer powers of the parameter A starting from A^{-0} , i.e.,

$$\mathbf{A} = \operatorname{diag}\left(A^{-0}, A^{-1}, A^{-2}, \dots, A^{-(N-1)}\right).$$
(158)

Similarly, let $\mathbf{X}^B = (X_0^B, X_1^B, X_2^B, \dots, X_{M-1}^B) \in \mathbb{C}^M$ be the complex vector of size M that is equal to the CZT of \mathbf{x} parametrized by M, W, and B. That is,

$$\mathbf{X}^{B} = \mathbf{CZT}(\mathbf{x}, M, W, B) = \mathbf{W} \mathbf{B} \mathbf{x},$$
(159)

where \mathbf{B} is a diagonal matrix generated by the first N negative integer powers of the parameter B, i.e.,

$$\mathbf{B} = \operatorname{diag} \left(B^{-0}, B^{-1}, B^{-2}, \dots, B^{-(N-1)} \right).$$
(160)

Then, the vector \mathbf{X}^B can be expressed as the CZT of the vector $\mathbf{x}' = \mathbf{D} \mathbf{x}$ where the transform is parametrized by M, W, and A and where the diagonal matrix \mathbf{D} is defined as follows:

$$\mathbf{D} = \operatorname{diag}\left(\mathrm{e}^{0i(\alpha-\beta)}, \, \mathrm{e}^{1i(\alpha-\beta)}, \dots, \, \mathrm{e}^{(N-1)i(\alpha-\beta)}\right).$$
(161)

In other words,

$$\mathbf{X}^{B} = \mathbf{CZT}(\mathbf{D}\,\mathbf{x}, M, W, A) = \mathbf{W}\,\mathbf{A}\,\mathbf{D}\,\mathbf{x}.$$
 (162)

Proof. The proof follows from the definitions of the matrices **A** and **B**. Combining Eqs. (158) and (155) leads to:

$$\mathbf{A} = \operatorname{diag}(\mu^{-0} \mathrm{e}^{-0i\alpha}, \mu^{-1} \mathrm{e}^{-1i\alpha}, \dots, \mu^{-(N-1)} \mathrm{e}^{-(N-1)i\alpha}).$$
(163)

Similarly, combining Eqs. (160) and (156) leads to:

$$\mathbf{B} = \operatorname{diag}(\mu^{-0} \mathrm{e}^{-0i\beta}, \mu^{-1} \mathrm{e}^{-1i\beta}, \dots, \mu^{-(N-1)} \mathrm{e}^{-(N-1)i\beta}).$$
(164)

Therefore, $\mathbf{B} = \mathbf{A}\mathbf{D}$. This implies that:

$$\mathbf{X}^B = \mathbf{W} \, \mathbf{B} \, \mathbf{x} = \mathbf{W} \, \mathbf{A} \, \mathbf{D} \, \mathbf{x}, \tag{165}$$

 \square

which proves Eq. (162).

Corollary 19. Changing the polar angle of the CZT transform parameter A from α to β is equivalent to changing the elements of the input vector **x** by adding $k(\alpha-\beta)$ to the polar angle of each \mathbf{x}_k . This change does not affect the norm of **x**. *Proof.* This corollary follows from Eq. (162). That is, multiplying the input vector \mathbf{x} by the diagonal matrix \mathbf{D} , which is generated by a vector of complex exponentials, changes only the polar angles of the elements of \mathbf{x} and leaves their magnitudes unchanged.

More formally, let $x_k = |x_k|e^{i\theta_k}$ be the polar form of x_k for each $k \in \{0, 1, 2, ..., N-1\}$. Then,

$$(\mathbf{D}\mathbf{x})_k = e^{ki(\alpha-\beta)} \mathbf{x}_k = |\mathbf{x}_k| e^{i(\theta_k + k(\alpha-\beta))}.$$
 (166)

That is, the real term $k(\alpha - \beta)$ is added to the polar angle of x_k , which does not change the Euclidean norm of \mathbf{x} .

Theorem 20. Let W be a non-zero complex number and let A and B be two non-zero complex numbers such that their magnitudes are equal, i.e., $|A| = |B| = \mu > 0$. Let α be the polar angle of A and let β be the polar angle of B. More formally,

$$A = |A| e^{i\alpha} = \mu e^{i\alpha}, \qquad (167)$$

$$B = |B| e^{i\beta} = \mu e^{i\beta}.$$
 (168)

Let $\mathbf{X} = (X_0, X_1, X_2, \dots, X_{M-1})$ be a complex vector of length M. Let $\mathbf{x}^A = (\mathbf{x}_0^A, \mathbf{x}_1^A, \mathbf{x}_2^A, \dots, \mathbf{x}_{N-1}^A)$ be the complex vector of length N that is equal to the ICZT of \mathbf{X} parametrized by N, W, and A. That is,

$$\mathbf{x}^{A} = \mathrm{ICZT}(\mathbf{X}, N, W, A) = \mathbf{A}^{-1} \mathbf{W}^{-1} \mathbf{X}, \qquad (169)$$

where W is the Vandermonde matrix defined by Eq. (3) and A is the diagonal matrix defined by Eq. (158).

Similarly, let $\mathbf{x}^B = (\mathbf{x}_0^B, \mathbf{x}_1^B, \mathbf{x}_2^B, \dots, \mathbf{x}_{N-1}^B)$ be the complex vector of length N that is equal to the ICZT of **X** parametrized by N, W, and B, i.e.,

$$\mathbf{x}^{B} = \mathrm{ICZT}(\mathbf{X}, N, W, B) = \mathbf{B}^{-1} \mathbf{W}^{-1} \mathbf{X}, \qquad (170)$$

where \mathbf{B} is the diagonal matrix defined by Eq. (160).

Then, $\mathbf{x}^B = \mathbf{D}^{-1} \mathbf{x}^A$, where \mathbf{D} is the diagonal matrix defined by Eq. (161).

Proof. Previously, it was proven that $\mathbf{B} = \mathbf{A}\mathbf{D}$. Thus,

$$B^{-1} = D^{-1}A^{-1}.$$
 (171)

Plugging this expression into Eq. (170) completes the proof, i.e.,

$$\mathbf{x}^{B} = \mathbf{B}^{-1} \mathbf{W}^{-1} \mathbf{X} = \mathbf{D}^{-1} \mathbf{A}^{-1} \mathbf{W}^{-1} \mathbf{X} = \mathbf{D}^{-1} \mathbf{x}^{A}.$$
 (172)

Corollary 21. Changing the polar angle of the ICZT transform parameter A from α to β is equivalent to changing the elements of the output vector **x** by subtracting $k(\alpha-\beta)$ from the polar angle of each x_k . This does not affect the norm of **x**.

Proof. This corollary follows from Eq. (170), which implies that the polar angle of x_k^B can be obtained from the polar angle of x_k^A by subtracting $k(\alpha - \beta)$. In other words,

$$\mathbf{x}_{k}^{B} = \mathrm{e}^{-ki(\alpha-\beta)} \, \mathbf{x}_{k}^{A} = |\mathbf{x}_{k}^{A}| \, \mathrm{e}^{i(\theta_{k}^{A}-k(\alpha-\beta))}, \tag{173}$$

where θ_k^A is the polar angle of \mathbf{x}_k^A . Therefore, $\|\mathbf{x}^B\| = \|\mathbf{x}^A\|$.

SUPPLEMENTARY APPENDIX I:

APPROXIMATION FORMULAS FOR THE NUMERICAL ERROR

This appendix states formulas that approximate the absolute numerical error of the CZT algorithm, the ICZT algorithm, and their sequential applications. The formulas are given for the square case in which M = N. The formulas apply to the modified algorithms described in Appendix G that reverse the direction of the chirp contour when |W| < 1. Finally, these formulas are suitable only for the case when the chirp contour is a logarithmic spiral that spans a 360° arc.

The error formulas are stated using the following four terms:

$$t_{1,k} = W^{\frac{k^2}{2}} A^{-k}, (174)$$

$$t_{2,k} = W^{-\frac{k^2}{2}},\tag{175}$$

$$t_{3,k} = W^{\frac{k}{2}}, \tag{176}$$

$$t_{4,k} = W^{-\frac{\kappa}{2}} A^k, \tag{177}$$

which are defined for each $k \in \{0, 1, 2, ..., N-1\}$. The first term corresponds to the factors used on line 7 of Algorithm 1. The second term is used on lines 8 and 11 of Algorithm 1 and on line 9 of Algorithm 2. The third term is used on line 16 of Algorithm 1. The fourth term is used on line 33 of Algorithm 2.

All of these lines are inside loops that perform N iterations (in the square case). Thus, each term specifies the k-th element of a vector. The error formulas use four aggregate terms that are computed by taking the logarithm of the Euclidean norm of these four vectors, i.e.,

$$T_1 = \log \sqrt{\sum_{k=0}^{N-1} |t_{1,k}|^2} = \frac{1}{2} \log \sum_{k=0}^{N-1} |W|^{k^2} |A|^{-2k}, \quad (178)$$

$$T_2 = \log \sqrt{\sum_{k=0}^{N-1} |t_{2,k}|^2} = \frac{1}{2} \log \sum_{k=0}^{N-1} |W|^{-k^2}, \quad (179)$$

$$T_3 = \log \sqrt{\sum_{k=0}^{N-1} |t_{3,k}|^2} = \frac{1}{2} \log \sum_{k=0}^{N-1} |W|^{k^2}, \tag{180}$$

$$T_4 = \log \sqrt{\sum_{k=0}^{N-1} |t_{4,k}|^2} = \frac{1}{2} \log \sum_{k=0}^{N-1} |W|^{-k^2} |A|^{2k}.$$
 (181)

The error formulas that cover the ICZT algorithm also use the following three terms that are computed from the elements of the vector \mathbf{u} , which is defined by Eq. (18):

$$U_1 = \log \sqrt{\sum_{k=1}^{N-1} |\mathbf{u}_k|^2} = \frac{1}{2} \log \sum_{k=1}^{N-1} |\mathbf{u}_k|^2,$$
(182)

$$U_2 = \log \sqrt{\sum_{k=0}^{N-1} |\mathbf{u}_k|^2} = \frac{1}{2} \log \sum_{k=0}^{N-1} |\mathbf{u}_k|^2,$$
(183)

$$U_3 = -\log|u_0|.$$
(184)

The term U_1 is equal to the logarithm of the Euclidean norm of a vector formed by all elements of the vector **u** except u_0 . It maps to lines 25 and 26 of Algorithm 2. The term U_2 is similar, but it uses all elements of the vector \mathbf{u} , including u_0 . It maps to lines 27 and 28 of Algorithm 2. Finally, U_3 is equal to the negative logarithm of the magnitude of u_0 (by definition, u_0 cannot be zero). It maps to line 30 of Algorithm 2.

All error formulas also include an offset that depends on N and p, where p is the number of precision bits in the IEEE-754 floating-point numbers³³ that are used to compute the transforms. For computations with 128, 256, 512, and 1024 bits, the value of p is equal to 113, 237, 489, and 997, respectively. This offset determines the base level of the error surface. It is defined as follows:

$$B = -\log(2^p N) = -p\log 2 - \log N.$$
(185)

For this evaluation, the terms in Eqs. (174)–(177) and the elements of the vector **u** were computed with very high precision (1024 bits). This was done to reduce the effect of the numerical error in these terms on the overall numerical error. All other computations were performed using 128 bits.

A. Error Formula for the CZT Algorithm

The CZT maps the input vector \mathbf{x} to the output vector $\hat{\mathbf{X}}$. The absolute numerical error is given by:

$$E = \|\hat{\mathbf{X}} - \mathbf{X}\|,\tag{186}$$

where \mathbf{X} is the true but unknown output vector of the transform. Figure S4a plots the decimal logarithm of E as a function of A and W. This surface can be approximated with the following error formula:

$$\log E \approx T_1 + T_2 + T_3 + B + \log \|\mathbf{x}\|.$$
(187)

This formula fits the empirical data very well, as indicated by the R^2 values in the second column of Table S1. Furthermore, the quality of the fit improves as N increases.

B. Error Formula for the ICZT Algorithm

The ICZT algorithm maps \mathbf{X} to $\hat{\mathbf{x}}$. Its absolute numerical error is given by:

$$E = \|\hat{\mathbf{x}} - \mathbf{x}\|,\tag{188}$$

where $\hat{\mathbf{x}}$ is the computed output vector and \mathbf{x} is the true but unknown output vector. Figure S4b plots the decimal logarithm of E as a function of A and W. The error can be predicted using the following formula:

$$\log E \approx T_2 + T_4 + U_1 + U_2 + U_3 + B + \log \|\mathbf{X}\|.$$
 (189)

The goodness of fit is reported in Table S1 for different N.

Ν	CZT	ICZT	CZT-ICZT	ICZT-CZT
64	0.99963	0.99976	0.99846	0.99970
128 256	0.999994 0.999998	0.99988 0.99995	0.99900 0.99966	0.99987 0.99997
512	0.99999	0.99996	0.99992	0.99998

Table S1. The R^2 values for fitting error models to empirically derived error surfaces. Each point on each surface was computed by averaging the numerical errors over 10 random unit-length input vectors. The discretizations for A and W are the same as in the main text. Perfect fits correspond to $R^2 = 1$. In all four cases, the R^2 values are very close to 1 and improve as N increases.

Figure S4. The absolute numerical error for N = M = 64 as a function of A and W, shown for: (a) the CZT transform; (b) the ICZT transform; (c) the CZT followed by the ICZT; and (d) the ICZT followed by the CZT. These surfaces were computed using the modified algorithms that reverse the direction of the chirp contour when |W| < 1, i.e., using Algorithm S8 and Algorithm S9. The points in all surfaces represent the average error for 10 randomly-generated unit-length input vectors. The ground truth output vectors were approximated using 1024-bit floating-point numbers. All other computations used 128-bit numbers. Each surface consists of 5,200 points generated using the discretization described in the Methods section. That is, 52 evenly-distributed points in the range [0.5, 2.0] for |A| and 100 evenly-distributed points in the same range for $|W|^M$. All three axes in each of the four plots are scaled logarithmically.

C. Error Formula for the CZT Followed by the ICZT

For the CZT–ICZT procedure, the absolute numerical error is equal to the Euclidean distance between the original input vector \mathbf{x} and the computed vector $\hat{\mathbf{x}}$. More formally,

$$E = \|\mathbf{\hat{x}} - \mathbf{x}\|. \tag{190}$$

Figure S4c plots E as a function of the transform parameters A and W. The error values can be analytically approximated using the following formula:

$$\log E \approx T_1 + T_2 + T_4 + U_1 + U_2 + U_3 + B + \log \|\mathbf{x}\|.$$
 (191)

The goodness of fit of this expression is evaluated in Table S1.

This formula can be viewed as a sum of the terms in Eqs. (187) and (189). Because the output scaling on line 16 of Algorithm 1 is immediately canceled by the input scaling on line 9 of Algorithm 2, the corresponding terms T_3 and T_2 are excluded from Eq. (191). The term $\log ||\mathbf{X}||$ is excluded as well. Also, the term *B* is counted only once.

D. Error Formula for the ICZT Followed by the CZT

The absolute error of the ICZT-CZT procedure is given by:

$$E = \|\hat{\mathbf{X}} - \mathbf{X}\|,\tag{192}$$

where \mathbf{X} is the true output vector and $\hat{\mathbf{X}}$ is the computed output vector. Figure S4d visualizes the decimal logarithm of the error, which can be approximated as follows:

$$\log E \approx 2T_2 + T_3 + U_1 + U_2 + U_3 + B + \log \|\mathbf{X}\|.$$
(193)

This formula can be viewed as a sum of the terms in Eqs. (187) and (189) except for B, which is included only once, and $\log ||\mathbf{x}||$, which is excluded. Also, terms T_1 and T_4 are excluded because the output scaling performed on line 33 of the ICZT algorithm is immediately undone by the input scaling on line 7 of the CZT algorithm. This implies that the absolute numerical error is independent of A, which is confirmed by Fig. S4d. Furthermore, the last column of Table S1 shows that Eq. (193) approximates the empirical error very well.