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ABSTRACT

This paper describes the first algorithm for computing the inverse chirp z-transform (ICZT) in O(n log n) time. This matches
the computational complexity of the chirp z-transform (CZT) algorithm that was discovered 50 years ago. Despite multiple
previous attempts, an efficient ICZT algorithm remained elusive until now. Because the ICZT can be viewed as a generalization
of the inverse fast Fourier transform (IFFT) off the unit circle in the complex plane, it has numerous practical applications in a
wide variety of disciplines. This generalization enables exponentially growing or exponentially decaying frequency components,
which cannot be done with the IFFT. The ICZT algorithm was derived using the properties of structured matrices and its
numerical accuracy was evaluated using automated tests. A modification of the CZT algorithm, which improves its numerical
stability for a subset of the parameter space, is also described and evaluated.

Introduction
The Fourier transform and its inverse appear in many natural phenomena and have numerous applications. The fast Fourier
transform (FFT) and the inverse FFT (or IFFT) algorithms compute the discrete versions of these transforms. Both of these
algorithms run in O(n log n) time, which makes them practical. A generalization of the FFT off the unit circle, called the chirp

z-transform (CZT), was published in 1969. A fast inverse chirp z-transform (ICZT) algorithm that generalizes the IFFT in a
similar way has remained elusive for 50 years, despite multiple previous attempts. Here we describe the first ICZT algorithm
that runs in O(n log n) time. It enables applications with spectral frequency components that are not constrained to have fixed
magnitudes but also could decay or grow exponentially (see Fig. 1).

The CZT can use sample points from the entire complex plane and not only from the unit circle. More specifically, the
transform distributes the samples along a logarithmic spiral contour (i.e., chirp contour) that is defined by the formula A�j

W
jk,

where j denotes a zero-based input sample index and k denotes a zero-based output sample index. The complex numbers A
and W specify the location and the direction of the spiral contour and also the spacing of the sample points along the contour.

An efficient algorithm for computing the forward chirp z-transform was described 50 years ago1–5. It was derived using an
index substitution, which was originally proposed by Bluestein1, 5, to compute the transform using fast convolution. It runs in
O(n log n) time, where n is the size of the transform4, 6–8. Various optimizations have been proposed for the CZT algorithm9.
Its computational complexity, however, remains fixed at O(n log n), which matches the complexity of the FFT algorithm.

The ICZT is the inverse of the CZT. That is, the ICZT maps the output of the CZT back to the input. Because the CZT is a
linear transform, it can be expressed using the product of the CZT transformation matrix with the input vector. This matrix can
be inverted using a standard algorithm. In algorithmic form, however, this process may require up to O(n3) operations.

Even though there are matrix inversion algorithms10 that run faster than O(n3), at least n2 operations are necessary to
compute each element of an n-by-n matrix. Thus, O(n2) is a lower bound for the complexity of any ICZT algorithm that works
with an n-by-n matrix in memory.

Just like the FFT and the IFFT have the same computational complexity11–14 it is desirable to have an ICZT algorithm that
matches the computational complexity of the CZT algorithm, i.e., O(n log n). This requirement rules out any method that needs
to compute each element of the transformation matrix. This paper describes the first ICZT algorithm that runs in O(n log n)
time. It states a working algorithm, explains how it was derived, and evaluates its numerical precision using automated test
cases.

Related Work
Several attempts to derive an efficient ICZT algorithm have been made15–18. In some cases15, a modified version of the
forward CZT algorithm, in which the logarithmic spiral contour was traversed in the opposite direction, was described as
the ICZT algorithm. However, this method does not really invert the CZT. It works only in some special cases, e.g., when
A = 1 and W = e

� 2⇡i
n . That is, in the cases when the CZT reduces to the DFT. In the general case, i.e., when A,W 2 C \ {0},

that method generates a transform that does not invert the CZT.
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Figure 1. Visualization of three different types of frequency components that can be used with the CZT and the ICZT:
(a) an exponentially decaying frequency component, (b) a frequency component with a fixed magnitude, and
(c) an exponentially growing frequency component. Each point on the chirp contour determines a frequency component, where
its type depends on the location of that point with respect to the unit circle. The FFT and the IFFT use only fixed-magnitude
frequency components that are determined by the n-th roots of unity, which lie on the unit circle.

This paper describes an O(n log n) algorithm that computes the ICZT. The algorithm was derived by expressing the CZT
formula using structured matrix multiplication and then finding a way to efficiently invert the matrices in the underlying matrix
equation. The essence of the ICZT computation reduces to inverting a specially constructed Vandermonde matrix W . This
problem, in turn, reduces to inverting a symmetric Toeplitz matrix Ŵ that is derived from W .

The Gohberg–Semencul formula19–21 expresses the inverse of a Toeplitz matrix as the difference of two products of Toeplitz
matrices. Each of the four matrices in this formula is either an upper-triangular or a lower-triangular Toeplitz matrix that is
generated by either a vector u or a vector v. In the case of the ICZT, a symmetric Toeplitz matrix needs to be inverted. This
leads to a simplified formula that expresses the inverse using only one generating vector that is also called u.

In the ICZT case, it turned out that each element of the generating vector u can be expressed as a function of the transform
parameter W . This formula led to an efficient ICZT algorithm. One building block of this algorithm is the multiplication of a
Toeplitz matrix by a vector, which can be done in O(n log n), without storing the full Toeplitz matrix in memory22–26. The
supplementary information for this paper gives the pseudo-code for two different algorithms — based on these references —
that can compute a Toeplitz–vector product in O(n log n) time. Each of these algorithms can be used as a subroutine by the
ICZT algorithm.

The CZT in Structured Matrix Notation

Structured matrices can be described with significantly fewer parameters than the number of their elements26, 27. Some examples
include: Toeplitz, Hankel, Vandermonde, Cauchy, and circulant matrices26, 28. Diagonal matrices are structured matrices as
well, i.e., an N -by-N diagonal matrix may have no more than N non-zero elements. Supplementary Fig. S1 illustrates the
shapes of the structured matrices used in this paper and also shows their generating vectors.

The CZT is defined4 using the following formula:

Xk =
N�1X

j=0

xj A
�j

W
jk
, k = 0, 1, . . . ,M�1. (1)

The complex numbers A and W are parameters of the transform that define the logarithmic spiral contour and the locations
of the samples on it (e.g., see Fig. 2). The integer N specifies the size of the input vector x. Similarly, the integer M specifies
the size of the output vector X. In general, N may not be equal to M . That is, the dimensionality of the input may not
be equal to the dimensionality of the output. To analyze the complexity of the CZT algorithm it is often convenient to set
n = max(M,N).

Let A = diag(A�0
, A

�1
, A

�2
, . . . , A

�(N�1)) be a diagonal matrix of size N -by-N . Then, the CZT can also be expressed
with the following matrix equation:

X = WAx. (2)
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Figure 2. Chirp contour with M = 32 points (a) and M = 64 points (b). The contour is specified by A = 1.1 and
W = M

p
1.2⇥ exp

�
i2⇡
M

�
, which are the transform parameters. The unfilled circle indicates the starting point, which is equal

to A. The end point is equal to AW
�(M�1). The blue points are given by the complex sequence z0, z1, . . . , zM�1, where

zk = AW
�k. The k-th element of the CZT output vector is the z-transform at zk of the input vector x, i.e.,

Xk =
PN�1

j=0 xj z
�j
k .

In this case, W is an M -by-N matrix that is defined as:

W =

2

666664

W
0·0

W
1·0

W
2·0

. . . W
(N�1)·0

W
0·1

W
1·1

W
2·1

. . . W
(N�1)·1

W
0·2

W
1·2

W
2·2

. . . W
(N�1)·2

...
...

...
. . .

...
W

0·(M�1)
W

1·(M�1)
W

2·(M�1)
. . . W

(N�1)·(M�1)

3

777775

| {z }
Vandermonde matrix

. (3)

The matrix W is Vandermonde (i.e., each row of W forms a geometric progression). In this special case, the common ratio of
each of these progressions is equal to the corresponding integer power of the parameter W . The negative integer powers of the
transform parameter A, which are arranged along the diagonal of the matrix A, scale the columns of W .

Because W is a special case of a Vandermonde matrix, it can be expressed as a product of a diagonal matrix, a Toeplitz
matrix Ŵ , and another diagonal matrix. It is possible to express4 the power of the parameter W in each element of the matrix
W using the following equation:

jk =
j
2 + k

2 � (k � j)2

2
. (4)

This substitution was first proposed by Bluestein5.
Eq. (4) implies that for each k 2 {0, 1, . . . ,M�1} the right-hand side of Eq. (1) can be expressed4 as follows:

Xk =
N�1X

j=0

xj A
�j

W
jk =

N�1X

j=0

xj A
�j

W

j2+k2�(k�j)2

2 =
N�1X

j=0

xj A
�j

W

j2

2 W

k2

2 W
� (k�j)2

2 . (5)

The terms of this formula can be rearranged so that it can be mapped to matrix products more easily, i.e.,

Xk = W

k2

2

 
N�1X

j=0

W
� (k�j)2

2

✓
W

j2

2

⇣
A

�j xj
⌘◆!

. (6)

In Eq. (6), the term W

k2

2 maps to an M -by-M diagonal matrix P. Similarly, the term W
j2

2 maps to a diagonal matrix Q
that has N rows and N columns. That is,

P = diag
�
W

02

2 ,W
12

2 , . . . ,W
(M�1)2

2
�

and Q = diag
�
W

02

2 ,W
12

2 , . . . ,W
(N�1)2

2
�
. (7)

The term A
�j maps to the following N -by-N diagonal matrix:

A = diag
�
A

�0
, A

�1
, . . . , A

�(N�1)
�
. (8)
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Finally, W� (k�j)2

2 maps to an M -by-N Toeplitz matrix Ŵ :

Ŵ =

2

6666664

W
� (0�0)2

2 W
� (0�1)2

2 . . . W
� (0�(N�1))2

2

W
� (1�0)2

2 W
� (1�1)2

2 . . . W
� (1�(N�1))2

2

...
...

. . .
...

W
� ((M�1)�0)2

2 W
� ((M�1)�1)2

2 . . . W
� ((M�1)�(N�1))2

2

3

7777775

| {z }
Toeplitz matrix

. (9)

Since W =P Ŵ Q , the CZT algorithm can be viewed as an efficient implementation of the following matrix equation:

X = P Ŵ QAx. (10)

As mentioned above, x is the input vector to the CZT and X is the output vector of the CZT. Supplementary Appendix A gives
an example.

Because P, Q, and A are diagonal matrices, any product between any of them and a vector can be computed in O(n) time.
Only the matrix Ŵ is a Toeplitz matrix, i.e., each of its diagonals contains the same value. As described in the literature26, 29,
the product of a Toeplitz matrix with a vector can be computed in O(n log n) time (see Supplementary Appendices B, C, and D).
Thus, the output vector X can be computed in O(n log n) time if the multiplications are performed from right to left, i.e.,

X = P
�
Ŵ
�
Q
�
Ax

���
. (11)

Algorithm 1 gives the pseudo-code for the CZT algorithm, which computes Eq. (11) in O(n log n) time using structured
matrix multiplication. To multiply the Toeplitz matrix Ŵ by a vector, the algorithm uses the circulant embedding func-
tion TOEPLITZMULTIPLYE that is described in Supplementary Appendix B. An alternative implementation could replace
line 14 with a call to TOEPLITZMULTIPLYP, which is described in Supplementary Appendix C.

Algorithm 1. CZT Algorithm. Runs in O(n log n) time.

1: CZT(x, M, W, A)

2: N  LENGTH(x);
3: X EMPTYARRAY(N);
4: r EMPTYARRAY(N);
5: c EMPTYARRAY(M);
6: for k  0 to N � 1 do

7: X[k] W
k2

2 ·A�k · x[k];

8: r[k] W
� k2

2 ;
9: end for

10: for k  0 to M � 1 do

11: c[k] W
� k2

2 ;
12: end for
13: // After the next line, LENGTH(X) = M .
14: X TOEPLITZMULTIPLYE(r, c, X);
15: for k  0 to M � 1 do

16: X[k] W
k2

2 ·X[k];
17: end for
18: return X;
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The ICZT in Structured Matrix Notation
A formula for the inverse chirp z-transform exists only when M=N and can be derived by inverting the matrices in Eq. (10), i.e.,

x = A�1Q�1 Ŵ�1 P�1 X. (12)

Each matrix in Eq. (12) is diagonal, except for Ŵ�1. Thus, deriving an efficient ICZT algorithm reduces to finding an efficient
method for inverting the symmetric Toeplitz matrix Ŵ . The method used here is illustrated with the following example.

Let T be a non-singular 3-by-3 Toeplitz matrix generated by five complex numbers a, b, c, d, and e. Let Ŵ be a symmetric
3-by-3 Toeplitz matrix, generated by a, b, and c. That is,

T =

2

4
a b c

d a b

e d a

3

5 , Ŵ =

2

4
a b c

b a b

c b a

3

5 . (13)

The Gohberg–Semencul formula19, 20 states that the inverse matrix T�1 can be expressed using the following equation:

u0 T
�1 =

2

4
u0 0 0
u1 u0 0
u2 u1 u0

3

5

| {z }
A

2

4
v2 v1 v0
0 v2 v1
0 0 v2

3

5

| {z }
C

�

2

4
0 0 0
v0 0 0
v1 v0 0

3

5

| {z }
B

2

4
0 u2 u1
0 0 u2
0 0 0

3

5

| {z }
D

, (14)

where u = (u0, u1, u2) is a three-element vector such that u0 6= 0 and v = (v0, v1, v2) is another three-element vector. These
two vectors are determined by the numbers a, b, c, d, and e that generate the matrix T. However, expressing the elements of u
and v explicitly as functions of these five numbers can be difficult. Also, u and v may not be unique.

In other words, Eq. (14) states the inverse of a 3-by-3 Toeplitz matrix T using four structured matrices: 1) a lower-triangular
Toeplitz matrix A generated by the vector u, 2) an upper-triangular Toeplitz matrix C generated by the reverse of the vector v,
3) a lower-triangular Toeplitz matrix B generated by the vector (0, v0, v1), which is obtained by shifting v to the right by one
element, and 4) an upper-triangular Toeplitz matrix D generated by the vector (0, u2, u1), which is obtained by shifting the
reverse of u to the right by one element.

Supplementary Appendix E proves that the inverse of the symmetric Toeplitz matrix Ŵ can be expressed as follows:

u0 Ŵ
�1

=

2

4
u0 0 0
u1 u0 0
u2 u1 u0

3

5

| {z }
A

2

4
u0 u1 u2
0 u0 u1
0 0 u0

3

5

| {z }
AT

�

2

4
0 0 0
u2 0 0
u1 u2 0

3

5

| {z }
DT

2

4
0 u2 u1
0 0 u2
0 0 0

3

5

| {z }
D

. (15)

In this case, the first two matrices are transposes of each other and so are the last two matrices. Furthermore, all four matrices
are determined by one generating vector, also called u, which is unique. The vector v is not needed because it is equal to the
reverse of u (see Supplementary Appendix E).

In general, if Ŵ is a symmetric n-by-n Toeplitz matrix, then its inverse is given by the following formula:

Ŵ�1 =
1

u0

⇣
AAT �DTD

⌘
, (16)

where

A =

2

66666664

u0 0 0 . . . 0 0
u1 u0 0 . . . 0 0
u2 u1 u0 . . . 0 0
...

...
...

. . .
...

...
un�2 un�3 un�4 . . . u0 0
un�1 un�2 un�3 . . . u1 u0

3

77777775

, D =

2

66666664

0 un�1 un�2 . . . u2 u1
0 0 un�1 . . . u3 u2
0 0 0 . . . u4 u3
...

...
...

. . .
...

...
0 0 0 . . . 0 un�1

0 0 0 . . . 0 0

3

77777775

. (17)

If the generating vector u is known, then the product of the matrix Ŵ�1 with a vector can be computed in O(n log n) time
by implementing Eq. (16) using structured matrix multiplication. For example, this can be achieved by applying four times the
algorithm described in Supplementary Appendix B or the algorithm described in Supplementary Appendix C.
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Algorithm 2. ICZT algorithm. Runs in O(n log n) time.

1: ICZT(X, N, W, A)

2: M  LENGTH(X);
3: if M 6= N then
4: ERROR(“M must be equal to N .”);
5: end if
6: n N ;
7: x EMPTYARRAY(n);
8: for k  0 to n� 1 do

9: x[k] W
� k2

2 ·X[k]; // multiply P�1 and X
10: end for
11: // Precompute the necessary polynomial products.
12: p EMPTYARRAY(n);
13: p[0] 1;
14: for k  1 to n� 1 do
15: p[k] p[k�1] · (W k � 1);
16: end for
17: // Compute the generating vector u.
18: u EMPTYARRAY(n);
19: for k  0 to n� 1 do

20: u[k] (�1)k W

2k2�(2n�1)k+n(n�1)
2

p[n�k�1] · p[k] ;

21: end for
22: z ZEROVECTOR(n); // vector with n zeros
23: bu (0, u[n�1], u[n�2], . . . , u[2], u[1]);
24: eu (u[0], 0, 0, . . . , 0| {z }

n�1 zeros

);

25: x0  TOEPLITZMULTIPLYE
�
bu, z, x

�
; // D

26: x0  TOEPLITZMULTIPLYE
�
z, bu, x0 �; // DT

27: x00  TOEPLITZMULTIPLYE
�
u, eu, x

�
; // AT

28: x00  TOEPLITZMULTIPLYE
�
eu, u, x00 �; // A

29: for k  0 to n� 1 do

30: x[k] x00[k]� x0[k]

u[0]
; // subtract and divide by u0

31: end for
32: for k  0 to n� 1 do

33: x[k] A
k ·W� k2

2 · x[k]; // multiply by A�1Q�1

34: end for
35: return x;
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As proven in Supplementary Appendices E and F, the generating vector u = (u0, u1, . . . , un�1) is equal to the first column
of Ŵ�1 and its elements can be computed as follows:

uk =
�
Ŵ�1

�
k+1,1

= (�1)k W

2k2�(2n�1)k+n(n�1)
2

n�k�1Y

s=1

(W s � 1)
kY

s=1

(W s � 1)

. (18)

The properties of this formula are further analyzed in Supplementary Appendix F using Lagrange polynomials30, 31.
Combining Eqs. (12) and (16) leads to the following matrix equation for the ICZT:

x =
1

u0
A�1Q�1

⇣
AAT �DTD

⌘
P�1 X. (19)

Each matrix in this equation is either a diagonal matrix or a triangular Toeplitz matrix. Thus, the result vector x can be
computed efficiently using structured matrix multiplication.

Algorithm 2 implements Eq. (19) without storing any matrices in the computer’s memory. It requires O(n) mem-
ory and runs in O(n log n) time, where n = 2d log2(M+N�1)e. There is an alternative version of the algorithm that
uses TOEPLITZMULTIPLYP instead of TOEPLITZMULTIPLYE on lines 25–28. It also runs in O(n log n), but in that case
n = 2d log2 max(M,N)e. Both algorithms assume that M = N .

Algorithm 2 could be optimized by reusing some partial results at the expense of making the code less modular. These
optimizations, however, would not affect the overall computational complexity of the algorithm. There is one optimization,
however, that is worth mentioning in more detail. The numerical accuracy of both the CZT and the ICZT can be improved if
the direction of the chirp contour is reversed when the original contour is a growing logarithmic spiral, i.e., when |W | < 1.
Contour reversal can be achieved by swapping the start point with the end point. That is, the new contour parameters are given
by W

0 = W
�1 and A

0 = AW
�(M�1). Supplementary Appendix G gives more details and proofs. It also describes the CZT-R

and ICZT-R algorithms that perform this reversal and are used in some of the experiments.

Results
Table 1 shows the results of the first experiment in which the chirp contour had the same shape but the number of points on
the contour was doubled in each iteration. The numerical accuracy was computed using the CZT–ICZT procedure described
in the Methods section. For all rows, the value of the transform parameter A was set to 1.1. The value of W was set to
Mp

1.2⇥ exp
�
i2⇡
M

�
. Thus, for all M , the points were on the same chirp contour, i.e., a 360� segment of a logarithmic spiral.

This was inspired by the way the FFT adds new points when the transform size is doubled (in the FFT case, however, the points
are always on the unit circle). Figure 2 shows the chirp contours for M = 32 and M = 64.

Because the matrix W is Vandermonde, it is recommended to use double precision or higher32 for numerical computations.
Therefore, the last four columns of Table 1 show the average error for four different IEEE-754 floating-point precisions33.
Because some of these high-precision formats are not yet supported by modern CPUs, all floating-point formats were emulated
in software using the mpmath library34.

M
Condition Size of the Floating-Point Numbers

number 2 64 bits 128 bits 256 bits 512 bits

32 6.1⇥101 2.9⇥10�15 1.7⇥10�33 8.0⇥10�71 1.1⇥10�146

64 8.7⇥103 2.2⇥10�14 1.4⇥10�32 6.5⇥10�70 9.0⇥10�146

128 2.4⇥108 3.6⇥10�12 2.3⇥10�30 9.8⇥10�68 1.2⇥10�143

256 2.8⇥1017 1.8⇥10�7 1.1⇥10�25 5.7⇥10�63 8.1⇥10�139

512 1.7⇥1029 1.6⇥103 1.3⇥10�15 4.7⇥10�53 6.7⇥10�129

1024 6.8⇥1053 1.9⇥1023 1.9⇥105 6.2⇥10�33 8.8⇥10�109

2048 3.4⇥10110 7.1⇥1063 6.3⇥1045 3.3⇥108 3.5⇥10�68

Table 1. Absolute numerical error for one chirp contour with M points. For all rows, the chirp contour has the same shape as
in Fig. 2, but the number of points varies from M = 32 to M = 2048. Each row was computed using the CZT–ICZT
procedure and averaging the results for 100 randomly selected unit-length input vectors.
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Figure 3. Absolute numerical error for 5,200 chirp contours. The logarithm of the error is shown as a function of |W |M
and |A| for M = 64, computed with software emulation of 128-bit floating-point numbers. The lowest point of this surface
corresponds to the circular contour used by the FFT and the IFFT.

a b c d

Figure 4. Four 64-point chirp contours, drawn in the complex plane. They show the four contour types defined based on the
start point and the end point relative to the unit circle: Out–Out (a; red), In–In (b; green), Out–In (c; blue), and
In–Out (d; black). The start point of each contour is indicated with an unfilled circle. The unit circle is drawn in gray.

For small values of M , the average numerical error is close to the machine epsilon for the corresponding floating-point
precision. For large values of M , the numerical errors accumulate and the solutions become less accurate. This can be mitigated
by increasing the floating-point precision. With 512 bits the computed vectors were accurate for all values of M shown
in Table 1. In particular, for M = 2048 the numerical error was on the order of 10�68. In other words, this problem is solvable
even for large values of M .

The second column in Table 1 shows an estimate for the condition number 2, which can be viewed as an upper-bound
for the sensitivity of the inverse chirp z-transform to perturbations of the input vector22. Its value depends on the transform
parameters but not on the input vector. The results show that the average error is significantly lower than what can be expected
from the condition number. This is consistent with previous observations35 that some ill-conditioned Vandermonde systems can
be solved with small numerical error.

Figure 3 shows the results from the second experiment in which the magnitudes of A and W
M were uniformly sampled in

the range [0.5, 2.0]. That is, 52 evenly-distributed samples for |A| and 100 evenly-distributed samples for |W |M were selected
in that range. This resulted in 5,200 different chirp contours for which the absolute error was computed using the CZT–ICZT
procedure. The logarithm of the error was averaged for 10 random input vectors and the results were plotted as a surface. The
same 10 unit-length input vectors were used to compute all points on the surface. All results were computed for M = 64 using
software emulation34 of 128-bit floating-point numbers in IEEE-754 format33.

The results show that the CZT–ICZT procedure returned a vector x̂ that was very close to the original input vector x for
all 5,200 contours. In other words, when the logarithm of the error is negative, the magnitude of the error is smaller than the
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Figure 5. Absolute numerical error of the CZT–ICZT procedure for four values of M and three floating-point precisions.
The error is shown as a function of |W |M and |A| for M = 64, 128, 256, and 512, computed using software emulation of
IEEE-754 floating-point numbers with: 128 bits (a); 256 bits (b); and 512 bits (c). Increasing the number of bits shifts each
surface down. Thus, additional bits reduce the error and increase the subset of the parameter space for which the transforms are
numerically accurate (i.e., the vertical coordinate is less than zero). Each surface was computed using 5,200 chirp contours, but
some points are not shown because the vertical axis was clipped at zero.

magnitude of the input vector (which was of unit length).
The points in Fig. 3 are plotted with four colors that correspond to four subsets of the parameter space, which are defined by

the start and end point of the chirp contour relative to the unit circle. More specifically, red is used for contours that lie entirely
outside the unit circle. Green corresponds to contours that start and end within the unit circle. Blue contours start outside the
unit circle but end inside it. Finally, black contours start inside the unit circle but end outside it. Figure 4 shows one example
for each of these four contour types.

The polar angle of A does not affect the error in this experiment (see Supplementary Appendix H). Thus, to simplify the
evaluation, all 5,200 contours in Fig. 3 started on the positive real axis. That is, the polar angle of A was set to 0 (e.g., see the
blue contour in Fig. 4c).

Figure 5 summarizes the results of the third experiment, which extends the second experiment by also varying the number
of contour points and the number of bits used to compute the transforms. The three sub-figures were computed with 128, 256,
and 512 bits, respectively. The ordering of the surfaces with respect to the vertical axis shows that the numerical error increases
as M increases. The range of the parameter values for which the absolute numerical error is below 1 (i.e., its logarithm is
negative) also shrinks as M increases. Conversely, increasing the number of bits lowers the surfaces and increases the size of
the parameter region where the error is small. This shows that the problem can be solved for any M , given the right number
of bits.

Supplementary Appendix I provides additional analysis and gives an error estimation formula. This formula expresses
the numerical accuracy in terms of the transform parameters and the number of bits used to compute the transforms. This
information can be used to select the number of bits that are sufficient to achieve the desired numerical accuracy.

Finally, it is worth emphasizing that the large scope of this evaluation was made possible by the O(n log n) computational
complexity of the ICZT algorithm, which is the main contribution of this paper.

Discussion
The discrete Fourier transform (DFT) and its efficient implementation using the fast Fourier transform (FFT) are used in a
large number of applications36–40. Because the CZT is a generalization of the DFT and the ICZT is a generalization of the
inverse DFT, the number of potential applications of the ICZT algorithm is also very large. So far, only the CZT algorithm had
the same computational complexity as the FFT, i.e., O(n log n). This paper described the first ICZT algorithm that runs in
O(n log n) time, which matches the computational complexity of the CZT algorithm and also of the inverse FFT.

In other words, this paper is transformative not only because it implements a transform that generalizes the inverse FFT,
but also because the new algorithm has the same run-time complexity as the algorithm that it generalizes. Furthermore, this
generalization enables the use of exponentially growing or decaying frequency components (see Fig. 1).

The evaluations in this paper were performed for chirp contours that are logarithmic spirals that span a 360� arc. This
was done to preserve the analogy to the FFT and the IFFT. Both the CZT and the ICZT, however, can be computed for chirp
contours that span smaller angular arcs or chirp contours with multiple revolutions on or off the unit circle. Future work could
analyze the stability and the error properties of the algorithms in those special cases. Future work could also pursue hardware
implementations of the ICZT algorithm.
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Methods
The numerical accuracy of the ICZT algorithm was evaluated with three experiments. In the first experiment, the chirp contour
was held fixed while the number of points on it was doubled in each iteration. In the second experiment, the number of points
was held fixed while the contour parameters were sampled uniformly on a grid. The third experiment varied both the number of
points and the contour parameters. All three experiments used the procedure described below.

CZT–ICZT procedure. The main operation in all experiments consisted of the following five steps: 1) generate each
element of a random input vector x using uniform sampling in the range [�1, 1); 2) normalize the vector x to have unit length;
3) use the CZT algorithm to compute the vector X̂ from the vector x; 4) use the ICZT algorithm to compute the vector x̂
from the vector X̂; and 5) compute the absolute numerical error as the Euclidean distance between the vectors x and x̂. This
sequence of steps is repeated several times and the results are averaged to compute the mean error. In all three experiments the
transforms were computed for the square case in which M = N for invertibility reasons.

The length of the vector x is determined by the transform parameter M . In the experiments, M was always a power of 2,
but this is not a restriction of the algorithms, which can run for any M . In other words, the dependency algorithms, which are
described in the supplementary information, check the sizes of their input vectors and pad them with zeros when necessary.

First experiment. The value of M was varied from 32 to 2048 such that it was always a power of 2. Each number reported
in Table 1 was averaged over 100 random input vectors x. These vectors were held fixed for each row of Table 1, which was
achieved by using a fixed random seed to initialize the pseudo-random number generator. Each row corresponds to a different
value of M , which, in the square case, determines the matrix size and also the lengths of the vectors x, X̂, and x̂. The input
vectors were different for different rows because they had different lengths, i.e., different M . The CZT and the ICZT were
computed using Algorithm 1 and Algorithm 2, respectively.

The second column of Table 1 reports the condition number22 for the transform matrix WA. It depends on the transform
parameters but not on the input vector. The condition number is the same for both the CZT and the ICZT.

Condition number. The condition number 2 is equal to the product of the norms of the CZT matrix WA and the ICZT
matrix (WA)�1. That is, 2 = kWAk · k(WA)�1k. This is equivalent to 2 = �max/�min , where �max is the maximum
singular value and �min is the minimum singular value of the matrix WA. The estimates for the values of 2 were computed
using standard double-precision floating-point numbers in IEEE-754 format with the numpy library.

Floating-point precisions. Because the transform matrix can have very high condition numbers, the remaining columns of
Table 1 report the average numerical error for four different floating-point precisions, i.e., for 64, 128, 256, and 512 bits. In all
cases, the number of precision bits, p, was derived according to the IEEE-754 (2008) standard33.

That is, for the four storage widths used here the value of p was set to 53, 113, 237, and 489, respectively. Because some of
these high-precision formats are not yet implemented by modern processors or standard compilers, all floating-point operations
were emulated in software using the mpmath library34. This library implements complex exponentiation in a way that slightly
boosts its numerical precision. For example, for 64-bit floating-point numbers the numerical error could be one or two orders of
magnitude lower than what can be obtained by using a hardware implementation. This slight shift does not affect the overall
behavior of the numerical error as the value of M increases.

The code for all experiments was implemented in Python, version 2.7. The numpy library was used to generate random
numbers for the input vectors. In all cases, 64-bit floating point random numbers were generated and promoted to higher
floating-point precisions if necessary.

Second experiment. In this case, M was held fixed at 64, but the transform parameters A and W were varied. More
specifically, 52 values for A were uniformly sampled in the interval [0.5, 2]. Similarly, 100 values of |W |M were uniformly
sampled from the interval [0.5, 2]. Both 0.5 and 2 were included among the values for |A| and |W |M . This resulted in 5,200
chirp contours, each specified by an (A,W ) pair.

For each (A,W ) pair, Fig. 3 shows the average absolute numerical error of the CZT–ICZT procedure computed using
10 random vectors. These 10 vectors were the same for all points of the surface. The results were computed using 128-bit
floating-point numbers. As proven in Supplementary Appendix H, the polar angle of A does not affect the magnitude of the
numerical error in this experiment. Therefore, the experimental design was simplified by setting the polar angle of A to zero
for all contours. Only the magnitude of A was varied. In other words, the starting point of each of the 5,200 contours used to
generate Fig. 3 was on the positive real axis between 0.5 and 2.

The construction of the grid includes the point (0, 0), which corresponds to |A| = 1 and |W | = 1 in the logarithmic space.
Thus, the lowest point of the surface in Fig. 3 corresponds to the circular contour used by the FFT and the IFFT. The decimal
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logarithm of the numerical error in this case is �32.72. For comparison, for this point, the logarithm of the error computed
using regular FFT followed by IFFT is �34.2. The difference is due to the fact that Algorithms 1 and 2 use FFT and IFFT
multiple times, which increases the error.

Algorithms that reverse the direction of the chirp contour. To improve the numerical stability, experiment 2 used the
CZT-R and ICZT-R algorithms described in Supplementary Appendix G), which reverse the direction of the chirp contour
when |W | < 1. These algorithms were not used in experiment 1 because all contours used in that experiment were decaying
logarithmic spirals (i.e., blue contours), which don’t need to be reversed. Experiment 3 also used the CZT-R and ICZT-R
algorithms.

Third experiment. This experiment systematically varied the number of contour points and the size of the floating-point
numbers used to compute the transforms. The results are summarized in Fig. 5, which has three sub-figures for 128, 256, and
512 bits, respectively. Each sub-figure contains 4 surfaces, which correspond to M = 64, 128, 256, and 512. The lowest
surface in Fig. 5a is the same as the surface shown in Fig. 3. All surfaces in all sub-figures were computed using the same
discretization of the parameters A and W that was used in the second experiment. For each surface, the figure shows only the
subset of points for which the numerical error does not exceed the magnitude of the unit-length input vector. That is, vertical
values above 0 on the logarithmic scale are not shown.

The vertical coordinate of each point in Fig. 5 was computed by averaging the numerical error for 10 unit-length input
vectors. The lowest points of the nested surfaces in each sub-figure are very close to each other and are slightly above the
machine epsilon for the corresponding floating-point precision. Once again, these points correspond to the circular chirp
contours used by the FFT and the IFFT. All three axes in each sub-figure are scaled logarithmically. The units on the vertical
axes are different for each of the three sub-figures.

Chirp contours. In all experiments, a chirp contour is defined as a logarithmic spiral that spans a 360� arc. To preserve
the analogy with the FFT and the IFFT, the transform parameter W was selected such that doubling M keeps the previous
contour points the same and distributes the new points between them. More specifically, going from a contour with M points to
a contour with 2M points is accomplished by keeping the original M points intact, inserting M � 1 new points in the middle
of each angular interval and adding 1 last point in the middle of the angular interval between the previous end point and the
start point. The start point of the contour is equal to A. The last point is given by AW

�(M�1). An example contour is shown in
Fig. 2.

Unlike the start point, which is always fixed, the last point depends on the value of M . Because historically4 the points
on the chirp contour were mapped to the z-transform (negative powers) and not to the power series (positive powers), the
end point is assumed to be AW

�(M�1). To make it easier to relate points to parameter values, however, Fig. 3 and Fig. 5
use log2

�
|W |M

�
. The reason the power is not M � 1 is to ensure that there is a one-to-one mapping between chirp contours

and grid points for different values of M . For example, a vertical line through all four surfaces in Fig. 5c maps to the same
logarithmic spiral contour, even though each contour has a different number of points.

Alternative CZT and ICZT implementation. The paper describes two alternative versions of the ICZT algorithm. The
default version is shown in Algorithm 2. All results reported in the paper use this version or the modified version that reverses the
chirp contour (see Supplementary Appendix G). The alternative version performs the Toeplitz–vector products on lines 25–28
using a different O(n log n) algorithm that is based on Pustylnikov’s decomposition23, 24 (see Supplementary Appendix C).
The results obtained with that algorithm are numerically very similar to those obtained with the default algorithm and are not
reported in the paper.

The paper also describes two alternative versions of the CZT algorithm. Algorithm 1 is the default version. The alternative
version replaces line 14 in Algorithm 1 with a call to TOEPLITZMULTIPLYP, which uses Pustylnikov’s decomposition and is
described in Supplementary Appendix C. The numerical performance of this algorithm is similar to the performance of the
default CZT algorithm. These results are also not reported in the paper.

Data availability
The data sets that were collected in order to generate the figures in the paper and in the Supplementary Information are available
from the corresponding author on reasonable request.
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Supplementary Information for
“Generalizing the inverse FFT off the unit circle”

Vladimir Sukhoy1 & Alexander Stoytchev1,⇤

PRELIMINARIES

The supplementary information consists of nine appendices
that provide additional theoretical proofs, algorithms, and
numerical error models for the CZT and the ICZT algorithms.
The main paper refers to each appendix using its assigned
letter, e.g., Supplementary Appendix B.

The supplementary information also contains 21 theorems,
lemmas, and corollaries. The same index counter is used for
all three categories, e.g., Lemma 6 comes after Theorem 5,
even though Lemma 6 is the first lemma in the text. The
numbering starts at 1 because there are no theorems, lemmas,
or corollaries in the main paper. To improve readability and
to avoid confusion, the numbering of the formulas continues
uninterrupted from the main paper.

The appendices and the main text refer to different types of
structured matrices. Figure S1 illustrates the general shape of
these matrices and shows their generating vectors.

SUMMARY OF THE SUPPLEMENTARY APPENDICES

Appendix A gives an example with a 3⇥ 3 CZT and ICZT.
The example uses expanded matrix notation to visualize the
structured matrix equations that describe the CZT and the
ICZT. It also shows how the inverse matrix Ŵ�1 can be
expressed as the difference between two products of triangular
Toeplitz matrices.

Appendix B describes a popular method for multiplying
a Toeplitz matrix by a vector in O(n log n) time that uses
circulant matrix embedding. This is the default approach that
is used by both the CZT algorithm and the ICZT algorithm.

Appendix C describes another method for multiplying a
Toeplitz matrix by a vector that uses Pustylnikov’s formula.
It also runs in O(n log n) time and can be used to implement
alternative versions of the CZT and the ICZT algorithms.

1 Department of Electrical and Computer Engineering, Iowa State Uni-
versity, Ames, IA 50011, USA. Correspondence and requests for materials
should be addressed to A.S. (email: alexs@iastate.edu).

Appendix D shows how to multiply a circulant matrix by
a vector in O(n log n) time using FFT and IFFT. It also
shows how to multiply a skew-circulant matrix by a vector in
O(n log n) time. These subroutines are used by the Toeplitz–
vector multiplication algorithms in Appendices B and C.

Appendix E shows how to express the inverse of a symmet-
ric Toeplitz matrix. It proves a special case of the Gohberg–
Semencul formula, which uses only one generating vector in-
stead of two vectors. It also proves that this generating vector,
u, is equal to the first column of the inverse matrix Ŵ�1.

Appendix F proves the formula for the elements of the
generating vector u. This formula and the results from the
previous appendix are used by the ICZT algorithm.

Appendix G describes alternative versions of the CZT and
the ICZT algorithms that have improved numerical stability
for chirp contours that are growing logarithmic spirals. These
versions should be used in all cases when the transform
parameter W has a magnitude that is less than 1, i.e., |W | < 1.
Depending on the values of M , A, and W , these algorithms
can reduce the numerical error by several orders of magnitude.
Experimental results that confirm these findings are also in-
cluded in this appendix.

Appendix H proves how changing the polar angle of the
transform parameter A affects the polar angles of all elements
in the CZT input vector x. In addition, it shows how a change
in A affects the polar angles of the elements in the ICZT
output vector x. This appendix also proves that these changes
do not affect the norm of x, which was used to simplify the
experimental design described in the Methods section.

Appendix I gives approximation formulas for the absolute
numerical error of the CZT and the ICZT algorithms. It also
gives error formulas for their sequential application, i.e., CZT
followed by ICZT or ICZT followed by CZT. Empirical results
that confirm these formulas are also provided in this appendix.
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Matrix Type Matrix Shape Generating Vector(s)

Diagonal

2

4
a 0 0
0 b 0
0 0 c

3

5 d = (a, b, c)

Toeplitz

2

4
a b c

d a b

e d a

3

5 r = (a, b, c)
c = (a, d, e)

Upper-Triangular
Toeplitz

2

4
a b c

0 a b

0 0 a

3

5 r = (a, b, c)
c = (a, 0, 0)

Lower-Triangular
Toeplitz

2

4
a 0 0
d a 0
e d a

3

5 r = (a, 0, 0)
c = (a, d, e)

Symmetric
Toeplitz

2

4
a b c

b a b

c b a

3

5 r = (a, b, c)
c = (a, b, c)

Circulant

2

4
a c b

b a c

c b a

3

5
r = (a, c, b)

or
c = (a, b, c)

Skew-Circulant

2

4
a �c �b
b a �c
c b a

3

5
r = (a,�c,�b)

or
c = (a, b, c)

Vandermonde

2

4
a
0

a
1

a
2

b
0

b
1

b
2

c
0

c
1

c
2

3

5 v = (a, b, c)

Figure S1. Illustration of the matrix shapes and the generating vector(s) for the different types of structured matrices used in this paper. The diagonal matrix
requires only one vector, i.e., the main diagonal d. The Toeplitz matrix and most other matrices shown here can be generated using their first row, r, and
their first column, c. The upper-triangular Toeplitz matrix can be fully described using only its first row, but keeping both r and c makes it possible to use
algorithms intended for a more general Toeplitz matrix. Similarly, the lower-triangular Toeplitz matrix can be described using only its first column, but the
algorithms described here use both r and c. This also applies to the symmetric Toeplitz matrix, for which r = c. The circulant and the skew-circulant matrices
can be specified using either their first row or their first column, which leads to alternative versions of the algorithms (here only c is used). The Vandermonde
matrix can be generated using only one vector, v, that is equal to its second column. This is possible because each row of the matrix is a (different) geometric
progression that starts from 1, i.e., each element of the generating vector specifies the common ratio for the corresponding geometric progression. The DFT
matrix (not shown) is another structured matrix that is a special case of a Vandermonde matrix (see Appendix D for an example).
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SUPPLEMENTARY APPENDIX A:
EXAMPLE

In the 3-by-3 case, the CZT can be expressed with the following matrix equation:
2

4
X0

X1

X2

3

5

| {z }
X

=

2

4
1 1 1
1 W

1
W

2

1 W
2

W
4

3

5

| {z }
W

2

4
A

�0 0 0
0 A

�1 0
0 0 A

�2

3

5

| {z }
A

2

4
x0
x1
x2

3

5

| {z }
x

. (20)

Using Bluestein’s substitution5, we can express the Vandermonde matrix W as a product of a diagonal matrix P, a Toeplitz
matrix Ŵ , and another diagonal matrix Q, i.e.,
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64
X0

X1

X2

3

75
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X
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2

64
W

02

2 0 0

0 W
12

2 0

0 0 W
22

2

3

75
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P

2
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1 W

� 1
2 W

�2

W
� 1

2 1 W
� 1

2

W
�2

W
� 1

2 1

3

75

| {z }
Ŵ

2

64
W

02

2 0 0

0 W
12

2 0

0 0 W
22

2

3

75

| {z }
Q

2

64
A

�0 0 0

0 A
�1 0

0 0 A
�2

3

75

| {z }
A

2

64
x0

x1

x2

3

75

| {z }
x

. (21)

In this case, the expanded matrix equation for the ICZT looks like this:
2
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x0

x1

x2

3

75

| {z }
x

=

2

64
A

0 0 0

0 A
1 0

0 0 A
2

3

75

| {z }
A

�1
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� 12

2 0
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�1

3,2 Ŵ
�1

3,3

3

75

| {z }
Ŵ�1

2

64
W

� 02

2 0 0

0 W
� 12

2 0

0 0 W
� 22

2

3

75

| {z }
P

�1

2

64
X0

X1

X2

3

75

| {z }
X

. (22)

The inverse matrix Ŵ�1 is given in Eq. (79). The ICZT algorithm, however, does not construct this matrix explicitly. As
proven in Theorem 5, Ŵ�1 can be expressed as follows:

u0 Ŵ
�1 =

2

4
u0 0 0
u1 u0 0
u2 u1 u0

3

5

| {z }
A

2

4
u0 u1 u2
0 u0 u1
0 0 u0

3

5

| {z }
AT

�

2

4
0 0 0
u2 0 0
u1 u2 0

3

5

| {z }
DT

2

4
0 u2 u1
0 0 u2
0 0 0

3

5

| {z }
D

, (23)

where the generating vector u = (u0, u1, u2) is given by Eq. (78). For these values of the elements of u, Eq. (23) has the
following form:

u0 Ŵ
�1 =

2

6666664

W
3

(W � 1)(W 2 � 1)
0 0

� W
3
2

(W � 1)2
W

3

(W � 1)(W 2 � 1)
0

W
2

(W � 1)(W 2 � 1)
� W

3
2

(W � 1)2
W

3

(W � 1)(W 2 � 1)

3

7777775

| {z }
A

2

6666664

W
3

(W � 1)(W 2 � 1)
� W

3
2

(W � 1)2
W

2

(W � 1)(W 2 � 1)

0
W

3

(W � 1)(W 2 � 1)
� W

3
2

(W � 1)2

0 0
W

3

(W � 1)(W 2 � 1)

3

7777775

| {z }
AT

�

2

66664

0 0 0
W

2

(W � 1)(W 2 � 1)
0 0

� W
3
2

(W � 1)2
W

2

(W � 1)(W 2 � 1)
0

3

77775

| {z }
DT

2

66664

0
W

2

(W � 1)(W 2 � 1)
� W

3
2

(W � 1)2

0 0
W

2

(W � 1)(W 2 � 1)
0 0 0

3

77775

| {z }
D

(24)

The Toeplitz matrices A, AT , DT , and D are not constructed explicitly either. Instead, the vector x in Eq. (22), where Ŵ�1

is expressed as in Eq. (24), is computed in O(n log n) time by exploiting the structure of these matrices.
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SUPPLEMENTARY APPENDIX B:
COMPUTING A TOEPLITZ–VECTOR PRODUCT USING

CIRCULANT MATRIX EMBEDDING

This appendix describes a popular method for multiplying a
square Toeplitz matrix by a vector22 (see p. 202). This method
can be extended to work with rectangular Toeplitz matrices as
well. This is the default method that is used by both the CZT
algorithm and the ICZT algorithm described in the main paper.

A. Example with M = N = 3

Let T be a 3-by-3 Toeplitz matrix that is generated by its
first row r = (r0, r1, r2) and its first column c = (c0, c1, c2),
where r0 = c0. We wish to compute the product of T with
the vector x = (x0, x1, x2)T , i.e.,

Tx =

2

4
c0 r1 r2
c1 c0 r1
c2 c1 c0

3

5

2

4
x0
x1
x2

3

5 =

2

4
y0
y1
y2

3

5 = y. (25)

To do this, we start by embedding the matrix T into an 8-
by-8 circulant matrix T̂ (which is also a Toeplitz matrix). The
vector x is padded with five zeros at the end, which results in
an eight-element vector x̂. Then, the vector y is equal to the
first three elements of ŷ = T̂ x̂. More formally,

T̂ x̂ =

2

66666666664

c0 r1 r2 0 0 0 c2 c1
c1 c0 r1 r2 0 0 0 c2
c2 c1 c0 r1 r2 0 0 0
0 c2 c1 c0 r1 r2 0 0
0 0 c2 c1 c0 r1 r2 0
0 0 0 c2 c1 c0 r1 r2
r2 0 0 0 c2 c1 c0 r1
r1 r2 0 0 0 c2 c1 c0

3

77777777775

2

66666666664

x0
x1
x2
0
0
0
0
0

3

77777777775

=

2

66666666664

ŷ0
ŷ1
ŷ2
ŷ3
ŷ4
ŷ5
ŷ6
ŷ7

3

77777777775

=

2

66666666664

y0
y1
y2
⇥
⇥
⇥
⇥
⇥

3

77777777775

9
=

;y

(26)

The circulant matrix T̂ is generated by its first column ĉ,
where ĉ = (c0, c1, c2, 0, 0, 0, r2, r1). The number of zeros
inserted after c2 is equal to 8 � 5 = 3, where 8 is the size
of the matrix T̂ and 5 is the number of free parameters in
r and c (5 = 3 + 3 � 1, because r0 = c0). Given ĉ and x̂,
the vector ŷ = T̂ x̂ can be computed efficiently as described
below. The last five elements of ŷ are computed but are then
discarded, which is indicated with ⇥ in Eq. (26).

B. The General Case for a Rectangular Toeplitz Matrix
Let T be an M -by-N Toeplitz matrix that is generated by its

first row r = (r0, r1, r2, . . . , rN�2, rN�1) and its first column
c = (c0, c1, c2, . . . , cM�2, cM�1), assuming that r0 = c0.
Also, let x be a column vector of length N .

To compute y = Tx, we start by embedding T into an n-
by-n circulant matrix T̂, where n = 2d log2(M+N�1)e. This
matrix is generated by its first column ĉ, which has n elements
that are defined as follows:

ĉ = (c0, c1, . . . , cM�1, 0, 0, . . . , 0, rN�1, . . . , r2, r1). (27)

Note that r0, which is equal to c0, is not used in this formula.
The number of zeros inserted in ĉ between cM�1 and rN�1 is

equal to n� (M+N�1). The vector x is padded with n�N
zeros at the end, which results in a vector x̂ of length n. Given
ĉ and x̂, the product ŷ = T̂ x̂ can be computed in O(n log n)
time using two FFTs and one IFFT (see Algorithm S4 in
Appendix D).

Because the original matrix T appears as a sub-matrix of T̂
in its upper-left corner and because x is padded with the
appropriate number of zeros, the first M elements of ŷ are
equal to y, i.e., yk = ŷk for each k 2 {0, 1, 2, . . . ,M � 1}.

To summarize, the product of an M -by-N Toeplitz matrix T

and a vector x of length N can be computed using the
following four steps: 1) go from the Toeplitz matrix T, which
is generated by the vectors r and c, to the circulant matrix T̂

by forming its first column ĉ using Eq. (27); 2) pad the
vector x with n � N zeros at the end to get the vector x̂;
3) pass ĉ and x̂ to Algorithm S4, which computes ŷ; and
4) set y to the first M elements of ŷ. Note that neither the
Toeplitz matrix T nor the circulant matrix T̂ is constructed
explicitly; only their generating vectors are used to perform
the necessary computations.

Algorithm S1 gives the pseudo-code for the procedure de-
scribed above. The computational complexity of this algorithm
is O(n log n). The function name is TOEPLITZMULTIPLYE,
where ‘E’ abbreviates circulant ‘embedding’. Algorithm S2
gives the pseudo-code for the helper function ZEROPAD that
pads an array with zeros at the end such that the new length
of the array is equal to n. This function is used in the next
appendix as well.

There are several variations of the circulant embedding
procedure that are equivalent to the one described above.
In some of the other versions the first column ĉ of T̂ is
equal to a cyclic shift of the elements of the vector ĉ that is
defined in Eq. (27). For example, Pan26 (see p. 66) constructs ĉ
as follows:

ĉ = (rN�1, . . . , r2, r1, c0, c1, . . . , cM�1, 0, 0, . . . , 0). (28)

In this case, the n � (M+N�1) zeros are inserted at the
end. The vector x is still padded with n�N zeros at the end.
However, the result vector y is extracted from ŷ as follows:

y = (ŷN�1, ŷN , ŷN+1, . . . , ŷN+M�2). (29)

For example, if M = N = 3, then Eq. (26) could be
replaced with the following expression:

T̂ x̂=

2

66666666664

r2 0 0 0 c2 c1 c0 r1
r1 r2 0 0 0 c2 c1 c0
c0 r1 r2 0 0 0 c2 c1
c1 c0 r1 r2 0 0 0 c2
c2 c1 c0 r1 r2 0 0 0
0 c2 c1 c0 r1 r2 0 0
0 0 c2 c1 c0 r1 r2 0
0 0 0 c2 c1 c0 r1 r2

3

77777777775

2

66666666664

x0
x1
x2
0
0
0
0
0

3

77777777775

=

2

66666666664

ŷ0
ŷ1
ŷ2
ŷ3
ŷ4
ŷ5
ŷ6
ŷ7

3

77777777775

=

2

66666666664

⇥
⇥
y0
y1
y2
⇥
⇥
⇥

3

77777777775

9
=

;y

(30)

The original matrix T is still embedded in T̂ (indicated with
the highlighted region), but it is no longer in the upper-left
corner. Similarly, the result vector y, which is of length M ,
starts at offset N�1 = 2 in the vector ŷ.
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Algorithm S1. Multiply a Toeplitz matrix by a vector using
circulant embedding. Runs in O(n log n) time.

1: TOEPLITZMULTIPLYE(r, c, x)
2: // Compute the product y = Tx of a Toeplitz matrix T

3: // and a vector x, where T is specified by its first row
4: // r = (r[0], r[1], r[2], . . . , r[N�1]) and its first column
5: // c = (c[0], c[1], c[2], . . . , c[M�1]), where r[0] = c[0].
6: N  LENGTH(r);
7: M  LENGTH(c);
8: ASSERT(r[0] = c[0]);
9: ASSERT(LENGTH(x) = N);

10: n 2d log2(M+N�1)e;

11: // Form an array ĉ by concatenating c, n� (M+N�1)
12: // zeros, and the reverse of the last N�1 elements of r.
13: ĉ ZEROARRAY(n);
14: for k  0 to M�1 do

15: ĉ[k] c[k];
16: end for

17: for k  1 to N�1 do

18: ĉ[n�k] r[k];
19: end for

20: // ĉ=(c[0], c[1],..., c[M�1], 0,..., 0, r[N�1],..., r[2], r[1]);
21: x̂ ZEROPAD(x, n); // call Algorithm S2
22: ŷ CIRCULANTMULTIPLY(ĉ, x̂); // call Algorithm S4
23: // The result is the first M elements of ŷ.
24: y EMPTYARRAY(M);
25: for k  0 to M � 1 do

26: y[k] ŷ[k];
27: end for

28: return y;

Algorithm S2. Pad an array to length n by appending zeros.

1: ZEROPAD(x, n)
2: m LENGTH(x);
3: ASSERT(m  n);
4: x̂ EMPTYARRAY(n);
5: for k  0 to m� 1 do

6: x̂[k] x[k];
7: end for

8: for k  m to n� 1 do

9: x̂[k] 0;
10: end for

11: return x̂;

SUPPLEMENTARY APPENDIX C:
COMPUTING A TOEPLITZ–VECTOR PRODUCT USING

PUSTYLNIKOV’S DECOMPOSITION

This appendix describes another algorithm for multiplying a
Toeplitz matrix by a vector that uses Pustylnikov’s decompo-
sition23, 24 (see also pages 40 and 66 in references 25 and 26,
respectively). This method can also be used by the CZT and
the ICZT algorithms described in the main paper.

A. Example with M = N = 3

Let c = (c0, c1, c2) be the first column and r = (r0, r1, r2)
be the first row of a 3-by-3 Toeplitz matrix T, where c0 = r0.
Once again, we wish to compute the product of T with the
vector x = (x0, x1, x2)T , i.e.,

Tx =

2

4
c0 r1 r2
c1 c0 r1
c2 c1 c0

3

5

2

4
x0
x1
x2

3

5 =

2

4
y0
y1
y2

3

5 = y. (31)

The matrix T is square, but the number of its rows, or
columns, is not a power of 2. Thus, the first step is to pad
T and to embed it into a larger 4-by-4 Toeplitz matrix T̂.
The matrix T̂ is generated by its first column and its first row,
which can be derived from the first column c of T by padding
it with a single zero and from the first row r of T by padding
it with a single zero as well. The vector x is also padded with
a zero at the end to produce the vector x̂, which is of size 4.
This padding transforms Eq. (31) as follows:

T̂ x̂=

2

664

c0 r1 r2 0
c1 c0 r1 r2
c2 c1 c0 r1
0 c2 c1 c0

3

775

2

664

x0
x1
x2
0

3

775=

2

664

ŷ0
ŷ1
ŷ2
ŷ3

3

775=

2

664

y0
y1
y2
⇥

3

775

9
=

;y
(32)

The padding is necessary because the multiplication algorithm
relies on FFT and IFFT, which in this text are described as
recursive algorithms that expect the size of their input vector
to be a power of 2.

The next step uses Pustylnikov’s decomposition to express
the padded Toeplitz matrix T̂ as the sum of two matrices T̂

0

and T̂
00, which are defined as follows:

T̂
0=

2

6664

c00 c03 c02 c01
c01 c00 c03 c02
c02 c01 c00 c03
c03 c02 c01 c00

3

7775
=

1

2

2

6664

c0 0+r1 c2+r2 c1+0

c1+0 c0 0+r1 c2+r2
c2+r2 c1+0 c0 0+r1
0+r1 c2+r2 c1+0 c0

3

7775
,

(33)

T̂
00=

2

6664

c000 �c003 �c002 �c001
c001 c000 �c003 �c002
c002 c001 c000 �c003
c003 c002 c001 c000

3

7775
=

1

2

2

6664

c0 r1�0 r2�c2 0�c1
c1�0 c0 r1�0 r2�c2
c2�r2 c1�0 c0 r1�0
0�r1 c2�r2 c1�0 c0

3

7775
.

(34)

The matrix T̂
0 is circulant. The matrix T̂

00 is skew-circulant28.
Some authors26, 27 use the term f -circulant with f = �1 to
refer to a skew-circulant matrix.

Using these two matrices, Eq. (32) can be computed in two
steps as follows:

T̂ x̂ = T̂
0
x̂+ T̂

00
x̂

=

2

6664

c00 c03 c02 c01
c01 c00 c03 c02
c02 c01 c00 c03
c03 c02 c01 c00

3

7775

2

6664

x0
x1
x2
0

3

7775
+

2

6664

c000 �c003 �c002 �c001
c001 c000 �c003 �c002
c002 c001 c000 �c003
c003 c002 c001 c000

3

7775

2

6664

x0
x1
x2
0

3

7775
.

(35)
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Both ŷ
0 = T̂

0
x̂ and ŷ

00 = T̂
00
x̂ can be computed efficiently as

described below. The partial results ŷ
0 and ŷ

00 are then added
to get the result vector y, i.e.,

2

664

ŷ00
ŷ01
ŷ02
ŷ03

3

775+

2

664

ŷ000
ŷ001
ŷ002
ŷ003

3

775 =

2

664

ŷ00 + ŷ000
ŷ01 + ŷ001
ŷ02 + ŷ002
⇥

3

775 =

2

664

y0
y1
y2
⇥

3

775

9
=

;y
(36)

The last element of ŷ = ŷ
0 + ŷ

00 is not needed (and is not
computed), it appears only because of the padding.

B. The General Case for a Rectangular Toeplitz Matrix
In the general case, the matrix T is an M -by-N Toeplitz

matrix, the vector x is of size N , and the result vector y is
of size M . The matrix T is generated by its first column c =
(c0, c1, . . . , cM�1) and its first row r = (r0, r1, . . . , rN�1),
where it is assumed that c0 = r0.

The first step is to go from the matrix T to the matrix T̂

of size n-by-n, where n = 2d log2 max(M,N)e. That is, T̂ is
a square Toeplitz matrix and n is a power of two. The first
column of T̂ can be constructed by padding c with n�M
zeros. Similarly, the first row of T̂ can be constructed by
padding r with n�N zeros. The vector x is also padded with
n�N zeros to create the vector x̂.

Given the padded vectors c and r, which are now both of
length n, we can use Pustylnikov’s formula to calculate the
first column c

0 = (c00, c
0
1, . . . , c

0
n�1) of the circulant matrix

T̂
0 and the first column c

00 = (c000 , c
00
1 , . . . , c

00
n�1) of the skew-

circulant matrix T̂
00 as follows:

c0k =
1

2

(
c0, if k = 0,

ck+rn�k, if k 2 {1, 2, . . . , n� 1},
(37)

c00k =
1

2

(
c0, if k = 0,

ck�rn�k, if k 2 {1, 2, . . . , n� 1}.
(38)

In other words, T̂0 and T̂
00 have the following form:

T̂
0 =

2

66666664

c00 c0n�1 c0n�2 · · · c02 c01
c01 c00 c0n�1 · · · c03 c02
c02 c01 c00 · · · c04 c03
...

...
...

. . .
...

...
c0n�2 c0n�3 c0n�4 · · · c00 c0n�1

c0n�1 c0n�2 c0n�3 · · · c01 c00

3

77777775

, (39)

T̂
00 =

2

66666664

c000 �c00n�1 �c00n�2 · · · �c002 �c001
c001 c000 �c00n�1 · · · �c003 �c002
c002 c001 c000 · · · �c004 �c003
...

...
...

. . .
...

...
c00n�2 c00n�3 c00n�4 · · · c000 �c00n�1

c00n�1 c00n�2 c00n�3 · · · c001 c000

3

77777775

. (40)

Similarly to the example above, the product ŷ = T̂ x̂ can
be computed in two steps:

ŷ = T̂ x̂ = (T̂0 + T̂
00) x̂ = T̂

0
x̂+ T̂

00
x̂. (41)

The product ŷ0 = T̂
0
x̂ is computed in O(n log n) time using

Algorithm S4. The product ŷ
00 = T̂

00
x̂ is also computed

in O(n log n) time using Algorithm S7. Finally, the first M

elements of ŷ0 and ŷ
00 are added together to compute the result

vector y, i.e.,

y = (ŷ00 + ŷ000 , ŷ01 + ŷ001 , . . . , ŷ0M�1 + ŷ00M�1). (42)

Algorithm S3 gives the pseudo-code for the procedure
described above. The function name is TOEPLITZMULTIPLYP,
where ‘P’ abbreviates ‘Pustylnikov’. The algorithm runs in
O(n log n) time. Once again, neither T̂0 nor T̂00 is constructed
explicitly; only the generating vectors c0 and c

00 are computed,
which correspond to their first columns. The last n�M
elements of ŷ0 and ŷ

00 are computed, but they are not used to
compute y.

In contrast to the circulant embedding approach described
in Appendix B, Algorithm S3 does not embed T into only
one square matrix with n = 2d log2(M+N�1)e. Instead, it uses
two square matrices, each with n = 2d log2 max(M,N)e.

Algorithm S3. Multiply a Toeplitz matrix by a vector using
Pustylnikov’s decomposition. Runs in O(n log n) time.

1: TOEPLITZMULTIPLYP(r, c, x)
2: // Compute the product y = Tx of a Toeplitz matrix T

3: // and a vector x where T is specified by its first row
4: // r = (r[0], r[1], r[2], . . . , r[N�1]) and its first column
5: // c = (c[0], c[1], c[2], . . . , c[M�1]), where r[0] = c[0].
6: N  LENGTH(r);
7: M  LENGTH(c);
8: ASSERT(r[0] = c[0]);
9: ASSERT(LENGTH(x) = N);

10: n 2d log2(max(M,N))e;
11: if N 6= n then

12: r ZEROPAD(r, n);
13: x ZEROPAD(x, n);
14: end if

15: if M 6= n then

16: c ZEROPAD(c, n);
17: end if

18: c
0  EMPTYARRAY(n);

19: c
00  EMPTYARRAY(n);

20: c0[0] 0.5 · c[0];
21: c00[0] 0.5 · c[0];
22: for k  1 to n� 1 do

23: c0[k] 0.5 · (c[k] + r[n� k]);

24: c00[k] 0.5 · (c[k]� r[n� k]);
25: end for

26: y
0  CIRCULANTMULTIPLY(c0, x);

27: y
00  SKEWCIRCULANTMULTIPLY(c00, x);

28: y EMPTYARRAY(M);
29: for k  0 to M � 1 do

30: y[k] y0[k] + y00[k];
31: end for

32: return y;
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SUPPLEMENTARY APPENDIX D:
MULTIPLYING A CIRCULANT OR A SKEW-CIRCULANT

MATRIX BY A VECTOR USING FFT AND IFFT
The algorithm described in Appendix B relies on another

algorithm for computing the product of a circulant matrix
with a vector in O(n log n) time. In addition to this, the
algorithm described in Appendix C needs to compute the
product of a skew-circulant matrix with a vector in O(n log n)
time. This appendix describes both of these algorithms for
n-by-n matrices, where n is a power of two. It is assumed
that appropriate padding has already been applied (i.e., see
lines 10–21 in Algorithm S1 and lines 10–17 in Algorithm S3).

A. Multiplying a Circulant Matrix by a Vector
A circulant matrix is a square matrix with columns that are

generated by successive circular shifts of its first column.
Let G be a 4-by-4 circulant matrix that is generated by its

first column c = (c0, c1, c2, c3), i.e.,

G =

2

664

c0 c3 c2 c1
c1 c0 c3 c2
c2 c1 c0 c3
c3 c2 c1 c0

3

775 . (43)

The matrix G can be diagonalized28 (see p. 73) using the
DFT matrix F and the inverse DFT matrix F

�1. In the 4-by-4
case these two matrices have the following form:

F=

2

664

1 1 1 1
1 ! !

2
!
3

1 !
2

!
4

!
6

1 !
3

!
6

!
9

3

775=

2

664

1 1 1 1
1 �i �1 i

1 �1 1 �1
1 i �1 �i

3

775, (44)

F
�1=

1

4

2

664

1 1 1 1
1 !

�1
!
�2

!
�3

1 !
�2

!
�4

!
�6

1 !
�3

!
�6

!
�9

3

775=
1

4

2

664

1 1 1 1
1 i �1 �i
1 �1 1 �1
1 �i �1 i

3

775, (45)

where ! = e�
2⇡i
4 = cos(�⇡

2 ) + i sin(�⇡
2 ) = �i. Both

matrices are symmetric, i.e., each is equal to its own transpose:
F

T = F and (F�1)T = F
�1.

The matrix G can be expressed, i.e., diagonalized, using
the following product of three matrices:

G = F
�1

⇤F. (46)

The diagonal matrix ⇤ is defined as follows:

⇤ = diag(�) =

2

664

�0 0 0 0
0 �1 0 0
0 0 �2 0
0 0 0 �2

3

775. (47)

Furthermore, the vector � = (�0, �1, �2, �3)T , which con-
tains the eigenvalues of G, is equal to the product of the DFT
matrix F with the column vector c, i.e., � = Fc.

The expanded form of Eq. (46) is shown below:

G = F
�1

⇤F

=
1

4

2

664

1 1 1 1
1 i �1 �i
1 �1 1 �1
1 �i �1 i

3

775

2

664

�0 0 0 0
0 �1 0 0
0 0 �2 0
0 0 0 �3

3

775

2

664

1 1 1 1
1 �i �1 i

1�1 1�1
1 i �1 �i

3

775. (48)

The vector � has the following structure:

� = Fc =

2

664

1 1 1 1
1 �i �1 i

1�1 1�1
1 i �1 �i

3

775

2

664

c0
c1
c2
c3

3

775=

2

664

c0 +c1 +c2 +c3
c0 �ic1 �c2 +ic3
c0 �c1 +c2 �c3
c0 +ic1 �c2 �ic3

3

775=

2

664

�0

�1

�2

�3

3

775.

(49)

The product between the circulant matrix G and the vector
x = (x0, x1, x2, x3)T can be expressed as follows:

y = Gx = F
�1

⇤Fx

= F
�1

�
diag(�) (Fx)

�

= F
�1

�
diag(Fc) (Fx)

�
. (50)

The same approach works28 for an n-by-n matrix G. Thus,
the vector y can be computed efficiently using two FFTs and
one IFFT as follows:

y = IFFT
�
FFT( c )⇥ FFT(x )

�
, (51)

where ⇥ denotes element-by-element multiplication. Algo-
rithm S4 implements this formula. It runs in O(n log n) time.

A circulant matrix can also be generated by circular shifts
of its first row instead of its first column. Thus, there is an
alternative formula for y that diagonalizes G using its first
row r = (c0, cn�1, cn�2, . . . , c1), i.e.,

y = Gx = F
�1

⇤Fx

= nF
�1

�
diag(rF�1) (Fx)

�

= nF
�1

�
diag(F�1

r
T ) (Fx)

�
. (52)

This formula can also be computed in O(n log n) time using
one FFT and two IFFTs as follows:

y = n IFFT
�
IFFT( r )⇥ FFT(x )

�
. (53)

Note that in this case there is an extra multiplication by n

for all elements of the result vector y. This is due to the
normalization by 1/n in the definition of F�1 (see Eq. (45)).

For the sake of completeness, Algorithm S5 and Algo-
rithm S6 give the pseudo-code for the Fast Fourier Transform
(FFT) and the Inverse Fast Fourier Transform (IFFT). Both
the FFT and the IFFT run in O(n log n) time11, 14.

Algorithm S4. Multiply a circulant matrix by a vector.

1: CIRCULANTMULTIPLY(c, x) // runs in O(n log n) time
2: // Compute the product y = Gx of a circulant matrix G

3: // and a vector x, where G is generated by its first column
4: // c = (c[0], c[1], . . . , c[n�1]).
5: n LENGTH(c);
6: ASSERT(LENGTH(x) = n);

7: C FFT(c);
8: X FFT(x);
9: Y  EMPTYARRAY(n);

10: for k  0 to n� 1 do

11: Y[k] C[k] ·X[k];
12: end for

13: y IFFT(Y);
14: return y;
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Algorithm S5. FFT algorithm. Runs in O(n log n) time.

1: FFT(x)
2: n LENGTH(x);
3: if n = 1 then

4: return x;
5: end if

6: xE  (x[0], x[2], . . . , x[n�2]); // even
7: xO  (x[1], x[3], . . . , x[n�1]); // odd
8: y

0  FFT(xE);
9: y

00  FFT(xO);
10: y  EMPTYARRAY(n);
11: for k  0 to n/2� 1 do

12: w e
� i2⇡k

n ;
13: y[k]  y 0[k] + w · y 00[k];
14: y[k + (n/2)] y 0[k]� w · y 00[k];
15: end for

16: return y;

Algorithm S6. IFFT algorithm. Runs in O(n log n) time.

1: IFFT(y)
2: n LENGTH(y);
3: if n = 1 then

4: return y;
5: end if

6: yE  (y[0], y[2], . . . , y[n�2]); // even
7: yO  (y[1], y[3], . . . , y[n�1]); // odd
8: x

0  IFFT(yE);
9: x

00  IFFT(yO);
10: x  EMPTYARRAY(n);
11: for k  0 to n/2� 1 do

12: w e
i2⇡k
n ;

13: x[k]  (x 0[k] + w · x 00[k] )/2;
14: x[k + (n/2)] (x 0[k]� w · x 00[k] )/2;
15: end for

16: return x;

B. Multiplying a Skew-Circulant Matrix by a Vector
A skew-circulant matrix is a square matrix obtained by

negating each element above the main diagonal of a circulant
matrix28. A skew-circulant matrix is also often called an f -
circulant matrix with f = �1, e.g., see references 26 and 27.

Let S be a 4-by-4 skew-circulant matrix that is generated
by its first column c = (c0, c1, c2, c3), i.e.,

S =

2

664

c0 �c3 �c2 �c1
c1 c0 �c3 �c2
c2 c1 c0 �c3
c3 c2 c1 c0

3

775 . (54)

The matrix S can be expressed as the following product26, 28

of three matrices:

S = H
�1

ĜH, (55)

where Ĝ is a circulant matrix and both H and H
�1 are

diagonal matrices.

The matrix H is defined as follows:

H = diag(�0
,�

1
,�

2
,�

3) =

2

664

1 0 0 0
0 e�

1i⇡
4 0 0

0 0 e�
2i⇡
4 0

0 0 0 e�
3i⇡
4

3

775, (56)

where � = e�
i⇡
n . The inverse matrix H

�1 is equal to:

H
�1= diag(�0

,�
�1

,�
�2

,�
�3)=

2

664

1 0 0 0
0 e

1i⇡
4 0 0

0 0 e
2i⇡
4 0

0 0 0 e
3i⇡
4

3

775. (57)

The circulant matrix Ĝ is generated by its first column ĉ,
which is equal to the product of H with the column vector c,
i.e., ĉ = Hc. Thus, Ĝ has the following form:

Ĝ =

2

664

c0 �0 c3 �3 c2 �2 c1 �1

c1 �1 c0 �0 c3 �3 c2 �2

c2 �2 c1 �1 c0 �0 c3 �3

c3 �3 c2 �2 c1 �1 c0 �0

3

775. (58)

Combining Eq. (55) with Eq. (50) leads to the following
formula for computing the product of the skew-circulant
matrix S with the vector x = (x0, x1, x2, x3)T :

y = Sx = H
�1

ĜHx = H
�1

F
�1

⇤̂FHx

= H
�1

�
F

�1 diag(FHc) (FHx)
�

= H
�1

�
F

�1 diag(F ĉ) (F x̂)
�
, (59)

where ĉ = Hc and x̂ = Hx.
The same method can be applied if S is an n-by-n skew-

circulant matrix28. In this case, Eq. (59) can be computed
efficiently using two FFTs and one IFFT, i.e.,

y = H
�1

�
IFFT

�
FFT(ĉ)⇥ FFT(x̂)

��
, (60)

where ⇥ denotes elementwise multiplication. Algorithm S7
implements this approach. It runs in O(n log n) time.

Because H and H
�1 are diagonal matrices, multiplying

each of them by a vector reduces to scaling the elements of
the vector, which can be done in O(n) time. This scaling does
not affect the computational complexity of Algorithm S7.

Algorithm S7. Multiply a skew-circulant matrix by a vector.

1: SKEWCIRCULANTMULTIPLY(c, x) // in O(n log n) time
2: n LENGTH(c);
3: ASSERT(LENGTH(x) = n);

4: ĉ EMPTYARRAY(n);
5: x̂ EMPTYARRAY(n);
6: for k  0 to n� 1 do

7: ĉ[k] c[k] · e�
ik⇡
n ; // ĉ = Hc

8: x̂[k] x[k] · e�
ik⇡
n ; // x̂ = Hx

9: end for

10: y CIRCULANTMULTIPLY(ĉ, x̂); // call Algorithm S4
11: for k  0 to n� 1 do

12: y[k] y[k] · e
ik⇡
n ; // multiply by H

�1

13: end for

14: return y;
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SUPPLEMENTARY APPENDIX E:
EXPRESSING THE INVERSE MATRIX Ŵ�1

This appendix shows how to express the inverse matrix
Ŵ�1 using structured matrices so that any product between
this matrix and a vector can be computed in O(n log n) time.

Let T be an n-by-n Toeplitz matrix generated by the
vector r = (r0, r1, r2, . . . , rn�1) that specifies its first row
and by the vector c = (c0, c1, c2, . . . , cn�1) that specifies its
first column, where it is assumed that r0 = c0. The inverse
matrix T

�1 may not be Toeplitz. Nevertheless, the Gohberg–
Semencul formula19, 20 makes it possible to express T�1 using
upper-triangular and lower-triangular Toeplitz matrices.

In other words, the formula states that there exist a vec-
tor u = (u0, u1, u2, . . . , un�1) such that u0 6= 0 and a
vector v = (v0, v1, v2, . . . , vn�1) that satisfy the following
matrix equation:

u0T
�1=

2

66666664

u0 0 0 . . . 0 0
u1 u0 0 . . . 0 0
u2 u1 u0 . . . 0 0
...

...
...

. . .
...

...
un�2 un�3 un�4 . . . u0 0
un�1 un�2 un�3 . . . u1 u0

3

77777775

| {z }
A

2

66666664

vn�1 vn�2 vn�3 . . . v1 v0
0 vn�1 vn�2 . . . v2 v1
0 0 vn�1 . . . v3 v2
...

...
...

. . .
...

...
0 0 0 . . . vn�1 vn�2

0 0 0 . . . 0 vn�1

3

77777775

| {z }
C

�

2

66666664

0 0 0 . . . 0 0
v0 0 0 . . . 0 0
v1 v0 0 . . . 0 0
...

...
...

. . .
...

...
vn�3 vn�4 vn�5 . . . 0 0
vn�2 vn�3 vn�4 . . . v0 0

3

77777775

| {z }
B

2

66666664

0 un�1 un�2 . . . u2 u1
0 0 un�1 . . . u3 u2
0 0 0 . . . u4 u3
...

...
...

. . .
...

...
0 0 0 . . . 0 un�1

0 0 0 . . . 0 0

3

77777775

| {z }
D

= AC �BD. (61)

The Gohberg–Semencul formula uses two vectors u and v

to describe the inverse of a square Toeplitz matrix. As proven
below, however, the vector u is not unique in that formula
and can be scaled by a non-zero constant without affecting the
inverse matrix. In turn, this result is used to prove that if the
Toeplitz matrix is symmetric, then its inverse can be generated
using only one specifically scaled vector u. Furthermore, this
vector is equal to the first column of the inverse matrix.

Theorem 1. (The vector u is not unique.) Let T be a non-
singular n-by-n Toeplitz matrix. Let u =

�
u0, u1, . . . , un�1

�

and v =
�
v0, v1, . . . , vn�1

�
be two vectors that determine the

inverse matrix T
�1 in the Gohberg–Semencul formula, i.e.,

u0T
�1 = AC �BD, (62)

where A, B, C, and D are specified in Eq. (61).
Then, the Gohberg–Semencul formula also holds for all

vectors û obtained by multiplying the vector u with a non-
zero scaling coefficient. More formally, for each ↵ 6= 0, the
following equation holds:

û0T
�1 = Â C �B D̂, (63)

where Â=↵A , D̂=↵D, and

û=(û0, û1, . . . , ûn�1)=(↵u0,↵u1, . . . ,↵un�1)=↵u. (64)

Proof. Because ↵ 6= 0, it can be factored out and canceled
from both sides of Eq. (63), which leads to Eq. (62). That is,

Z↵ u0| {z }
û0

T
�1 = (Z↵A)| {z }

Â

C �B (Z↵D)| {z }
D̂

=Z↵ (AC �BD). (65)

Theorem 2. Let T be a non-singular Toeplitz matrix and let
T

�1 be its inverse that is generated by the vectors u and v

in the Gohberg–Semencul formula. Then, the first row of T�1

is equal to the reverse of the vector v.

Proof. Let a = (u0, 0, . . . , 0) be the first row of A and let
b = (0, 0, . . . , 0) be the first row of B in Eq. (61). Then,
the first row of the inverse matrix T

�1 can be expressed as
follows:
1

u0

�
aC � bD|{z}

0

�
=

1

��u0

�
��u0 vn�1,��u0 vn�2, . . . ,��u0 v0

�
. (66)

Theorem 3. Let T
�1 be the inverse of an n-by-n Toeplitz

matrix T. Then, the first column of T�1 can be expressed as
the product of the vector u with the scalar vn�1/u0.

Proof. Let c =
�
vn�1, 0, . . . , 0

�T be the first column of C and
let d =

�
0, 0, . . . , 0

�T be the first column of D in Eq. (61).
Then, the first column of T�1 is equal to:

1

u0

�
A c� Bd|{z}

0

�
=

vn�1

u0
u. (67)

Theorem 4. Let Ŵ be a symmetric non-singular Toeplitz
matrix. Let u and v be two vectors that generate the inverse
matrix Ŵ�1 using the Gohberg–Semencul formula such that
u0 = vn�1. Then, the vector u is equal to the reverse of the
vector v, i.e.,

u = (u0, u1, . . . , un�1) = (vn�1, vn�2, . . . , v0). (68)

Proof. Because the matrix Ŵ is symmetric, its inverse is also
symmetric. This implies that the first column of Ŵ�1 is equal
to its first row. Combining the condition that u0 = vn�1 with
Theorem 2 and Theorem 3 shows that Eq. (68) holds. More
formally,

vn�1

u0| {z }
1

u =
�
vn�1, vn�2, . . . , v0

�T
. (69)

Theorem 5. Let Ŵ be a symmetric non-singular Toeplitz
matrix. Then, there is a vector u = (u0, u1, . . . , un�1) in
which u0 6= 0 such that Ŵ�1 can be expressed as follows:

Ŵ�1 =
1

u0

⇣
AAT �DTD

⌘
. (70)

Moreover, the vector u is equal to the first column of the
inverse matrix Ŵ�1.

Proof. Theorem 1 implies that u can be scaled by a factor ↵.
In particular, if we set ↵ = vn�1/u0, then the value of u0
after scaling is equal to vn�1. Then, Theorem 4 implies that
the scaled vector u is equal to the reverse of the vector v.
Plugging these values into Eq. (61) leads to Eq. (70). Since
u0 = vn�1, Theorem 3 implies that u is the first column
of Ŵ�1.
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SUPPLEMENTARY APPENDIX F:
EXPRESSING THE GENERATING VECTOR u

A general formula for the elements of the vector u can
be derived from special cases for the first several values
of n and then proven by induction for all n. Because u

determines Ŵ�1, this is sufficient to formulate the ICZT
algorithm using structured matrix multiplication.

A. Special Cases of the Formula for the Generating Vector u

1) Special Case for n = 1: In this degenerate case both
Ŵ and Ŵ�1 are equal to [ 1 ]. Also, u = (u0) = (1).

2) Special Case for n = 2: Suppose that n = 2. Then, Ŵ
is a 2-by-2 matrix that is defined by Eq. (9). That is,

Ŵ =

2

4W
� (0�0)2

2 W
� (0�1)2

2

W
� (1�0)2

2 W
� (1�1)2

2

3

5 =


1 W

� 1
2

W
� 1

2 1

�
, (71)

which is well-defined for each W 2 C \ {0}.
By definition, the product of a matrix with its inverse is

equal to the identity matrix, i.e., Ŵ Ŵ�1= I. Theorem 5
implies that the first column of Ŵ�1 is equal to a two-
element vector u = (u0, u1)T . Therefore, the elements of u

can be expressed as functions of the transform parameter W

by solving the following linear system:


1 W
� 1

2

W
� 1

2 1

�

| {z }
Ŵ


u0
u1

�

|{z}
u

=


1
0

�
. (72)

This leads to the following formulas for u0 and u1:

u0 =
W

W � 1
, u1 = � W

1
2

W � 1
. (73)

To summarize, the column vector u, which is equal to the
first column of the inverse matrix Ŵ�1, can be expressed as:

u =

"
W

W � 1
, � W

1
2

W � 1

#T

. (74)

Plugging u into Eq. (70) leads to the correct value for Ŵ�1:

Ŵ�1 =
1

u0

✓
u0 0
u1 u0

� 
u0 u1
0 u0

�
�

0 0
u1 0

� 
0 u1
0 0

�◆

=
1

u0

✓
u0 u0 u0u1
u1 u0 ⇠⇠⇠u1 u1 + u0 u0

�
�


0 0
0 ⇠⇠⇠u1 u1

�◆

=

2

664

W

W � 1
� W

1
2

W � 1

� W
1
2

W � 1

W

W � 1

3

775 , W 62 {0, 1}. (75)

3) Special Case for n = 3: In this case, Ŵ is a 3-by-3
Toeplitz matrix. From Eq. (9) we know that each element of
Ŵ is a function of the transform parameter W . More formally,

Ŵ=

2

664

W
� (0�0)2

2 W
� (0�1)2

2 W
� (0�2)2

2

W
� (1�0)2

2 W
� (1�1)2

2 W
� (1�2)2

2

W
� (2�0)2

2 W
� (2�1)2

2 W
� (2�2)2

2

3

775=

2

4
1 W

� 1
2 W

�2

W
� 1

2 1 W
� 1

2

W
�2

W
� 1

2 1

3

5.

(76)

Similarly to the 2-by-2 case, the vector u is a solution to
the following linear system:

2

4
1 W

� 1
2 W

�2

W
� 1

2 1 W
� 1

2

W
�2

W
� 1

2 1

3

5

| {z }
Ŵ

2

4
u0
u1
u2

3

5

| {z }
u

=

2

4
1
0
0

3

5 . (77)

In this case, the elements of u can be expressed in terms of
the transform parameter W as shown below:

u =

2

666666664

W
3

(W � 1)(W 2 � 1)

� W
3
2

(W � 1)(W � 1)

W
2

(W � 1)(W 2 � 1)

3

777777775

. (78)

Plugging this vector into Eq. (70) leads to the inverse
matrix Ŵ�1 (see Appendix A). In contrast to the 2-by-2 case,
the 3-by-3 inverse matrix is no longer Toeplitz because the
elements along its main diagonal are not identical, i.e.,

Ŵ�1 =

2

66666666664

W
3

(W � 1)(W 2 � 1)
� W

3
2

(W � 1)2
W

2

(W � 1)(W 2 � 1)

� W
3
2

(W � 1)2
W

2 + 1

(W � 1)2
� W

3
2

(W � 1)2

W
2

(W � 1)(W 2 � 1)
� W

3
2

(W � 1)2
W

3

(W � 1)(W 2 � 1)

3

77777777775

.

(79)

Repeating this process for other values of n allowed us to
derive a general formula for the elements of u. The next two
sections state and prove this formula.

B. General Formula for the Generating Vector u

In the general case, for each k 2 {0, 1, 2, . . . , n � 1}, the
elements of the vector u can be computed using the following
formula:

uk =
�
Ŵ�1

�
k+1,1

= (�1)k W

2k2�(2n�1)k+n(n�1)
2

n�k�1Y

s=1

(W s � 1)
kY

s=1

(W s � 1)

,

(80)

which is proven in the next section. For each k, the value
of uk can be computed in O(1) using precomputed values of
the products of polynomials that appear in the denominator
of Eq. (80). These values can be computed in a separate loop
that runs in O(n).

The vector u can then be plugged into Eq. (70) to compute
the inverse matrix Ŵ�1. It can also be used as an input
to O(n log n) algorithms that compute the product of Ŵ�1

with a vector, without actually storing Ŵ�1 in memory. This
approach is used by the O(n log n) ICZT algorithm that is
shown in Algorithm 2.

10



C. Proof of the General Formula for the Generating Vector u

This section shows that for each n 2 N the vector u, which
is defined by Eq. (80), is indeed the generating vector for the
inverse matrix Ŵ�1. Theorem 5 implies that this can be done
by showing that u is the first column of Ŵ�1.

In the proofs it is necessary to distinguish between the
vector u = (u0, u1, . . . , un�1) of length n and the vector
u = (u0, u1, . . . , un�1, un) of length n+1. Thus, the number
of dimensions will be indicated with a left superscript for
both u and its elements. Using this notation, the k-th element
of n

u = {nu0, nu1, . . . , nun�1} is given by:

nuk = (�1)k W

2k2�(2n�1)k+n(n�1)
2

n�k�1Y

s=1

(W s � 1)
kY

s=1

(W s � 1)

. (81)

The following lemma expresses n+1uk in terms of nuk.

Lemma 6. Let n 2 N and let k 2 {0, 1, 2, . . . , n�1}. Then,
n+1uk can be derived from nuk as follows:

n+1uk = nuk
W

n�k

Wn�k � 1
. (82)

Proof. Replacing n with n+1 in Eq. (81) leads to:

n+1uk = (�1)k W

2k2�(2(n+1)�1)k+(n+1)(n+1�1)
2

(n+1)�k�1Y

s=1

(W s � 1)
kY

s=1

(W s � 1)

. (83)

Let p/2 and q/2 be the powers of W in the numerators of
Eqs. (81) and (83), respectively. Then, q is equal to:

q = 2k2 �
�
2(n+ 1)� 1

�
k + (n+ 1)(n+ 1� 1)

= 2k2 � (2n+ 2� 1)k + (n� 1 + 2)n

= 2k2 � (2n� 1)k + n(n� 1)| {z }
p

+2(n� k). (84)

Therefore,

W

q
2 = W

p
2 W

n�k
. (85)

Eqs. (81) and (83) have similar denominators except that
the first product in Eq. (81) goes from 1 to n�k�1, while
in Eq. (83) it goes from 1 to n�k. Thus, the denominator
of Eq. (83) has one extra term, which is equal to (Wn�k�1).
Combining this with Eq. (85) leads to Eq. (82).

The next lemma expresses nuk�1 in terms of nuk.
Lemma 7. Let n 2 N and let k 2 {1, 2, . . . , n�1}. Then,
nuk�1 can be expressed as follows:

nuk�1 = �nuk
W

k � 1

Wn�k � 1
W

n�2k+ 1
2 . (86)

Proof. Replacing k with k � 1 in Eq. (81) leads to the
following:

uk�1 = (�1)k�1W

2(k�1)2�(2n�1)(k�1)+n(n�1)
2

n�(k�1)�1Y

s=1

(W s � 1)
k�1Y

s=1

(W s � 1)

. (87)

Let p/2 be the power of W in the numerator of Eq. (81) and
q/2 be the power of W in the numerator of Eq. (87). Then, q
can be expressed in terms of p using the following formula:

q = 2(k � 1)2 � (2n� 1)(k � 1) + n(n� 1)

= 2k2 � 4k + 2� (2n� 1)k + 2n� 1 + n(n� 1)

= 2k2 � (2n� 1)k + n(n� 1)| {z }
p

+2n� 4k + 1. (88)

Therefore,

W

q
2 = W

p
2 W

n�2k+ 1
2 . (89)

The first product in the denominator of Eq. (87) is equal to:
n�(k�1)�1Y

s=1

(W s � 1) = (Wn�k � 1)
n�k�1Y

s=1

(W s � 1). (90)

In this form, it is almost the same as the corresponding product
in Eq. (81), except for the extra term (Wn�k�1). The second
product in the denominator of Eq. (87) is equal to:

k�1Y

s=1

(W s � 1) =
1

(W k � 1)

kY

s=1

(W s � 1), (91)

which has one more term, i.e., 1/(W k�1), than the corre-
sponding product in Eq. (81).

Combining Eqs. (89), (90), and (91) leads to Eq. (86).

The following lemma states a recursive formula for n+1uk,
which is expressed in terms of nuk and nuk�1.

Lemma 8. For each n 2 N and each k 2 {1, 2, . . . , n�1},
the value of n+1uk can be expressed as follows:

n+1uk =
nuk W

n � nuk�1 W
k� 1

2

Wn � 1
. (92)

Proof. Using Lemma 6, the left-hand side of Eq. (92) can be
expressed in terms of nuk as follows:

n+1uk = nuk
W

n�k

Wn�k � 1
. (93)

Using Lemma 7, which expresses nuk�1 in terms of nuk, the
right-hand side of Eq. (92) can be stated as shown below:

nukW
n � (�nuk)

W
k � 1

Wn�k � 1
W

n�2k+ 1
2W

k� 1
2

Wn � 1
. (94)

The rest of the proof shows that Eq. (94) is equal to Eq. (93).
The expression in Eq. (94) can be simplified as follows:

nuk


W

n(Wn�k � 1) + (W k � 1)Wn�k

(Wn�k � 1)(Wn � 1)

�
. (95)

Expanding the numerator leads to:

nuk
W

n
W

n�k ��
�W
n +�

�W
n �W

n�k

(Wn�k � 1)(Wn � 1)
. (96)

Finally, we get

nuk
W

n�k
⇠⇠⇠⇠⇠(Wn � 1)

(Wn�k � 1)
⇠⇠⇠⇠⇠(Wn � 1)

, (97)

which completes the proof.
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Let n
P (x) be the following polynomial:

n
P (x) =

n�1X

k=0

n
pk x

k =
n�1X

k=0

nuk W
� k2

2 x
k
, (98)

where the k-th coefficient n
pk is obtained by multiplying the

k-th element of the vector n
u by W

� k2

2 . In other words,
n
pk = nuk W

� k2

2 . (99)
Let n

F (x) be another polynomial that is defined as follows:

n
F (x) =

n�1X

j=0

yj fj(x), (100)

where
fj(x) =

Y

0k<n
k 6=j

(x� xk)

(xj � xk)
. (101)

That is, n
F (x) is the Lagrange polynomial30, 31 that inter-

polates the n points (x0, y0), (x1, y1), . . . , (xn�1, yn�1). In
particular, if x0 = W

0
, x1 = W

1
, . . . , xn�1 = W

n�1, then
Eq. (101) becomes:

fj(x) =
Y

0k<n
k 6=j

(x�W
k)

(W j �W k)
. (102)

Furthermore, if y0 = 1 and y1 = y2 = · · · = yn�1 = 0, then
only f0(x) contributes to n

F (x) and Eq. (100) simplifies to
only one product that will be denoted with n

L(x), i.e.,

n
L(x) =

n�1Y

k=1

(x�W
k)

(1�W k)
. (103)

For n+1, the formula for n+1
P (x) uses the elements

of n+1
u instead of the elements of n

u. Also, the formula
for n+1

L(x) includes one more fractional term. More formally,

n+1
P (x) =

nX

k=0

n+1
pk x

k =
nX

k=0

n+1uk W
� k2

2 x
k
, (104)

n+1
L(x) =

nY

k=1

(x�W
k)

(1�W k)
= n

L(x)
(x�W

n)

(1�Wn)
. (105)

We will use mathematical induction to show that n
P (x) =

n
L(x) for each n 2 N. The following lemma proves that

1
P (x) = 1

L(x), which is the base case of the induction.

Lemma 9. Both 1
P (x) and 1

L(x) are equal to 1, i.e.,
1
P (x) = 1

L(x) = 1. (106)

Proof. The product that defines n
L(x) in Eq. (103) becomes

degenerate when n = 1 and evaluates to 1, i.e., 1
L(x) = 1.

Similarly, for n = 1, Eq. (98) simplifies to:

1
P (x) =

1�1X

k=0

1uk W
� k2

2 x
k = 1u0 W

� 02

2 x
0 = 1u0. (107)

This formula evaluates to 1, which follows from Eq. (81), i.e.,

1
P (x) = (�1)0 W

0�0+0
2

�
�
�
�
�
�1�0�1Y

s=1

(W s � 1)
�
�

�
�
�
�0Y

s=1

(W s � 1)

= 1. (108)

The following lemma proves an inductive formula that
expresses the coefficients of the Lagrange polynomial n+1

L(x)
in terms of the coefficients of n

L(x).

Lemma 10. Let n
`k be the k-th coefficient of the Lagrange

polynomial n
L(x) that is defined in Eq. (103), i.e.,

n
L(x) =

n�1X

k=0

n
`k x

k =
n�1Y

k=1

(x�W
k)

(1�W k)
. (109)

Then, for each n 2 N and each k 2 {0, 1, 2, . . . , n}, the value
of n+1

`k in n+1
L(n) is given by the following formula:

n+1
`k =

8
>>>>>><

>>>>>>:

n
`0 W

n

Wn � 1
, if k = 0,

n
`k W

n � n
`k�1

Wn � 1
, if k 2 {1, 2, . . . , n�1},

�
n
`n�1

Wn � 1
, if k = n.

(110)

Proof. Expanding Eq. (105) in terms of n
`k leads to:

n+1
L(x)= n

L(x)
(x�W

n)

(1�Wn)
=

n�1X

k=0

n
`k x

k (x�W
n)

(1�Wn)

= �
n�1X

k=0

n
`k

Wn � 1
x
k+1 +

n�1X

k=0

n
`k W

n

Wn � 1
x
k
. (111)

The terms in Eq. (111) can be grouped by the powers of x.
The coefficients of the resulting polynomial are equal to the
coefficients n+1

`k of n+1
L(x). More formally,

n+1
L(x) = �

n
`k

Wn�1 x
n �

n�2X

k=0

n
`k

Wn�1 x
k+1 +

n�1X

k=0

n
`kW

n

Wn�1x
k

= �
n
`n�1

Wn � 1
x
n �

n�1X

k=1

n
`k�1

Wn�1 x
k

+
n�1X

k=1

n
`k W

n

Wn � 1
x
k +

n
`0 W

n

Wn � 1
x
0

=
�n

`n�1

Wn�1| {z }
n+1̀

n

x
n +

n�1X

k=1

n
`k W

n�n
`k�1

Wn � 1| {z }
n+1̀

k

x
k +

n
`0 W

n

Wn�1| {z }
n+1̀

0

x
0

=
nX

k=0

n+1
`k x

k
. (112)

The next lemma expresses the coefficients of n+1
P (x) in

terms of the coefficients of n
P (x).

Lemma 11. Let n 2 N and k 2 {0, 1, 2, . . . , n}. Then, each
coefficient of the polynomial n+1

P (x) can be computed using
the following formula:

n+1
pk=

8
>>>>><

>>>>>:

n
p0 W

n

Wn � 1
, if k = 0,

n
pk W

n � n
pk�1

Wn � 1
, if k 2 {1, 2, . . . , n�1},

�
n
pn�1

Wn � 1
, if k = n.

(113)

Proof. The three cases of Eq. (113) are considered separately.
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1) Suppose that k = 0. Then, Eq. (99) implies that n+1
p0 can

be expressed as follows:

n+1
p0 = n+1u0 W

� 02

2 = n+1u0. (114)

Using Lemma 6 this derivation can be continued as follows:

n+1
p0 = nu0

W
n�0

Wn�0 � 1
= nu0 W

� 02

2

| {z }
np0

W
n

Wn � 1
, (115)

which proves the first case in Eq. (113).
2) Suppose that k 2 {1, 2, . . . , n�1}. Then, Lemma 8 and
Eq. (99) imply that n+1

pk can be expressed as follows:

n+1
pk = n+1uk W

� k2

2 =
nuk Wn � nuk�1 W

k� 1
2

Wn � 1
W

� k2

2 .

(116)

Using basic algebra, this can be simplified as follows:

n+1
pk =

nuk W� k2

2 W
n � nuk�1W

� k2

2 +k� 1
2

Wn � 1

=
n
pk W

n � nuk�1W
� (k�1)2

2

Wn � 1

=
n
pk W

n � n
pk�1

Wn � 1
. (117)

3) Suppose that k = n. Then, using Eqs. (81) and (99), n+1
pn

can be expressed as follows:

n+1
pn = n+1unW

�n2

2

= (�1)n W

2n2�(2(n+1)�1)n+(n+1)(n+1�1)
2

H
H
H

H
H
H
H

(n+1)�n�1Y

s=1

(W s � 1)
nY

s=1

(W s � 1)

W
�n2

2

= (�1)1(�1)n�1 W
n2

2

nY

s=1

(W s � 1)

W
�n2

2 . (118)

Because n
2 = (n � 1)2 + 2n � 1, this derivation can be

continued as shown below:

n+1
pn = � (�1)n�1

W
(n�1)2

2 ⇠⇠⇠⇠

W
(2n�1)

2

(Wn � 1)
n�1Y

s=1

(W s � 1)

W
� (n�1)2

2 ⇠⇠⇠⇠⇠

W
� (2n�1)

2

= � (�1)n�1
W

2(n�1)2�(2n�1)(n�1)+n(n�1)
2

n�(n�1)�1Y

s=1

(W s � 1)
n�1Y

s=1

(W s � 1)

| {z }
nun�1

·W
� (n�1)2

2

Wn � 1
.

(119)

Therefore,

n+1
pn = �

nun�1 W
� (n�1)2

2

Wn � 1
= �

n
pn�1

Wn � 1
. (120)

The following theorem completes the inductive argument
by showing that n

L(x) = n
P (x) for each integer n.

Theorem 12. For each n 2 N and each x 2 C, the values
of n

L(x) and n
P (x) are equal, i.e.,

n
L(x) = n

P (x). (121)

Proof. The proof is by mathematical induction. Lemma 9
proved Eq. (121) for n = 1, which forms the base case of
the induction. The inductive step is formed by Lemma 11
and Lemma 10, which showed that n+1

L(x) can be derived
from the coefficients of n

L(x) using the same formula that
derives n+1

P (x) from the coefficients of n
P (x). This implies

that n+1
P (x) = n+1

L(x) whenever n
L(x) = n

P (x).
Taken together, the base case and the inductive step com-

plete the inductive proof and show that n
L(x) = n

P (x) for
each n 2 N and each x 2 C.

The next theorem combines the results from this section to
show that the vector u is indeed the first column of the inverse
matrix Ŵ�1. This result follows from Theorem 12 when x is
a power of W , i.e., x 2 {W 0

,W
1
,W

2
, . . . ,W

n�1}.

Theorem 13. The vector u = (u0, u1, . . . , un�1) is equal to
the first column of the inverse matrix Ŵ�1, i.e.,

Ŵu =

2

6666664

W
� (0�0)2

2 W
� (0�1)2

2 . . . W
� (0�(n�1))2

2

W
� (1�0)2

2 W
� (1�1)2

2 . . . W
� (1�(n�1))2

2

...
...

. . .
...

W
� ((n�1)�0)2

2 W
� ((n�1)�1)2

2 . . . W
� ((n�1)�(n�1))2

2

3

7777775

2

6666664

u0

u1
...

un�1

3

7777775
=

2

6666664

1

0
...

0

3

7777775
.

(122)

Proof. Eq. (122) can be restated as follows:

(Ŵu)j =
n�1X

k=0

uk W
� (k�j)2

2 =

(
1, if j = 0,

0, if j 2 {1, 2, . . . , n�1}.
(123)

The sum in Eq. (123) can be expressed using n
P (W j), i.e.,

n�1X

k=0

uk W
� (k�j)2

2 =
n�1X

k=0

uk W
� k2

2 (W j)k W� j2

2

= n
P (W j)W� j2

2 . (124)

Theorem 12 showed that n
P (x) = n

L(x). Therefore,

(Ŵu)j =
n
P (W j)W� j2

2 = n
L(W j)W� j2

2

=
n�1Y

k=1

(W j �W
k)

(1�W k)
W

� j2

2 . (125)

If j = 0, then Eq. (125) evaluates to 1. Alternatively, if
j 2 {1, 2, . . . , n�1}, then it evaluates to 0 because there is at
least one zero factor in the product. More formally,

(Ŵu)j =
n�1Y

k=1

(W j �W
k)

(1�W k)
W

� j2

2 =

(
1, if j = 0,

0, if 1  j  n�1,
(126)

which shows that Eq. (122) holds.
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SUPPLEMENTARY APPENDIX G:
CZT AND ICZT ALGORITHMS THAT REVERSE THE

CONTOUR DIRECTION WHEN |W | < 1

This appendix describes alternative versions of the CZT and
the ICZT algorithms that improve the numerical accuracy of
the computed transforms. This is achieved by reversing the
direction of the chirp contour when |W | < 1 and keeping
the original direction when |W | � 1. The parameters for the
reversed contour are W

0 = W
�1 and A

0 = AW
�(M�1).

This appendix also proves that this parameter adjustment
does not affect the mathematical definitions of the CZT and
the ICZT. In other words, the modified algorithms compute
the same transforms, but the numerical precision of their
results can improve by several orders of magnitude when the
magnitude of the transform parameter W is less than 1.

The following lemma shows that the Vandermonde matrix
W associated with the parameter W can be mapped to the
Vandermonde matrix W 0 associated with W

0 = W
�1.

Lemma 14. Let W be a non-zero complex number and let
W be the M -by-N Vandermonde matrix defined by Eq. (3),
i.e., the element in the i-th row and j-th column of W is:

Wi,j = W
ij
, (127)

for each i 2 {0, 1, . . . ,M�1} and each j 2 {0, 1, . . . , N�1}.
Also, let W 0 be the Vandermonde matrix specified by the same
formula but using W

�1 instead of W . That is,

W 0 =

2

666664

W
�0·0

W
�1·0

W
�2·0 · · · W

�(N�1)·0

W
�0·1

W
�1·1

W
�2·1 · · · W

�(N�1)·1

W
�0·2

W
�1·2

W
�2·2 · · · W

�(N�1)·2

...
...

...
. . .

...
W

�0·(M�1)
W

�1·(M�1)
W

�2·(M�1)
. . . W

�(N�1)·(M�1)

3

777775
.

(128)

Furthermore, let S be the N -by-N diagonal matrix generated
by the last row of the matrix W , i.e.,

S = diag
�
W

0·(M�1)
, W

1·(M�1)
, . . . , W

(N�1)·(M�1)).
(129)

Then, the matrix W can be expressed as the following triple
matrix product:

W = J W 0 S, (130)

where J denotes the M -by-M exchange matrix, i.e.,

J =

2

6664

0 · · · 0 1
0 · · · 1 0
... . . .

...
...

1 · · · 0 0

3

7775
. (131)

Proof. The matrix product W 0S has the following form:

W 0S =

2

666664

W
0·(M�1)

W
1·(M�1)

W
2·(M�1) · · · W

(N�1)·(M�1)

W
0·(M�2)

W
1·(M�2)

W
2·(M�2) · · · W

(N�1)·(M�2)

W
0·(M�3)

W
1·(M�3)

W
2·(M�3) · · · W

(N�1)·(M�3)

...
...

...
. . .

...
W

0·0
W

1·0
W

2·0
. . . W

(N�1)·0

3

777775
,

(132)

which follows from the definitions of W 0 and S. Each element
of this matrix is given by the following formula:

(W 0S)i,j =
N�1X

k=0

W0
i,k Sk,j = W

�ij
W

j(M�1) = W
j(M�1�i)

,

(133)

for each i 2 {0, 1, . . . ,M�1} and each j 2 {0, 1, . . . , N�1}.
This implies that the matrix product W 0S is equal to the

matrix obtained by reversing the rows of the matrix W . This
operation can be formalized using the exchange matrix J , i.e.,

JW = W 0S. (134)

Because the matrix J is its own inverse, it follows that
Eq. (130) can be derived by pre-multiplying both sides of the
previous equation by J , i.e., W = JJW = JW 0S.

The next lemma shows how the diagonal matrix A, which
is associated with the parameter A, can be mapped to the
diagonal matrix A

0 that is associated with A
0 = AW

�(M�1).

Lemma 15. Let A and W be two non-zero complex numbers.
Let A be the diagonal matrix defined by Eq. (8), i.e.,

A = diag
�
A

�0
, A

�1
, . . . , A

�(N�1)
�
. (135)

Also, let A0 be the following N -by-N diagonal matrix:

A
0 = diag

�
A

�0
W

0(M�1)
, . . . , A

�(N�1)
W

(N�1)(M�1)
�
.

(136)

Then, the matrix A
0 can be expressed as the product of

the matrix A and the matrix S defined by Eq. (129), i.e.,

A
0 = SA = AS. (137)

Proof. Both A and S are diagonal matrices. This implies that
both matrices are invariant with respect to transposition. Thus,

SA = ST
A

T = (AS)T = AS. (138)

In other words, each diagonal element of the matrix product
SA is equal to the product of the corresponding elements
of S and A; all other elements of SA are zero. Thus,

(SA)i,j =

(
A

�j
W

j(M�1)
, if i = j,

0, if i 6= j.
(139)

Therefore, SA = A
0, which completes the proof.

The following theorem proves that computing the CZT with-
out contour reversal is mathematically equivalent to computing
the CZT with contour reversal and then reversing the order of
the elements in the output vector.

Theorem 16. Let M and N be two positive integers and
let A,W 2 C \ {0} be two non-zero complex numbers. Let
x = (x0, x1, x2, . . . , xN�1) 2 CN be a complex input vector
for a CZT that is parametrized by M , W , and A. Let X be
the CZT output vector. More formally,

X = CZT(x,M,W,A). (140)
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Let A0 = AW
�(M�1) and W

0 = W
�1 be the parameters

for the reversed chirp contour. Let X0 be the output vector of
a CZT that is parametrized by M , W 0, and A

0. That is,

X
0 = CZT(x, M, W

0
, A

0 ). (141)

Then, X can be obtained by reversing the order of the
elements in X

0. More formally,

X=(X0,X1, . . . ,XM�1)= (X0
M�1,X

0
M�2, . . . ,X

0
0) = JX0

.

(142)

In other words, reversing the direction of the chirp contour
reverses the order of the elements in the output vector.

Proof. Eq. (140) has the following matrix form:

X = W Ax, (143)

where W is the Vandermonde matrix defined by Eq. (3) and A

is the diagonal matrix defined by equation Eq. (8). Similarly,
the vector X0 can be expressed as follows:

X
0 = W 0

A
0
x. (144)

From Lemma 14 it follows that the matrix W in Eq. (143)
can be replaced with the matrix product J W

0 S, i.e.,

X = J W 0 SAx. (145)

From Lemma 15 it follows that A = S�1
A

0. Therefore,

X = J W 0
�S�S

�1
A

0
x = J W 0

A
0
x = J X

0
, (146)

which proves that the vector X can be obtained by reversing
the elements of the vector X0.

The next theorem proves that computing the ICZT without
contour reversal is theoretically equivalent to computing the
ICZT with reversal of both the contour and the input vector.
The theorem is stated for the square case, i.e., when M = N .

Theorem 17. Let N be a positive integer and let A and W be
two non-zero complex numbers. Let X = (X0,X1, . . . ,XN�1)
be a complex vector that is used as an input to an ICZT
parametrized by N , W , and A. Let x be the result of this
transform. More formally,

x = ICZT(X, N,W,A). (147)

Let A0 = AW
�(M�1) and W

0 = W
�1 be the parameters

for the reversed chirp contour, where M = N . Let x0 be the
output vector of the ICZT parameterized by N , W 0, and A

0

for which the input vector is set to JX. That is,

x
0 = ICZT(JX, N,W

0
, A

0 ). (148)

Then, x and x
0 are equal, i.e., x = x

0.

Proof. This result can be proven by expressing x and x
0 in

matrix form and showing that the two expressions are equal.
From Eqs. (130) and (137) it follows that W 0 = J W S�1

and A
0 = SA. Thus, the vector x0 is equal to:

x
0 = (A0)�1(W 0)�1J X

= (SA)�1(J W S�1)�1JX

= A
�1
�S

�1
�SW�1

�J�J X

= A
�1W�1

X. (149)

Similarly, the vector x can be derived by inverting the matrix
expression for the CZT, i.e.,

x = (W A)�1
X = A

�1W�1
X. (150)

This completes the proof, because Eqs. (149) and (150) are
equal.

Algorithm S8 gives the pseudo-code for the alternative
version of the CZT algorithm that reverses the direction of the
chirp contour when |W | < 1. It is implemented as a wrap-
per around Algorithm 1. Similarly, Algorithm S9 shows the
pseudo-code for the alternative version of the ICZT algorithm,
which also reflects the direction of the chirp contour when
|W | < 1. The computational complexity of both algorithms
remains unchanged, i.e., it is still O(n log n).

For improved numerical accuracy, lines 6 and 7 in both
Algorithm S8 and Algorithm S9 should be computed with
higher precision if possible. The reason is that even a small
numerical error in the computed values of A0 and W

0 affects
all subsequent operations.

Algorithm S8. CZT algorithm that reverses the direction of
the chirp contour when |W | < 1. Runs in O(n log n) time.

1: CZT–R(x, M, W, A)

2: if |W | � 1 then

3: X CZT(x, M, W, A); // original contour
4: else

5: // Swap the start and the end point of the chirp contour.
6: A

0  AW
�(M�1);

7: W
0  1/W ;

8: X
0  CZT(x, M, W

0
, A

0 ); // reversed contour
9: X EMPTYARRAY(M);

10: for k  0 to M�1 do // reverse the output vector
11: X[ k ] X0[M�1�k];
12: end for

13: end if

14: return X;

Algorithm S9. ICZT algorithm that reverses the direction of
the chirp contour when |W | < 1. Runs in O(n log n) time.

1: ICZT–R(X, N, W, A)

2: M  LENGTH(X);
3: if |W | � 1 then

4: x ICZT(X, N, W, A); // original contour
5: else

6: A
0  AW

�(M�1);
7: W

0  1/W ;
8: X

0  EMPTYARRAY(M);
9: for k  0 to M�1 do // reverse the input vector

10: X0[ k ] X[M�1�k];
11: end for

12: x ICZT(X0
, N, W

0
, A

0 ); // reversed contour
13: end if

14: return x;
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The following example illustrates Theorem 16. In the 3-by-3 case, the CZT can be expressed as follows:
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. (151)

Previously, it was shown that W = JW 0S, A = S�1
A

0
, and X

0 = W 0
A

0
x. Thus, Eq. (151) can be stated as follows:
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To summarize, if the CZT is computed for a reversed chirp contour, i.e., X0 = W 0
A

0
x, then the output vector X = W Ax

for the original contour can be computed by reversing the order of the elements in the vector X0, i.e., X = J X
0.

The next example illustrates Theorem 17, which showed that x0 = (A0)�1 (W 0)�1 J X = A
�1 W�1

X = x. For the 3-by-3
ICZT case, this equation has the following form:
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This result follows from (A0)�1 = A
�1 S�1 and (W 0)�1 = (J WS�1)�1 = SW�1J , and also from the fact that the

matrix J is its own inverse. In other words, when computing the ICZT for the reversed chirp contour, the elements of the
input vector need to be reversed in order to get the same result as the ICZT for the original chirp contour.
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Figure S2. Absolute numerical error of the CZT algorithm, computed without contour reversal (a) and with contour reversal (b). The difference between (a)
and (b) is shown in (c). The surfaces were generated for M = 64 as functions of the transform parameters A and W , which were discretized as described
in the Methods section. Each of the 5,200 points on each surface was computed by averaging the numerical errors over 10 random unit-length input vectors.
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Figure S3. Absolute numerical error of the ICZT algorithm, computed without contour reversal (a) and with contour reversal (b). The difference between (a)
and (b) is shown in (c). The surfaces were generated for M = 64 as functions of the transform parameters A and W , which were discretized as described
in the Methods section. Each of the 5,200 points on each surface was computed by averaging the numerical errors over 10 random unit-length input vectors.

Figure S2 compares the numerical accuracy of the CZT
algorithm with and without contour reversal. The surface
in Fig. S2a was computed with Algorithm 1, which does not
reverse the contour. The surface in Fig. S2b was computed
with Algorithm S8, which reverses the direction of the chirp
contour when |W | < 1. The difference between these two
surfaces is shown in Fig. S2c, where positive values indicate
that the error in (a) is higher than the error in (b).

The numerical error is equal to kX̂ �Xk, where X̂ is the
computed output vector and X is the true but unknown output
vector. In this experiment, X̂ was computed using 128-bit
floating-point numbers and X was computed with 1024-bit
numbers. In both cases, the mpmath library34 was used to
software-emulate these high-precision floating-point numbers.
The values of X for both Fig. S2a and Fig. S2b were computed
with Algorithm 1, i.e., without contour reversal.

Figure S3 summarizes the results of a similar experiment
for the ICZT. The error is given by kx̂ � xk, where x̂ is the
computed output vector and x is the true but unknown output
vector. The value of x̂ was computed with 128-bit precision
in Fig. S3a and Fig. S3b, using Algorithm 2 and Algorithm S9,
respectively. For both of these figures, x was computed with
1024-bit precision using only Algorithm 2, i.e., ICZT without
contour reversal. Figure S3c shows the pointwise difference
between the two surfaces, i.e., (c) = (a)� (b). The difference
is zero when |W | > 1. For contours with |W | < 1, however,
the difference is positive and can be as high as 7 orders of
magnitude in this case, i.e., when M = 64.

These results may be explained by an asymmetry in the con-

dition number of the matrix Ŵ (see Eq. (9)). For |W | < 1,
the condition number grows much faster than for |W | > 1.

In log space, the contour reversal can be expressed as:

logW 0

logA0

�
=


�1 0

�(M�1) 1

�
logW
logA

�
. (154)

The eigenvectors of this matrix are (0, 1) and (1, M�1
2 ).

The surfaces in Figs. S2 and S3 are bent along two lines
that correspond to these two eigenvectors. The first line is
log2 |W |M=0; the second line is log2 |A| = M�1

2M log2 |W |M .
To summarize, this appendix showed that the numerical

accuracy of both the CZT and the ICZT can be improved by
several orders of magnitude for chirp contours that are growing
logarithmic spirals, i.e., when |W | < 1. In those cases, the
revised algorithms reverse the direction of the chirp contour.
Furthermore, this contour reversal must be accompanied by a
reversal of the order of the elements in the vector X, which
is either the CZT output vector or the ICZT input vector.

To make the contour reversal rules easier to remember, one
can apply the following guidelines that use the four contour
colors from Fig. 4. A blue contour should never be reversed
because it is always a decaying logarithmic spiral. A green
contour should be reversed only if it describes a growing spiral
and left unchanged if it describes a decaying spiral. Similarly,
a red contour should be reversed if it describes a growing
spiral and left unchanged otherwise. Finally, a black contour
(i.e., one that starts inside the unit circle and ends outside the
unit circle) should always be reversed, which transforms it into
a blue contour. In short, all chirp contours that are growing
spirals should be reversed.
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SUPPLEMENTARY APPENDIX H:
LINK BETWEEN THE POLAR ANGLE OF THE PARAMETER A

AND THE VECTOR x IN BOTH THE CZT AND THE ICZT
Theorem 18. Let W be a non-zero complex number. Also, let
A and B be two non-zero complex numbers such that |A| =
|B| = µ. Moreover, let ↵ = arg(A) be the polar angle of A
and let � = arg(B) be the polar angle of B, i.e.,

A = |A| ei↵ = µ ei↵, (155)
B = |B| ei� = µ ei� . (156)

Finally, let M and N be two positive integers.
Let x = (x0, x1, x2, . . . , xN�1) 2 CN be a complex vector

of length N . Let XA = (XA
0 , X

A
1 , X

A
2 , . . . , X

A
M�1) 2 CM be

the complex vector of length M that is equal to the CZT of x
parametrized by M , W , and A. More formally,

X
A = CZT(x, M, W, A) = W Ax, (157)

where W is the Vandermonde matrix generated by the pa-
rameter W as defined by Eq. (3) and A is the diagonal
matrix generated by the first N negative integer powers of
the parameter A starting from A

�0, i.e.,

A = diag
�
A

�0
, A

�1
, A

�2
, . . . , A

�(N�1)
�
. (158)

Similarly, let XB = (XB
0 , X

B
1 , X

B
2 , . . . , X

B
M�1) 2 CM be

the complex vector of size M that is equal to the CZT of x
parametrized by M , W , and B. That is,

X
B = CZT(x, M, W, B) = W Bx, (159)

where B is a diagonal matrix generated by the first N negative
integer powers of the parameter B, i.e.,

B = diag
�
B

�0
, B

�1
, B

�2
, . . . , B

�(N�1)
�
. (160)

Then, the vector X
B can be expressed as the CZT of the

vector x
0 = Dx where the transform is parametrized by M ,

W , and A and where the diagonal matrix D is defined as
follows:

D = diag
�
e0i(↵��)

, e1i(↵��)
, . . . , e(N�1)i(↵��)

�
. (161)

In other words,

X
B = CZT(Dx,M,W,A) = W ADx. (162)

Proof. The proof follows from the definitions of the matrices
A and B. Combining Eqs. (158) and (155) leads to:

A=diag
�
µ
�0e�0i↵

, µ
�1e�1i↵

, . . . , µ
�(N�1)e�(N�1)i↵

�
. (163)

Similarly, combining Eqs. (160) and (156) leads to:

B=diag
�
µ
�0e�0i�

, µ
�1e�1i�

, . . . , µ
�(N�1) e�(N�1)i�

�
. (164)

Therefore, B = AD. This implies that:

X
B = W Bx = W ADx, (165)

which proves Eq. (162).

Corollary 19. Changing the polar angle of the CZT transform
parameter A from ↵ to � is equivalent to changing the
elements of the input vector x by adding k(↵��) to the polar
angle of each xk. This change does not affect the norm of x.

Proof. This corollary follows from Eq. (162). That is, mul-
tiplying the input vector x by the diagonal matrix D, which
is generated by a vector of complex exponentials, changes
only the polar angles of the elements of x and leaves their
magnitudes unchanged.

More formally, let xk = |xk|ei✓k be the polar form of xk
for each k 2 {0, 1, 2, . . . , N�1}. Then,

(Dx)k = eki(↵��) xk = |xk| ei(✓k+k(↵��))
. (166)

That is, the real term k(↵ � �) is added to the polar angle
of xk, which does not change the Euclidean norm of x.

Theorem 20. Let W be a non-zero complex number and
let A and B be two non-zero complex numbers such that their
magnitudes are equal, i.e., |A| = |B| = µ > 0. Let ↵ be the
polar angle of A and let � be the polar angle of B. More
formally,

A = |A| ei↵ = µ ei↵, (167)
B = |B| ei� = µ ei� . (168)

Let X = (X0, X1, X2, . . . , XM�1) be a complex vector of
length M . Let xA = (xA0 , x

A
1 , x

A
2 , . . . , x

A
N�1) be the complex

vector of length N that is equal to the ICZT of X parametrized
by N , W , and A. That is,

x
A = ICZT(X, N, W, A) = A

�1 W�1
X, (169)

where W is the Vandermonde matrix defined by Eq. (3) and
A is the diagonal matrix defined by Eq. (158).

Similarly, let xB = (xB0 , x
B
1 , x

B
2 , . . . , x

B
N�1) be the com-

plex vector of length N that is equal to the ICZT of X

parametrized by N , W , and B, i.e.,

x
B = ICZT(X, N, W, B) = B

�1 W�1
X, (170)

where B is the diagonal matrix defined by Eq. (160).
Then, x

B = D
�1

x
A, where D is the diagonal matrix

defined by Eq. (161).

Proof. Previously, it was proven that B = AD. Thus,

B
�1 = D

�1
A

�1
. (171)

Plugging this expression into Eq. (170) completes the proof,
i.e.,

x
B = B

�1W�1
X = D

�1
A

�1W�1
X = D

�1
x
A
. (172)

Corollary 21. Changing the polar angle of the ICZT trans-
form parameter A from ↵ to � is equivalent to changing the
elements of the output vector x by subtracting k(↵��) from
the polar angle of each xk. This does not affect the norm of x.

Proof. This corollary follows from Eq. (170), which implies
that the polar angle of xBk can be obtained from the polar angle
of xAk by subtracting k(↵� �). In other words,

xBk = e�ki(↵��) xAk = |xAk | ei(✓
A
k �k(↵��))

, (173)

where ✓
A
k is the polar angle of xAk . Therefore, kxBk = kxAk.
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SUPPLEMENTARY APPENDIX I:
APPROXIMATION FORMULAS FOR THE NUMERICAL ERROR

This appendix states formulas that approximate the absolute
numerical error of the CZT algorithm, the ICZT algorithm,
and their sequential applications. The formulas are given for
the square case in which M = N . The formulas apply to the
modified algorithms described in Appendix G that reverse the
direction of the chirp contour when |W | < 1. Finally, these
formulas are suitable only for the case when the chirp contour
is a logarithmic spiral that spans a 360� arc.

The error formulas are stated using the following four terms:

t1,k = W
k2

2 A
�k

, (174)

t2,k = W
� k2

2 , (175)

t3,k = W
k2

2 , (176)

t4,k = W
� k2

2 A
k
, (177)

which are defined for each k 2 {0, 1, 2, . . . , N�1}. The first
term corresponds to the factors used on line 7 of Algorithm 1.
The second term is used on lines 8 and 11 of Algorithm 1
and on line 9 of Algorithm 2. The third term is used on
line 16 of Algorithm 1. The fourth term is used on line 33
of Algorithm 2.

All of these lines are inside loops that perform N iterations
(in the square case). Thus, each term specifies the k-th element
of a vector. The error formulas use four aggregate terms that
are computed by taking the logarithm of the Euclidean norm
of these four vectors, i.e.,

T1 = log

vuut
N�1X

k=0

|t1,k|2=
1

2
log

N�1X

k=0

|W |k
2

|A|�2k
, (178)

T2 = log

vuut
N�1X

k=0

|t2,k|2 =
1

2
log

N�1X

k=0

|W |�k2

, (179)

T3 = log

vuut
N�1X

k=0

|t3,k|2 =
1

2
log

N�1X

k=0

|W |k
2

, (180)

T4 = log

vuut
N�1X

k=0

|t4,k|2=
1

2
log

N�1X

k=0

|W |�k2

|A|2k. (181)

The error formulas that cover the ICZT algorithm also use
the following three terms that are computed from the elements
of the vector u, which is defined by Eq. (18):

U1 = log

vuut
N�1X

k=1

|uk|2 =
1

2
log

N�1X

k=1

|uk|2, (182)

U2 = log

vuut
N�1X

k=0

|uk|2 =
1

2
log

N�1X

k=0

|uk|2, (183)

U3 = � log |u0|. (184)

The term U1 is equal to the logarithm of the Euclidean norm
of a vector formed by all elements of the vector u except u0.
It maps to lines 25 and 26 of Algorithm 2. The term U2 is

similar, but it uses all elements of the vector u, including u0. It
maps to lines 27 and 28 of Algorithm 2. Finally, U3 is equal to
the negative logarithm of the magnitude of u0 (by definition,
u0 cannot be zero). It maps to line 30 of Algorithm 2.

All error formulas also include an offset that depends on
N and p, where p is the number of precision bits in the
IEEE-754 floating-point numbers33 that are used to compute
the transforms. For computations with 128, 256, 512, and
1024 bits, the value of p is equal to 113, 237, 489, and 997,
respectively. This offset determines the base level of the error
surface. It is defined as follows:

B = � log(2p N) = �p log 2� logN. (185)

For this evaluation, the terms in Eqs. (174)–(177) and the
elements of the vector u were computed with very high
precision (1024 bits). This was done to reduce the effect of
the numerical error in these terms on the overall numerical
error. All other computations were performed using 128 bits.

A. Error Formula for the CZT Algorithm
The CZT maps the input vector x to the output vector X̂.

The absolute numerical error is given by:

E = kX̂�Xk, (186)

where X is the true but unknown output vector of the
transform. Figure S4a plots the decimal logarithm of E as
a function of A and W . This surface can be approximated
with the following error formula:

logE ⇡ T1 + T2 + T3 +B + log kxk. (187)

This formula fits the empirical data very well, as indicated by
the R

2 values in the second column of Table S1. Furthermore,
the quality of the fit improves as N increases.

B. Error Formula for the ICZT Algorithm
The ICZT algorithm maps X to x̂. Its absolute numerical

error is given by:

E = kx̂� xk, (188)

where x̂ is the computed output vector and x is the true but
unknown output vector. Figure S4b plots the decimal logarithm
of E as a function of A and W . The error can be predicted
using the following formula:

logE ⇡ T2 + T4 + U1 + U2 + U3 +B + log kXk. (189)

The goodness of fit is reported in Table S1 for different N .

N CZT ICZT CZT–ICZT ICZT–CZT

64 0.99963 0.99976 0.99846 0.99970
128 0.99994 0.99988 0.99900 0.99987
256 0.99998 0.99995 0.99966 0.99997
512 0.99999 0.99996 0.99992 0.99998

Table S1. The R2 values for fitting error models to empirically derived error
surfaces. Each point on each surface was computed by averaging the numerical
errors over 10 random unit-length input vectors. The discretizations for A and
W are the same as in the main text. Perfect fits correspond to R2 = 1. In all
four cases, the R2 values are very close to 1 and improve as N increases.
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Figure S4. The absolute numerical error for N = M = 64 as a function of A and W, shown for: (a) the CZT transform; (b) the ICZT transform; (c) the CZT
followed by the ICZT; and (d) the ICZT followed by the CZT. These surfaces were computed using the modified algorithms that reverse the direction of the
chirp contour when |W | < 1, i.e., using Algorithm S8 and Algorithm S9. The points in all surfaces represent the average error for 10 randomly-generated
unit-length input vectors. The ground truth output vectors were approximated using 1024-bit floating-point numbers. All other computations used 128-bit
numbers. Each surface consists of 5,200 points generated using the discretization described in the Methods section. That is, 52 evenly-distributed points in
the range [0.5, 2.0] for |A| and 100 evenly-distributed points in the same range for |W |M . All three axes in each of the four plots are scaled logarithmically.

C. Error Formula for the CZT Followed by the ICZT

For the CZT–ICZT procedure, the absolute numerical error
is equal to the Euclidean distance between the original input
vector x and the computed vector x̂. More formally,

E = kx̂� xk. (190)

Figure S4c plots E as a function of the transform parameters
A and W . The error values can be analytically approximated
using the following formula:

logE ⇡ T1+ T2+ T4+ U1+ U2+ U3+B+ log kxk. (191)

The goodness of fit of this expression is evaluated in Table S1.
This formula can be viewed as a sum of the terms

in Eqs. (187) and (189). Because the output scaling on line 16
of Algorithm 1 is immediately canceled by the input scaling
on line 9 of Algorithm 2, the corresponding terms T3 and T2

are excluded from Eq. (191). The term log kXk is excluded
as well. Also, the term B is counted only once.

D. Error Formula for the ICZT Followed by the CZT
The absolute error of the ICZT–CZT procedure is given by:

E = kX̂�Xk, (192)

where X is the true output vector and X̂ is the computed
output vector. Figure S4d visualizes the decimal logarithm of
the error, which can be approximated as follows:

logE ⇡ 2T2 + T3 + U1 + U2 + U3 +B + log kXk. (193)

This formula can be viewed as a sum of the terms in
Eqs. (187) and (189) except for B, which is included only
once, and log kxk, which is excluded. Also, terms T1 and T4

are excluded because the output scaling performed on line 33
of the ICZT algorithm is immediately undone by the input
scaling on line 7 of the CZT algorithm. This implies that
the absolute numerical error is independent of A, which is
confirmed by Fig. S4d. Furthermore, the last column of Ta-
ble S1 shows that Eq. (193) approximates the empirical error
very well.
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