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Abstract— This study asks the question: Can a robot learn
to identify object-surface pairs that are useful for trace-making
and, thus, facilitate writing? Writing is an important skill that
humans use everyday and future household robots may have to
master in order to be useful. Specifically, our robot performed
scribbling behaviors with different objects on different surfaces
and monitored which objects leave marks on which surfaces. The
frequency with which marks were detected was used by the robot
to group the writing instruments and the writable surfaces into
meaningful categories, which capture their functional properties
from the robot’s point of view.

I. INTRODUCTION

Writing is a unique skill that humans use on a daily basis to
convey and capture information. We scribble notes to augment
our memory, draw figures to explain concepts, and doodle to
kill time. J.J. Gibson pointed out that writing is a special
form of tool use, which requires a special tool that has the
ability to leave a trace on a surface: “A hand-held tool of
enormous importance is one that, when applied to a surface,
leaves traces and thus affordstrace-making. The tool may be a
stylus, brush, crayon, pen,or pencil,but if it marks the surface
it can be used to depict and to write, to represent scenes and to
specify words” [1, p.134]. Clearly, before humans can master
the intricate nature of writing they must learn to identify the
object-surface pairs that facilitate this skill.

The ability to choose an object that could leave a mark on a
given surface is an important prerequisite for the development
of writing skills. For example, a pencil can leave a trace on
paper but not on a white board. Additionally, the objects and
the surfaces that can be used for writing are not restricted to
the things humans commonly use to make marks, e.g., pencil
and paper. Even a stick could be used to make marks in a
sandbox. Preprogramming a robot with the ability to make
these judgments is neither practical nor feasible; there are
simply too many object-surface combinations. Furthermore,
an object that a human can write with is not necessarily an
object that a robot can write with.

Humans acquire many skills through interacting with the
environment and perceiving the changes produced by this
interaction [2]. Work in developmental psychology also sug-
gests that infants form object categories by processing the
relationships between objects which define events [3]. In other
words, as infants manipulate objects and observe different
outcomes, they also correlate their observations with objects
encountered during previous interactions. As they manipulate

Fig. 1. The upper-torso humanoid robot used in the experiments. The robot
is pictured holding an oversized pencil while scribbling ona wooden surface.

more and more objects, they identify relationships among them
and start to form categories. This is the approach we took with
our robot.

This investigation tests the assumption that a robot can learn
to identify a good trace-making object for a given surface. This
is done by programming a robot with several trace-making
behaviors (scribbles, lines, etc.) and an ability to detecttraces.
After the robot interacts with different objects and different
surfaces, it forms surface categories by using the frequency
with which each object left a trace on each surface. The
hypothesis is that certain objects are better at leaving traces
on some surfaces but not on others and that this property can
be detected by the robot using unsupervised clustering.

II. RELATED WORK

There is little related work in robotics that addresses robot
writing skills from a developmental point of view. The existing
work mostly addresses the control challenges associated with
writing (i.e., the positioning and detection of instruments that
potentially may be used to write with).

For instance, writing legibly requires precise control of the
tip of an object. Kemp and Edsinger [4] proposed a method
for autonomous detection and control of the tip of a tool by a
robot. In their approach, a robot identified the tip of a tool as
the region of an image furthest from the robot’s hand that also
moved with it. Once the tip was found, a feature detector was
used to track the tip’s position and orientation in the visual



Fig. 2. The twelve objects used in the experiments and their corresponding
material types:(row 1) 2x2 and 2x4 (wood); plastic toy and PVC pipe
(plastic); (row 2) noodle and sponge (sponge); hand towel and teddy bear
(cloth); (row 3) sidewalk chalk and wax candle (soft materials); oversized
pencil, whiteboard marker attached to a piece of wood to make itgraspable
(common writing instruments). Shown not to scale.

field. Using this approach, a robot could potentially learn to
detect the tip of writing instruments such as markers. Another
work which deals with force control and visual servoing to
grasp a writing tool was done by Olssonet al. [5] and
their study was validated using a connect-the-dots task on a
whiteboard using a marker.

Forming written characters also requires following precise
movement patterns. Yussofet al. [6] argued that programming
a robot with a separate trajectory for each character does not
scale well as new symbols are added. Instead, they created
primitive trajectories (linear and curved) and combined them in
different ways to produce distinct characters. For example, the
character ‘b’ can be written using one linear and one curved
trajectory.

Establishing methods for combining trajectories to produce
distinct symbols is another challenging problem. A robot pro-
grammed with the framework proposed by Zhang and Weng
[7] could learn to combine previously learned trajectoriesin
order to create new ones. The robot used an approach known
asscaffoldingwhich is a process of using previously learned
skills to solve a more complex task. In one demonstration, the
robot learned to draw a four-petal flower after a human trained
it to draw a single petal.

Frankeet al. [8] studied a method of providing a strong
foundation for signature analysis procedures by means of
a writing robot. This robot could take up different writing
instruments in order to provide various types of ink deposit.
The robot simulated human handwriting movements but the
writing instruments and paper were selected by the program-
mer. Another study used high-level robot planning techniques
to reproduce a procedure used by human painters [9].

Pfeifer and Scheier [10] conducted a study in which a robot
categorized different-sized objects using its own movements

Fig. 3. The twelve surfaces used in the experiments shown in vertical
pairs of two along with their material types:(column 1) wrapping paper
and cardboard (paper); beans and rice (deformable surfaces formed of small
objects);(column 2) towel and rug (cloth); terracotta tile and marble (stone);
(column 3) whiteboard and plexiglass (plastic); wood and bulletin board
(wood).

and interactions. Furthermore, Metta and Fitzpatrick [11]
found out that the process of categorizing objects could be
much easier if the robot is allowed to interact with the objects.
This was tested on a task of distinguishingrollable objects
from non-rollableones. In another study, Katz and Brock [12]
used interaction to identify the planar kinematic properties of
objects.

A robot can interact with objects to determine not only
their functional properties, but also to cluster the objects into
meaningful categories. This was illustrated in the following
two studies. The robot in Griffithet al. [13] formed object
categories by observing the movement patterns between two
objects. The robot formed ‘container’ and ‘non-container’
object categories and learned a perceptual model that ac-
curately detected the categories of novel objects. Another
study done by Sinapov and Stoytchev [14] presented the
idea of learning to categorize objects based on their acoustic
properties which were obtained by performing a sequence of
exploratory behaviors with them (grasp, shake, drop, push,and
tap).
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Fig. 4. Snapshots from one experimental trial: a) before eachtrial, an experimenter placed one of the 12 surfaces (wood in this case) on the table in front
of the robot and one of the 12 objects (the oversized pencil inthis case) in the robot’s hand; b) The robot moved the object toa randomly chosen position
above the surface and then lowered the object until it touched the surface. This event was detected automatically based onthe sensed torque values; c) The
robot starts to make a trajectory on wood. This trajectory is randomly chosen from one of the five marking behaviors shown in Fig. 5; d) The robot finishes
making the trajectory; e) The robot moves the pencil out of its visual field in order to detect any marks that were left on the surface.

III. EXPERIMENTAL SETUP

A. Robot

All experiments described in this paper were performed with
an upper-torso humanoid robot. Two 7-DOF Barrett Whole
Arm Manipulators (WAMs) are used for the robot’s arms. Each
arm has a three-finger Barrett Hand as its end effector (see Fig.
1). The WAMs are mounted in a configuration similar to that
of human arms. The arms are controlled in real time from a
Linux PC at 500 Hz over a CAN bus interface. The robot is
also equipped with two cameras (Quickcams from Logitech).
The cameras capture 640x480 color images at 30 fps.

B. Objects and Surfaces

During the experiments, the robot interacted with 12 dif-
ferent objects and 12 different surfaces. The objects and the
surfaces include common household items as shown in Fig. 2
and Fig. 3. Before each experimental trial, one of the 12
surfaces was placed on a table in front of the robot.

More specifically, objects and surfaces were selected in pairs
based on their material properties as perceived by humans.
For example, a towel and a rug are both made of cloth and
therefore, the changes on each of these surfaces were expected
to be similar. The six pairs of human selected surfaces were:
towel and rug (cloth), wrapping paper and cardboard (paper),
marble and terracotta tile (stone), wood and bulletin board
(wood), plexiglass and whiteboard (plastic), and finally, beans
and rice (deformable surfaces formed of small objects).

Humans often try to leave traces in sand since the particles
can be easily displaced. The same notion was applied to this
study but instead of using fine grains like sand, which could
get inside the robot’s drive mechanism, beans and rice were
used. Beans and rice have the similar material and functional
properties as sand so our results should be applicable to sand
as well.

Similar selection criteria were used for the 12 objects. Once
again there were six pairs: 2 by 2 and 2 by 4 (wood), plastic
toy and PVC pipe (plastic), noodle and sponge (sponge), hand
towel and teddy bear (cloth), chalk and candle (soft materials),
and pencil and marker (common writing instruments). The
objects were selected in such a way that they must be firmly
graspable by the robot. The only exception was the whiteboard

marker which was too small and was fixed to a shank of wood
to make it graspable by the robot.

The experimental results (described below in section V.)
show a different clustering of objects and surfaces by the
robot than the intended clusters. In other words, the robot’s
perception of these objects and surfaces is different from that
of the humans. The clusters that the robot identified are based
on the functional properties of the objects and the surfaces
as perceived by the robot. Humans cluster these based on
their material properties which explains why the clustering
produced by the robot is different from what we expected.

C. Behaviors

The robot performed three behaviors during each experi-
mental trial: 1) position the object at a random start location
on the surface; 2) execute a trace-making trajectory; and 3)
move the hand out of the visual field. The three behaviors are
described in more detail below. Figure 4 shows a sequence of
snapshots from a sample trial.

1) Position Behavior:At the start of each trial, the robot
positioned the object directly above the surface. It then lowered
its arm until the object touched the surface. The robot auto-
matically detected the touch down based on an empirically
determined torque values which was the same for all objects.
This was used as a calibration routine since the different
objects had different lengths. All the objects were held in the
same way.

2) Mark Behavior:The robot randomly selected one of five
marking behaviors to perform (see Fig. 5). The chosen scrib-
bles, doodles, and check marks were motivated by research in
developmental neuroscience, which suggests a progressionof
mark-making behaviors in infants [15].

The robot added an extra amount of force in the downward
direction to leave a trace. The extra amount of force was
determined heuristically such that the robot pressed hard
enough to make traces with the chalk but light enough that
the tip of the marker would not get mashed in. The same
amount of force was used for all objects.

3) Move Behavior:The robot moved the object out of its
visual field at the end of a trace-making behavior. This step
allowed the robot tosee the outcome of the object-surface
interaction (detected using the method described below in
Section IV.B).



Fig. 5. The five different marking behaviors: (row 1) horizontal scribbles,
and vertical scribbles; (row 2) doodles, spiral, and check mark.

IV. METHODOLOGY

A. Data Collection

The robot exhaustively tested whether an object could be
used to leave traces on a surface by performing 10 interactions
with each object-surface pair. During each interaction, the
robot randomly chose one of the five trace-making behaviors
shown in Fig. 5 and performed it. Since 12 different objects
and 12 different surfaces were used, the robot interacted with
144 different object-surface pairs for a total of 1440 trials.

Experimental data was collected during each trial. A se-
quence of 640x480 color images were captured from one of
the robot’s cameras at 30 fps. The images were processed as
described in the next section.

B. Mark Detection

The robot processed the image sequences from the camera at
the end of a trial to detect whether the object left any marks on
the surface. The result was a binary ‘yes’ or ‘no’ to specify the
outcome of the trace-making behavior. Specifically, the robot
performed image differencing between the first and the last
frame in the sequence to find the image regions that changed.
Basic morphological operators (one erosion followed by one
dilation) were applied to the difference image to filter out any
noise. Finally, the connected components of the filtered image
were detected and only the ones that had an area of more than
20 pixels were preserved. Figure 6 shows the results of this
procedure for three different surfaces. These were 640x480
color images taken from the robot’s left camera. Additional
results are described in section V.A.

C. Acquiring Interaction Histories

Let O denote the set of objects{O1, . . . , O12} and let
S denote the set of surfaces{S1, . . . , S12}. Also, let B
denote the set of five marking behaviors{B1, . . . , B5}. During
the i-th experimental trial, the robot constructed the tuple
(Bi, Oi, Si, Fi) to indicate that objectOi ∈ O and behavior
Bi ∈ B were used to mark on surfaceSi ∈ S and the
binary mark detection outcomeFi ∈ {0, 1} was observed. The
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Fig. 6. Before and after snapshots taken from the robot’s camera during
several experimental trials: a) spiral scribbles on beans; b) vertical scribbles
on rice; c) vertical scribbles on wood.

behavior,Bi, was either adoodle, horizontal scribble, vertical
scribble, spirals, or a checkmark(see Figure 5).

D. Clustering Objects

Certain objects are better at leaving marks on some surfaces
than others. For example, a marker can write on almost any
surface, while a pencil cannot write on a whiteboard. Presum-
ably, the robot can identify these relationships as it interacts
with different object-surface pairs. This section describes how
this can be done using unsupervised clustering.

The frequency with which each object left a trace on each
surface was used to capture the relationship that some objects
are better at leaving traces on some surfaces than others.
Let zk

j be the number of times that a trace-making behavior
with object Oj on surfaceSk produced a mark. The robot
formed the feature vectorXj = [z1

j , . . . , z12

j ] for each object,
Oj . The robot used the X-means unsupervised clustering
algorithm to categorize the objects,O, into m categories,
C = {C1, . . . , Cm}. X-means extends the standard K-means
algorithm to estimate the correct number of clusters in the
dataset [16]. The results are described in section V.B.

Similarly, the frequency of observing surface traces made
by each object was used to capture the writability relation-
ships among the different mediums. The robot formed the
feature vectorY k = [zk

1
, . . . , zk

12
] for each surface,Sk. For

a second time, the robot used unsupervised clustering with
X-means to categorize the surfaces,S, into n categories,
D = {D1, . . . ,Dn}. Section V.C describes the results.



TABLE I

MARK DETECTION RESULTS FOR EACH OF THE12 OBJECTS AND THE12 SURFACES. THE TABLE SHOWS THE NORMALIZED FREQUENCY WITH WHICH AN

OBJECT LEFT A TRACE ON A GIVEN SURFACE. FOR EXAMPLE, A VALUE OF 0.9 INDICATES THAT AN OBJECT LEFT9 MARKS IN 10 TRIALS ON A THE

CORRESPONDING SURFACE. THE MISSING VALUES ARE ZEROS, WHICH WERE OMITTED FOR CLARITY.

Surface 2x2 2x4 Plastic Toy PVC Pipe Noodle Sponge Towel Bear Chalk Candle Pencil Marker

Wrapping Paper 1
Card Board 0.9 1

Towel 0.7 0.6 1
Rug 1

Whiteboard 0.1 1
Plexiglass 0.2 0.3 0.8 1 1

Beans 1 1 1 1 1 1 1 1 1 1 0.9 1
Rice 1 1 0.8 1 1 1 1 1 1 1 0.9 1

Terra Cotta T ile 0.2 1
Marble 0.1 1
Wood 0.9 1

BulletinBoard 0.6 1

V. RESULTS

A. Mark Detection

Table I shows the results for the frequency with which each
object left a trace on each surface. As expected, the table shows
that every object consistently left a trace in the beans and
rice. Furthermore, the marker left a trace during every trial
in which it was used. Surprisingly, the table also shows that
neither the pencil nor the candle left easily-perceptible traces.
The pencil undoubtedly left traces on some surfaces, but the
robot’s camera could not easily detect the small lines. Marks
left with the candle were somewhat faint, which made them
difficult for the robot to perceive as well.

The challenges associated with performing a large-scale
experiment with many different objects and surfaces can
explain some of the odd results in the table. For example, in the
first round of trials with the towel, the 2x2 object left a markin
7 out of 10 trials. Shifting creases in the towel caused the robot
to detect them as marks. In subsequent trials the experimenter
attached the towel steadfastly to the table which preventedthis
from happening when the other objects were used. Another
cause of false positive mark detection errors were changes
in background shadows and reflections, since they were not
filtered out. This was an issue only for the plexiglass surface,
which is highly reflective. Finally, sometimes the robot pushed
the surface into a new position while attempting to write on
it with the object. This change in surface position was also
detected as a mark in the case of the terracotta tile and the
PVC pipe.

Most positively, the results of mark detection uncovered
several relationships among the different objects and the
different surfaces. Namely, many of the objects only left traces
in the beans and rice. The marker and the chalk were the only
two objects that frequently left marks on other surfaces. Also,
five of the surfaces captured marks made by both the marker
and the chalk, whereas five other surfaces captured only the
traces left by the marker.

These results suggest that the robot might be able to

identify coherent categories of objects and surfaces basedon
the outcomes of these interactions. The next two subsections
describe how this process can be automated.

B. Object Categories

Using unsupervised clustering (X-means) to group objects
based on the outcomes shown in Table I resulted in three
clusters of objects. The first cluster included the marker and
the chalk. The second cluster included the pencil. The last
cluster included the rest of the objects.

The robot clearly identified coherent categories of writing
instruments. For example, the largest cluster represents the
group of objects that provide the least utility in writing tasks
- they only leave traces in surfaces that can be displaced. The
cluster with the marker and the chalk could be considered to
include the best writing instruments, as they leave perceptible
traces on most of the surfaces that they are tried on. However,
we expected slightly different results. The experiment wasfor-
mulated to include six groups of objects with different material
properties. But the robot instead found three categories, which
better reflected the objects’ functional properties (when they
are used by a robot and not by a human).

C. Surface Categories

Grouping the surfaces with X-means resulted in three cate-
gories: one cluster with the beans and rice; another clusterwith
the cardboard, towel, plexiglass, wood, and bulletin board;
and the last cluster with the wrapping paper, rug, whiteboard,
terracotta tile, and marble.

The robot clearly separated the surfaces by their functional
properties. The first cluster represented the surfaces on which
the robot can write by displacing the individual grains (rice and
beans). The second category included the surfaces on which
both the marker and the chalk can leave traces. The last group
contained the surfaces on which only the marker can leave
traces reliably.

The second cluster of surfaces was much more coarse as
compared to the glossy surfaces in the third cluster, which ex-



plains why both the marker and the chalk left marks on them.
The plexiglass is the exception in cluster two, and it was most
certainly unexpected that chalk could leave a trace on that type
of surface. This result supports the conclusion that a robot’s
knowledge should be grounded in its sensorimotor experience
[17] [18], i.e., a programmer would have incorrectly classified
the relationship between the chalk and the plexiglass.

It is interesting to note that the surfaces that provide the
most utility in writing tasks (e.g., the beans and the rice) are
the surfaces that do not require a specific writing instrument.
Almost every object could consistently displace them to make
marks. Furthermore, the traces made in these surfaces are only
temporary, whereas the marks left on the other surfaces were
more permanent.

VI. D ISCUSSION

The robot clearly formed coherent object categories and co-
herent surface categories, which shows that the robot acquired
meaningful relationships from its sensorimotor experience.
The results also show that it is not necessary to preprogram a
robot to make judgments about specific object-surface pairs,
i.e., 144 pairs in our case. Instead the robots should be in
charge of making these judgments on its own. Also, the pro-
grammer would have undoubtedly made incorrect judgments,
e.g., assuming that chalk only leaves traces on coarse surfaces,
while, in fact, it works well on plexiglass. A programmer
would probably also have made some simplifying assump-
tions, e.g., that a robot could adequately grasp a marker, when
in fact, we had to construct an artificial object with properties
similar to those of a marker that the robot could grasp.

The mere fact that we had to construct a graspable marker
is evidence that an object a human can write with is not
necessarily an object a robot can write with. The robot has its
own perceptual world, orumwelt, which is clearly different
from our own [19]. Consequently, the amount of force that a
human would have to apply with a writing instrument would
probably also vary greatly from the amount of force that a
robot would have to apply. This discrimination between the
two is closely tied to the fact that the robot did not always
perceive that a mark was made even when the experimenters
did. The experimenters could clearly see the pencil marks
that the robot made on the majority of the surfaces, but the
marks were too faint and too slim for the robot to perceive.
Therefore, it should not have been surprising that the robot
would find different relationships among the objects and the
surfaces compared to those that we expected.

We expected that the robot would form six different cate-
gories of writing instruments and six different categoriesof
writable surfaces because of the different material properties
among the categories. This was certainly what Brooks meant
when he stated that the perceptual world “we humans provide
our programs is based on our own introspection” [19]. Because
the robot has a different sensorimotor apparatus from us,
however, the robot was predisposed to form categories that are
different from those that we expected. Subsequently, we should
have initially expected the robot to formdifferent categories

(which is what the robot did). In the case that we had gotten
categoriesexactly similar to those that we selected for the
experiments, it would have been likely that we made too many
simplifying assumptions.

Thus, our results represent more experimental evidence in
support of the idea of letting robots learn their own representa-
tions from their own s interactions with the environment [17]
[18]. Human programmers should resist hardcoding represen-
tations that the robot cannot be independently test, verify, and
correct by itself.

VII. CONCLUSIONS ANDFUTURE WORK

This study addressed three important questions inherent
to the problem of creating robots that can learn how to
form categories of writing instruments and writable surfaces.
First, this paper studied whether a robot could learn from its
interactive behaviors to identify the objects and the surfaces
that facilitate writing. Second, it tested whether a robot could
categorize objects in a coherent way based on their mark-
making properties. Finally, it tested whether a robot can group
different surfaces based on the ease with which it can leave
traces on them.

This paper showed that a robot can interactively form
categories of writing instruments and writable surfaces by
detecting marks after it manipulates objects and surfaces in
its environment. It also showed that the robot can use its
interaction history to identify the functional similarities among
the objects and the surfaces. The robot used 5 different trace-
making behaviors to interact with 12 different objects and
12 different surfaces. The robot exhaustively tested the 144
different object-surface pairs to identify which combinations
provide the most utility in writing tasks. Also, the robot used
the frequency with which each object left a trace on each
surface to learn categories of writing instruments and writable
surfaces.

One aim of this research was to determine if the robot would
categorize the objects and the surfaces in the same way that
categories were perceived by humans. We found that the robot
did not, which is an indication that robots are not like humans,
instead, they have their own perception of objects and surfaces.
The robot learns these relationships from its own sensorimotor
experience and, therefore, new categorizations of objectsand
surfaces were found.

This paper is one of the first studies that explored the idea
of creating robots that can learn how to write on their own.
During the process, it revealed several non-trivial problems
that are left for future investigation. For instance, robots that
write must be capable of modifying the force that they apply
with different writing instruments. A robot that presses too
firmly would squish the tip of a marker, whereas a robot
that presses too gently could not use chalk to make traces.
Another extension is to explore how a robot could learn
that trace-making is tightly coupled with the robot’s own
movement. A further extension could be to learn perceptual
models of writing instruments and writable surfaces based on



some interactive trials in order to avoid extensive trial and
error for many other novel objects.

REFERENCES

[1] J. J. Gibson,The Ecological Approach to Visual Perception. New York:
Psychology Press, 1986.

[2] T. G. Power,Play and Exploration in Children and Animals. Mahwah,
NJ: Laurence Erlbaum Associates, Publishers, 2000.

[3] L. Cohen, “Unresolved issues in infant categorization,” in Early category
and concept development, D. Rakison and L. M. Oakes, Eds. New York:
Oxford University Press, 2003, pp. 193–209.

[4] C. C. Kemp and A. Edsinger, “Robot manipulation of human tools:
Autonomous detection and control of task relevant features,” in Proc. of
the Fifth Intl. Conference on Development and Learning, 2006.

[5] R. J. Tomas Olsson, Johan Bengtsson and H. Malm, “Force control and
visual servoing using planar surface identification,” inProc. of the IEEE
Intl. Conference on Robotics and Automation, 2002, pp. 4211–4216.

[6] S. Yussof, A. Anuar, and K. Fernandez, “Algorithm for robot writing
using character segmentation,” inProc. of the 3rd Intl. Conference on
Information Technology and Applications, vol. 2, 2005, pp. 21–24.

[7] Y. Zhang and J. Weng, “Task transfer by a developmental robot,” in
IEEE Transactions on Evolutionary Computation, vol. 11, no. 2, 2007,
pp. 226–248.

[8] L. S. Katrin Franke and M. Koppen, “Pen force emulating robotic writing
device and its application,” inIEEE Workshop on Advanced Robotics
and its Social Impacts, 2005, pp. 36–46.

[9] K. O. T. S. Miti Ruchanurucks, Shunsuke Kudoh and K. Ikeuchi,
“Humanoid robot painter: Visual perception and high-level planning,” in
Proc. of the IEEE Intl. Conference on Robotics and Automation, 2007,
pp. 3028–3033.

[10] R. Pfeifer and C. Scheier, “Sensory-motor coordination: The metaphor
and beyond,” inRobotics and Autonomous Systems, 1997, pp. 157–178.

[11] G. Metta and P. Fitzpatrick, “Early integration of vision and manipula-
tion,” in Adaptive Behavior, vol. 11, no. 2, 2003, pp. 109–128.

[12] D. Katz and O. Brock, “Extracting planar kinematic modelsusing in-
teractive perception,” inRSS Workshop on Robot Manipulation: Sensing
and Adapting to the Real World, Atlanta, GA, 2007.

[13] S. Griffith, J. Sinapov, M. Miller, and A. Stoytchev, “Toward interactive
learning of object categories by a robot: A case study with container
and non-container objects,” inProc. of the 8th IEEE Intl. Conf. on
Development and Learning, 2009.

[14] J. Sinapov, M. Weimer, and A. Stoytchev, “Interactive learning of the
acoustic properties of household objects,” inProc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA), 2009.

[15] “Cod fine motor handout: Importance of fine motor development,”
on-line essay, center of Development Pediatric Therapies. [Online].
Available: http://www.developmentaldelay.net/page.cfm/277

[16] D. Pelleg and A. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters,” inProc. of the 17th Intl. Conf.
on Machine Learning, 2000, pp. 727–734.

[17] R. Sutton, “Verification, the key to AI,” on-line essay.[Online].
Available: http://www.cs.ualberta.ca/ sutton/IncIdeas/KeytoAI.html

[18] A. Stoytchev, “Five basic principles of developmental robotics,” inNIPS
2006 Workshop on Grounding Perception, Knowledge and Cognition in
Sensori-Motor Experience, 2006.

[19] R. A. Brooks, “Intelligence without representation,”in Artificial Intelli-
gence, vol. 47, 1991, pp. 139–159.


