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I. INTRODUCTION

In previous work, Stoytchev [1] introduced a method for
representing the affordances of tools by grounding the rep-
resentation in the behavioral and perceptual repertoire of the
robot. In this representation the affordances of the tool are
expressed in concrete terms (e.g., behaviors and observable
outcomes) that are directly available to the robot.

This work extends that model by introducing a framework
which allows the robot to learn a compact predictive model
for the affordances of a tool. Experiments are conducted that
highlight the model’s generalization properties. The robot is
evaluated on how well it can use knowledge ackquired from
familiar tools in order to predict the affordances of novel ones.
The robot is also tested on how well it can handle familiar
tools whose size has been changed after the training stage.

II. EXPERIMENTS AND RESULTS

All experiments were performed using the open-source
dynamic robot simulator BREVE. The robot is a simulated
arm with 6 degrees of freedom and a gripper attached to the
wrist. Six different tools: T-stick, L-stick, L-hook, Stick, T-
hook, and Paddle were used in the experiments. The robot is
capable of grasping each tool and sliding it in the horizontal
plane in any direction in order to affect the position of a
small cylindrical puck. The task of the robot is to predict the
displacement of the puck as it performs an action with the
tool (see Figure 1).
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Fig. 1. A sample trial with the T-stick tool. At the start of the trial (left), the
robot makes a prediction regarding the outcome of its tool action, At, based
on the current sensory input, St. Once movement of the puck is detected,
the robot is able to verify its prediction by comparing it with the observed
outcome (right).
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Fig. 2. Visualization of the prediction errors made for the regular L-hook
tool (a) and its enlarged version (b). In both cases, the model is trained on the
regular-sized tool. Each point in the two plots represents the puck’s starting
position relative to the tool during some particular learning trial. The points
represented by the large squares indicate cases in which the predicted and
the observed displacement vectors of the puck differ by more than 20

◦.

The robot collects sample data during a behvaioral babbling
training stage. The robot is allowed to use multiple frames of
reference, i.e., it can focus on the tool, the puck, its gripper,
or the center of the camera image, when building a model
and making predictions.

The robot was tested on predicting the affordances of fa-
miliar tools, novel tools, and larger versions of familiar tools.
Generalization across new tools is best achieved when the
novel tool shares similar features with the tool on which the
robot was trained. Figure 2 shows a visualization of the pre-
diction errors of the model for an L-hook tool. The likelihood
of prediction error is higher if the puck is located near one of
the tool’s corners and lower if the puck is near one of the tool’s
smooth surfaces. The plot also shows that the robot is capable
of using the model trained on the regular-sized L-hook even
after the size of the tool has been increased. MPEG movies of
the behavior babbling training stage and details regarding the
learning methods used to construct the models are available
at: (http://www.cs.iastate.edu/˜jsinapov/PosterRSS/).
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