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Abstract— This study asks the question: Can a robot learn
to identify object-surface pairs that are useful for trace-makng
and, thus, facilitate writing? Writing is an important skill that
humans use everyday and future household robots may have to
master in order to be useful. Specifically, our robot performed
scribbling behaviors with different objects on different surfaces
and monitored which objects leave marks on which surfaces. The
frequency with which marks were detected was used by the robot
to group the writing instruments and the writable surfaces into
meaningful categories, which capture their functional properties
from the robot's point of view.

. INTRODUCTION

Writing is a unique skill that humans use on a daily basis to
convey and capture information. We scribble notes to augmen

our memory, draw flgures to explaln concepts, and doodle I]—:P 1. The upper-torso humanoid robot used in the experimdihis robot

kill time. J.J. Gibson pointed out that writing is a specigk ﬁicthred holding an oversized pencil while scribblingamwooden surface.
form of tool use, which requires a special tool that has the

ability to leave a trace on a surface: “A hand-held tool of
enormous importance is one that, when applied to a surfacegre and more objects, they identify relationships amoegih
leaves traces and thus afforlace-making The tool may be a and start to form categories. This is the approach we took wit
stylus, brush, crayon, peor pencil,but if it marks the surface our robot.
it can be used to depict and to write, to represent scenesoand tThis investigation tests the assumption that a robot can lea
specify words” [1, p.134]. Clearly, before humans can nastg identify a good trace-making object for a given surfadeisT
the intricate nature of writing they must learn to identifyet is done by programming a robot with several trace-making
object-surface pairs that facilitate this skill. behaviors (scribbles, lines, etc.) and an ability to detieates.
The ability to choose an object that could leave a mark onadter the robot interacts with different objects and digéat
given surface is an important prerequisite for the develepm surfaces, it forms surface categories by using the frequenc
of writing skills. For example, a pencil can leave a trace ofith which each object left a trace on each surface. The
paper but not on a white board. Additionally, the objects argpothesis is that certain objects are better at leavingesra
the surfaces that can be used for writing are not restriacted dn some surfaces but not on others and that this property can

the things humans commonly use to make marks, e.g., pengil detected by the robot using unsupervised clustering.
and paper. Even a stick could be used to make marks in a

sandbox. Preprogramming a robot with the ability to make Il. RELATED WORK

these judgments is neither practical nor feasible; theee ar There is little related work in robotics that addresses tobo

simply too many object-surface combinations. Furthermoreriting skills from a developmental point of view. The exis}

an object that a human can write with is not necessarily avork mostly addresses the control challenges associatéd wi

object that a robot can write with. writing (i.e., the positioning and detection of instrunethat
Humans acquire many skills through interacting with thpotentially may be used to write with).

environment and perceiving the changes produced by thisFor instance, writing legibly requires precise control bét

interaction [2]. Work in developmental psychology also sudip of an object. Kemp and Edsinger [4] proposed a method

gests that infants form object categories by processing tfog autonomous detection and control of the tip of a tool by a

relationships between objects which define events [3]. heiot robot. In their approach, a robot identified the tip of a tosl a

words, as infants manipulate objects and observe differeghe region of an image furthest from the robot’s hand that als

outcomes, they also correlate their observations with abje moved with it. Once the tip was found, a feature detector was

encountered during previous interactions. As they maaipul used to track the tip’s position and orientation in the visua
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Fig. 2. The twelve objects used in the experiments and theresponding | O S
material types:(row 1) 2x2 and 2x4 (wood); plastic toy and PVC pipe - (\\
(plastic); (row 2) noodle and sponge (sponge); hand towel and teddy be \LA
(cloth); (row 3) sidewalk chalk and wax candle (soft materials); oversizey o | |
pencil, whiteboard marker attached to a piece of wood to makeaspable f
(common writing instruments). Shown not to scale.

field. Using this approach, a robot could potentially leaon
detect the tip of writing instruments such as markers. Aaot
work which deals with force control and visual servoing t
grasp a writing tool was done by Olssat al. [5] and
their study was validated using a connect-the-dots task o

whiteboard using a marker. I, | . din ents sh _—
. . . . ‘g, o e twelve surfaces used in the experiments shown itical
Forming written characters also requires following PreciS Jirs of two along with their material typegcolumn 1) wrapping paper

movement patterns. Yussef al. [6] argued that programming and cardboard (paper); beans and rice (deformable surface®d of small

a robot with a separate trajectory for each character does Apcts);(column 2) towel and rug (cloth); terracotta tile and marble (stone);
scale well as new symbols are added. Instead, they Cfea{f%ﬁgh 3) whiteboard and plexiglass (plastic); wood and bulletin rdoa
primitive trajectories (linear and curved) and combineghthin

different ways to produce distinct characters. For examntple
character ‘b’ can be written using one linear and one curveghd interactions. Furthermore, Metta and Fitzpatrick [11]
trajectory. found out that the process of categorizing objects could be
Establishing methods for combining trajectories to pradudnuch easier if the robot is allowed to interact with the otgec
distinct symbols is another challenging problem. A robai-pr This was tested on a task of distinguishirajlable objects
grammed with the framework proposed by Zhang and Wefiggm non-rollableones. In another study, Katz and Brock [12]
[7] could learn to combine previously learned trajectoriies used interaction to identify the planar kinematic propeeytof
order to create new ones. The robot used an approach knoejects.
as scaffoldingwhich is a process of using previously learned
skills to solve a more complex task. In one demonstratios, th A robot can interact with objects to determine not only
robot learned to draw a four-petal flower after a human tiingheir functional properties, but also to cluster the olgdato
it to draw a single petal. meaningful categories. This was illustrated in the follogyi
Frankeet al. [8] studied a method of providing a strongtwo studies. The robot in Griffitret al. [13] formed object
foundation for signature analysis procedures by means adtegories by observing the movement patterns between two
a writing robot. This robot could take up different writingobjects. The robot formed ‘container’ and ‘non-container’
instruments in order to provide various types of ink deposibbject categories and learned a perceptual model that ac-
The robot simulated human handwriting movements but tlerately detected the categories of novel objects. Another
writing instruments and paper were selected by the prograstudy done by Sinapov and Stoytchev [14] presented the
mer. Another study used high-level robot planning techeguidea of learning to categorize objects based on their aimoust
to reproduce a procedure used by human painters [9]. properties which were obtained by performing a sequence of
Pfeifer and Scheier [10] conducted a study in which a robekploratory behaviors with them (grasp, shake, drop, pasd,
categorized different-sized objects using its own movemeriap).



Fig. 4. Snapshots from one experimental trial: a) before eéaah an experimenter placed one of the 12 surfaces (wootli;ndase) on the table in front
of the robot and one of the 12 objects (the oversized pendihisicase) in the robot's hand; b) The robot moved the objeet tandomly chosen position
above the surface and then lowered the object until it tod¢he surface. This event was detected automatically basdétdeosensed torque values; c) The
robot starts to make a trajectory on wood. This trajectoryaisdomly chosen from one of the five marking behaviors shown gn % d) The robot finishes
making the trajectory; e) The robot moves the pencil out of issial field in order to detect any marks that were left on thdaser

I1l. EXPERIMENTAL SETUP marker which was too small and was fixed to a shank of wood
A Robot to make it grgspable by the robot. _ _ _

’ The experimental results (described below in section V.)

All experiments described in this paper were performed witthow a different clustering of objects and surfaces by the
an upper-torso humanoid robot. Two 7-DOF Barrett Wholebot than the intended clusters. In other words, the rgbot’
Arm Manipulators (WAMSs) are used for the robot’s arms. Eacperception of these objects and surfaces is different frioah t
arm has a three-finger Barrett Hand as its end effector (3ge Fif the humans. The clusters that the robot identified arecbase
1). The WAMs are mounted in a configuration similar to thadn the functional properties of the objects and the surfaces
of human arms. The arms are controlled in real time fromas perceived by the robot. Humans cluster these based on
Linux PC at 500 Hz over a CAN bus interface. The robot itheir material properties which explains why the clusterin
also equipped with two cameras (Quickcams from Logitech)jroduced by the robot is different from what we expected.

The cameras capture 640x480 color images at 30 fps. C. Behaviors

B. Objects and Surfaces The ro.bot perfor_med three .behaviors during each exp_eri—
) ) ) ) _mental trial: 1) position the object at a random start lawati
Durlng_the experiments, the robot interacted ywth 12 difs the surface: 2) execute a trace-making trajectory; and 3)
ferent objects and 12 different surfaces. The objects aad ove the hand out of the visual field. The three behaviors are
surfaces include common household items as shown in Figgéscribed in more detail below. Figure 4 shows a sequence of
and Fig. 3. Before each experimental trial, one of the 1ganshots from a sample trial.
surfaces was placed on a table in front of the robot. 1) Position Behavior:At the start of each trial, the robot
More specifically, objects and surfaces were selected i3 pahositioned the object directly above the surface. It theveled
based on their material properties as perceived by humans.arm until the object touched the surface. The robot auto-
For example, a towel and a rug are both made of cloth agghtically detected the touch down based on an empirically
therefore, the changes on each of these surfaces were edpegbtermined torque values which was the same for all objects.
to be similar. The six pairs of human selected surfaces wemgijs was used as a calibration routine since the different
towel and rug (cloth), wrapping paper and cardboard (papeghjects had different lengths. All the objects were heldhie t
marble and terracotta tile (stone), wood and bulletin boagme way.
(wood), plexiglass and whiteboard (plastic), and finallgabs  2) Mark Behavior: The robot randomly selected one of five
and rice (deformable surfaces formed of small objects).  marking behaviors to perform (see Fig. 5). The chosen scrib-
Humans often try to leave traces in sand since the particlgies, doodles, and check marks were motivated by research in
can be easily displaced. The same notion was applied to this/elopmental neuroscience, which suggests a progression
study but instead of using fine grains like sand, which couldlark-making behaviors in infants [15].
get inside the robot’s drive mechanism, beans and rice wereThe robot added an extra amount of force in the downward
used. Beans and rice have the similar material and fundtiorivection to leave a trace. The extra amount of force was
properties as sand so our results should be applicable th saetermined heuristically such that the robot pressed hard
as well. enough to make traces with the chalk but light enough that
Similar selection criteria were used for the 12 objects. ©n¢he tip of the marker would not get mashed in. The same
again there were six pairs: 2 by 2 and 2 by 4 (wood), plastémount of force was used for all objects.
toy and PVC pipe (plastic), noodle and sponge (sponge), hand8) Move Behavior:The robot moved the object out of its
towel and teddy bear (cloth), chalk and candle (soft md&ria visual field at the end of a trace-making behavior. This step
and pencil and marker (common writing instruments). Thallowed the robot toseethe outcome of the object-surface
objects were selected in such a way that they must be firmiteraction (detected using the method described below in
graspable by the robot. The only exception was the whiteboaection 1V.B).
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Fig. 5. The five different marking behaviors: (row 1) horizainscribbles,
and vertical scribbles; (row 2) doodles, spiral, and checkkma

Rice

Wood

IV. METHODOLOGY
A. Data Collection

The robot exhaustively tested whether an object could be
used to leave traces on a surface by performing 10 interaz:tiq:ig 6

. . . . ; . . Before and after snapshots taken from the robot's cardaring
with each object-surface pair. During each interactiore thieveral experimental trials: a) spiral scribbles on beahsehtical scribbles
robot randomly chose one of the five trace-making behaviors rice; c) vertical scribbles on wood.

shown in Fig. 5 and performed it. Since 12 different objects
and 12 different surfaces were used, the robot interactéld Whehavior, B;, was either aloodle horizontal scribblevertical

144 different object-surface pairs for a total of 1440 sial scribble spirals or a checkmarksee Figure 5).

Experimental data was collected during each trial. A se-
guence of 640x480 color images were captured from one of
the robot’s cameras at 30 fps. The images were processeq:)a

S . .
described in the next section. Clustering Objects

B. Mark Detection Certain objects are better at leaving marks on some surfaces

The robot processed the image sequences from the camerlg others_. For exa'.“p'e' a maf"er can wr-|te on almost any
the end of a trial to detect whether the object left any marks guriace, while a pen_C|I cannot write on a whl_teboarq. Presum
the surface. The result was a binary ‘yes’ or ‘no’ to spedifg t ably, t'he robot can identify the;e relgtlonshlps as |t.mtE§
outcome of the trace-making behavior. Specifically, theotobWlth different object-_surface pairs. This secthn desesihow
performed image differencing between the first and the |at§|s can be done using unsupervised clustering.
frame in the sequence to find the image regions that changed! he frequency with which each object left a trace on each
Basic morphological operators (one erosion followed by orfelrface was used to capture the relationship that sometebjec
dilation) were applied to the difference image to filter onya are better at leaving traces on some surfaces than others.
noise. Finally, the connected components of the filteredyanalet 2} be the number of times that a trace-making behavior
were detected and only the ones that had an area of more M4l object O; on surfacesS; produced a mark. The robot
20 pixels were preserved. Figure 6 shows the results of thmed the feature vectak; = [2},.. ., z;?] for each object,
procedure for three different surfaces. These were 640x48b- The robot used the X-means unsupervised clustering
color images taken from the robot's left camera. Additionalgorithm to categorize the objects}, into m categories,

results are described in section V.A. C ={C*,...,C™}. X-means extends the standard K-means
algorithm to estimate the correct number of clusters in the
C. Acquiring Interaction Histories dataset [16]. The results are described in section V.B.

Let O denote the set of object§O,...,0.2} and let Similarly, the frequency of observing surface traces made
S denote the set of surface§Si,...,S12}. Also, let B by each object was used to capture the writability relation-
denote the set of five marking behavidiB, ..., B5}. During ships among the different mediums. The robot formed the
the i-th experimental trial, the robot constructed the eupfeature vectory” = [2F, ... zF,] for each surfaceS;. For

(Bi, 0y, S;, F;) to indicate that objecD,; € O and behavior a second time, the robot used unsupervised clustering with
B; € B were used to mark on surfacg; € S and the X-means to categorize the surfaceS, into n categories,
binary mark detection outcom& € {0, 1} was observed. The D = {D*, ..., D"}. Section V.C describes the results.



TABLE |
MARK DETECTION RESULTS FOR EACH OF THEL2 OBJECTS AND THE12 SURFACES THE TABLE SHOWS THE NORMALIZED FREQUENCY WITH WHICH AN
OBJECT LEFT A TRACE ON A GIVEN SURFACEFOR EXAMPLE, A VALUE OF 0.9 INDICATES THAT AN OBJECT LEFT9 MARKS IN 10 TRIALS ON A THE
CORRESPONDING SURFACETHE MISSING VALUES ARE ZEROS WHICH WERE OMITTED FOR CLARITY.

Surface | 2x2 | 2x4 | Plastic Toy | PVC Pipe | Noodle [ Sponge| Towel | Bear | Chalk [ Candle [ Pencil | Marker
Wrapping Paper 1
Card Board 0.9 1
Towel 0.7 0.6 1
Rug 1
W hiteboard 0.1 1
Plexiglass 0.2 0.3 0.8 1 1
Beans 1 1 1 1 1 1 1 1 1 1 0.9 1
Rice 1 1 0.8 1 1 1 1 1 1 1 0.9 1
Terra Cotta Tile 0.2 1
Marble 0.1 1
Wood 0.9 1
BulletinBoard 0.6 1

V. RESULTS identify coherent categories of objects and surfaces based
A. Mark Detection the outcomes of these interactions. The next two subsection

) ) describe how this process can be automated.
Table | shows the results for the frequency with which each

object left a trace on each surface. As expected, the tablessh B. Object Categories

that every object consistently left a trace in the beans andusing unsupervised clustering (X-means) to group objects
rice. Furthermore, the marker left a trace during everyl trijdgased on the outcomes shown in Table | resulted in three
in which it was used. Surprisingly, the table also shows thafusters of objects. The first cluster included the market an
neither the pencil nor the candle left easily-perceptibdeés. the chalk. The second cluster included the pencil. The last
The pencil undoubtedly left traces on some surfaces, but @ster included the rest of the objects.
robot's camera could not easily detect the small lines. Mark The robot clearly identified coherent categories of writing
left with the candle were somewhat faint, which made thefstruments. For example, the largest cluster represéms t
difficult for the robot to perceive as well. group of objects that provide the least utility in writingskes
The challenges associated with performing a large-scaléhey only leave traces in surfaces that can be displaceel. Th
experiment with many different objects and surfaces cafluster with the marker and the chalk could be considered to
explain some of the odd results in the table. For exampléien tinclude the best writing instruments, as they leave peiiokept
first round of trials with the towel, the 2x2 object left a mamk traces on most of the surfaces that they are tried on. However
7 out of 10 trials. Shifting creases in the towel caused theto we expected slightly different results. The experiment foas
to detect them as marks. In subsequent trials the expermenhulated to include six groups of objects with different niatie
attached the towel steadfastly to the table which prevethied properties. But the robot instead found three categoribsiw

from happening when the other objects were used. Anothgétter reflected the objects’ functional properties (whieeyt
cause of false positive mark detection errors were chang@® used by a robot and not by a human).

in background shadows and reflections, since they were not )

filtered out. This was an issue only for the plexiglass sarfacC: Surface Categories

which is highly reflective. Finally, sometimes the robot ped Grouping the surfaces with X-means resulted in three cate-
the surface into a new position while attempting to write ogories: one cluster with the beans and rice; another clustber

it with the object. This change in surface position was alghe cardboard, towel, plexiglass, wood, and bulletin bpard
detected as a mark in the case of the terracotta tile and #ed the last cluster with the wrapping paper, rug, whitethpar
PVC pipe. terracotta tile, and marble.

Most positively, the results of mark detection uncovered The robot clearly separated the surfaces by their functiona
several relationships among the different objects and tpeoperties. The first cluster represented the surfaces achwh
different surfaces. Namely, many of the objects only leftés the robot can write by displacing the individual grains érand
in the beans and rice. The marker and the chalk were the oblkyans). The second category included the surfaces on which
two objects that frequently left marks on other surfacesoAl both the marker and the chalk can leave traces. The last group
five of the surfaces captured marks made by both the markemntained the surfaces on which only the marker can leave
and the chalk, whereas five other surfaces captured only theces reliably.
traces left by the marker. The second cluster of surfaces was much more coarse as

These results suggest that the robot might be able ¢compared to the glossy surfaces in the third cluster, which e



plains why both the marker and the chalk left marks on therfwhich is what the robot did). In the case that we had gotten

The plexiglass is the exception in cluster two, and it wastmaosategoriesexactly similar to those that we selected for the

certainly unexpected that chalk could leave a trace on yip&t t experiments, it would have been likely that we made too many

of surface. This result supports the conclusion that a febosimplifying assumptions.

knowledge should be grounded in its sensorimotor expegienc Thus, our results represent more experimental evidence in

[17][18], i.e., a programmer would have incorrectly cléigsl support of the idea of letting robots learn their own repneae

the relationship between the chalk and the plexiglass. tions from their own s interactions with the environment][17
It is interesting to note that the surfaces that provide tj&8]. Human programmers should resist hardcoding represen

most utility in writing tasks (e.g., the beans and the rice) atations that the robot cannot be independently test, veaifg

the surfaces that do not require a specific writing instrumercorrect by itself.

Almost every object could consistently displace them to enak

marks. Furthermore, the traces made in these surfaces lgre on VIl. CONCLUSIONS ANDFUTURE WORK

temporary, whereas the marks left on the other surfaces were . _ .
more permanent. This study addressed three important questions inherent

to the problem of creating robots that can learn how to
VI. DiscussioN form categories of writing instruments and writable suefsc

The robot clearly formed coherent object categories and doifst, this paper studied whether a robot could learn froen it
herent surface categories, which shows that the robot eetjuiinteractive behaviors to identify the objects and the mig$a
meaningful relationships from its sensorimotor expereencthat facilitate writing. Second, it tested whether a robotild
The results also show that it is not necessary to preprogran§a€gorize objects in a coherent way based on their mark-
robot to make judgments about specific object-surface paifgaking properties. Finally, it tested whether a robot casugr
i.e., 144 pairs in our case. Instead the robots should bediiferent surfaces based on the ease with which it can leave
charge of making these judgments on its own. Also, the praces on them.
grammer would have undoubtedly made incorrect judgments,This paper showed that a robot can interactively form
e.g., assuming that chalk only leaves traces on coarsecssgifacategories of writing instruments and writable surfaces by
while, in fact, it works well on plexiglass. A programmerdetecting marks after it manipulates objects and surfages i
would probably also have made some simplifying assumis environment. It also showed that the robot can use its
tions, e.g., that a robot could adequately grasp a markeapwhnteraction history to identify the functional similags among
in fact, we had to construct an artificial object with propest the objects and the surfaces. The robot used 5 differeng-trac
similar to those of a marker that the robot could grasp. ~ making behaviors to interact with 12 different objects and

The mere fact that we had to construct a graspable markét different surfaces. The robot exhaustively tested thé 14
is evidence that an object a human can write with is néifferent object-surface pairs to identify which combioat
necessarily an object a robot can write with. The robot has frovide the most utility in writing tasks. Also, the roboteas
own perceptual world, oumwelt which is clearly different the frequency with which each object left a trace on each
from our own [19]. Consequently, the amount of force that $urface to learn categories of writing instruments andaloti
human would have to apply with a writing instrument woulgurfaces.
probably also vary greatly from the amount of force that a One aim of this research was to determine if the robot would
robot would have to apply. This discrimination between theategorize the objects and the surfaces in the same way that
two is closely tied to the fact that the robot did not alwaysategories were perceived by humans. We found that the robot
perceive that a mark was made even when the experimentdic not, which is an indication that robots are not like husian
did. The experimenters could clearly see the pencil marksstead, they have their own perception of objects and sesfa
that the robot made on the majority of the surfaces, but tfide robot learns these relationships from its own sensdgmo
marks were too faint and too slim for the robot to perceivexperience and, therefore, new categorizations of obputs
Therefore, it should not have been surprising that the robstrfaces were found.
would find different relationships among the objects and the This paper is one of the first studies that explored the idea
surfaces compared to those that we expected. of creating robots that can learn how to write on their own.

We expected that the robot would form six different cateDuring the process, it revealed several non-trivial proide
gories of writing instruments and six different categor@fs that are left for future investigation. For instance, rabtiat
writable surfaces because of the different material prigeer write must be capable of modifying the force that they apply
among the categories. This was certainly what Brooks meamith different writing instruments. A robot that presse® to
when he stated that the perceptual world “we humans provifienly would squish the tip of a marker, whereas a robot
our programs is based on our own introspection” [19]. Beeauthat presses too gently could not use chalk to make traces.
the robot has a different sensorimotor apparatus from usnother extension is to explore how a robot could learn
however, the robot was predisposed to form categories that ¢hat trace-makingis tightly coupled with the robot’s own
different from those that we expected. Subsequently, waldhomovement. A further extension could be to learn perceptual
have initially expected the robot to forwifferent categories models of writing instruments and writable surfaces based o



some interactive trials in order to avoid extensive triablan
error for many other novel objects.
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