
R E S C I E N C E C
Letter / Machine Learning

Eliminating the Variability of Cross-Validation Results
with LIBLINEAR due to Randomization and Parallelization
Vladimir Sukhoy1, ID and Alexander Stoytchev1, ID
1Iowa State University, Department of Electrical and Computer Engineering, Ames, IA 50011, USA

Edited by
Konrad Hinsen ID

Reviewed by
Georgios Detorakis ID

Xavier Hinaut ID

Received
15 July 2019

Published
04 November 2019

DOI
10.5281/zenodo.3528175

Cross-validation is the gold standard for evaluatingmachine learning algorithms or fine-
tuning their parameters. The results of this technique, however, are not always repro-
ducible andmay depend on the computing platform and the number of parallel threads,
especially if the underlying learning algorithm uses a pseudo-random number genera-
tor (PRNG). This paper gives a recipe for solving these reproducibility problems and
applies it to LIBLINEAR1, a popular software library that implements randomized learn-
ing algorithms based on support vectormachines2. The proposed approach solves these
problems by using a cross-platform PRNG and bymaking the PRNG state private in each
thread. The cross-validation results obtained with the modified version of LIBLINEAR
are the same across platforms. Furthermore, the parallelized cross-validation results
are no longer affected by random fluctuations arising from the sharing of the PRNG
state by parallel threads.

1 Introduction

The reproducibility ofmachine learning results has been questioned in the top scientific
journals3,4,5,6. Similar issues have been brought up in the Artificial Intelligence7,8 and
Machine Learning9 communities. According to Henderson et al.7, reproducibility prob-
lems canbe extrinsic, i.e., unrelated to the algorithms or their implementations, or intrin-
sic, i.e., directly associated with the algorithms, their implementations, or the comput-
ing environments in which they run. This paper describes a technique that eliminates
two intrinsic problems that may impede the reproducibility of cross-validation results
for randomized learning algorithms. The first problem stems from using a platform-
dependent pseudo-random number generator (PRNG). The second problem is due to
sharing of the PRNG state by parallel threads.
Cross-validation (CV) is a statistical technique that is often used to evaluate machine
learning algorithms or to select their parameters (see Figure 1). It assigns data instances
intoN folds and then picksK folds for testing andN−K folds for training. This process
is repeated R times and the results are averaged. Typically,K = 1 and R = N . Because
a PRNG is often used to assign instances to folds, the resultsmay depend on the platform
(i.e., OS, programming language, compiler, runtime libraries, etc.). It is straightforward
to parallelize CV by distributing the R repetitions over T threads, but the results can be
affected by PRNG state sharing. In particular, this is true for algorithms implemented in
C or C++ that use the standard function rand(). Furthermore, rand() may not even
be thread-safe (POSIX 7, 2018, p. 1767).
The proposed technique solves the first reproducibility problemby replacing a platform-
dependent PRNG with a cross-platform PRNG. In the experiments, we used the SIMD-

Copyright © 2019 V. Sukhoy and A. Stoytchev, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Vladimir Sukhoy (sukhoy@iastate.edu)
The authors have declared that no competing interests exists.
Code is available at https://github.com/sukhoy/cvrep.
Open peer review is available at https://github.com/ReScience/submissions/issues/6.

ReScience C 5.3 (#1) – Sukhoy and Stoytchev 2019 1

https://orcid.org/0000-0003-2208-9459
https://orcid.org/0000-0002-9871-4663
https://orcid.org/0000-0003-0330-9428
https://orcid.org/0000-0001-5891-1702
https://orcid.org/0000-0002-1924-1184
mailto:sukhoy@iastate.edu
https://github.com/sukhoy/cvrep
https://github.com/ReScience/submissions/issues/6
https://rescience.github.io/


Eliminating the Variability of Cross-Validation Results with LIBLINEAR due to Randomization and Parallelization

D1 D2 D3 D4 D5 D6 D7 D8 D9Data set:

D2 D5 D6
fold 2

D3 D7 D9
fold 1

D1 D8 D4
fold 3

assign to folds

D3 D7 D9
D1 D8 D4

D2 D5 D6

train test
thread 2

D3 D7 D9
D2 D5 D6
D1 D8 D4

train test
thread 1

D3 D7 D9
D2 D5 D6

D1 D8 D4

train test
thread 3

parallelize

Figure 1. Visualization of parallelized cross-validation. In this case, there are 9 data instances
that are randomly assigned to 3 folds, which is indicated using colors. Three parallel threads are
used for the evaluation. The first thread uses folds 2 and 3 for training and fold 1 for testing. The
second thread uses folds 1 and 3 for training and fold 2 for testing. The third thread uses folds 1
and 2 for training and fold 3 for testing. The results from all three threads are averaged.

oriented Fast Mersenne Twister (SFMT) library11, but the approach should work with
any cross-platform PRNG. The second reproducibility problemwas solved by re-seeding
the PRNG in each thread before each repetition and holding the PRNG state variables in
thread-local storage (TLS). These modifications do not require synchronizing the PRNG
calls in parallel threads. That is, they donʼt reduce the scalability of parallelized CV.
This technique was evaluated bymodifying LIBLINEAR1, which is a popular library that
implements randomized learning algorithms based on linear support vector machines2.
The original library is affected by both reproducibility problems described above. The
experiments showed that the results obtained with the modified version of the library
remained reproducible across platforms and compilers. Furthermore, the results were
not affected by the number of parallel threads used during the CV.

2 A Recipe for Reproducible Parallelizable Cross-Validation

The choice of a PRNG may affect the results of a parallelized CV when it is used with a
randomized learning algorithm. More specifically, this choice affects: 1) the generation
of CV folds; and 2) the PRNG output used by the learning algorithm in each thread. In
both cases, the following recipe makes the results reproducible:

1. Use reproducible CV folds. This can be achieved by using a predetermined assign-
ment of instances to folds or by using a known random seed for a randomized as-
signment.

2. Use thread-local storage (TLS) to hold the PRNG state in each thread without shar-
ing it with any other thread. Alternatively, each thread can allocate the memory
for its PRNG state dynamically, so that it is not shared with any other thread.

3. Re-seed the PRNG in each thread before processing each CV repetition. That is, if a
thread runsmore than one CV repetition, then use a known random seed to initial-
ize the threads̓ PRNG before processing each repetition. The simplest approach is
to use the same random seed in all cases. Another possibility is to determine the
random seed from the data, e.g., by deriving the seed from the value of a crypto-
graphic hash function applied to the data in the test fold. Yet another possibility is
to use a PRNG that is independent of other PRNGs for each CV repetition12, which
prevents exhausting the state space when all PRNGs are structurally the same and
only their seeds are different.

The next section describes how to apply this recipe to the LIBLINEAR library.

ReScience C 5.3 (#1) – Sukhoy and Stoytchev 2019 2

https://rescience.github.io/


Eliminating the Variability of Cross-Validation Results with LIBLINEAR due to Randomization and Parallelization

3 Modifications for LIBLINEAR

This section describes how to patch LIBLINEAR (version 2.21) to ensure CV reproducibil-
ity. This version of the patch assumes that a modern compiler is used (i.e., GCC 4.2
and later or LLVM/Clang 3.9 and later). The patch replaces all calls to rand() with a
different PRNG based on the SFMT library11. The first five steps ensure that the cross-
validation results are reproducible across platforms. The last step makes it possible to
parallelize the cross-validation using multiple threads while preserving reproducibility.

1. Create a sub-directory called SFMT in the top-level LIBLINEAR directory and un-
pack the SFMT library there (we used SFMT v. 1.5.1). Then, compile it as follows:
$ cc -c -fPIC -DSFMT_MEXP=19937 SFMT.c

2. Extend LIBLINEARs̓Makefile to link it with SFMTby inserting the following line
before the line that starts with all:
override LIBS += SFMT/SFMT.o

3. Redirect all rand() calls to its SFMT-based replacement using the C/C++ prepro-
cessor so that each threaduses a local private PRNGstate by inserting the following
snippet after all #include directives at the beginning of linear.cpp:
#include ”SFMT/SFMT.h”
#define rand sfmt_random
#define RAND_MAX 0x7fffffff
static __thread sfmt_t sfmt = {};
static const int default_sfmt_seed = 1234;
static inline int sfmt_random() {

return sfmt_genrand_uint32(&sfmt) % RAND_MAX;
}
void seed_liblinear_PRNG(int seed) {

sfmt_init_gen_rand(&sfmt, seed);
}
static void __attribute__((constructor)) seed_sfmt_startup() {

seed_liblinear_PRNG(default_sfmt_seed);
}

4. Add a function that initializes the random seed to LIBLINEARs̓ interface by insert-
ing the following line in linear.h:
void seed_liblinear_PRNG(int seed);

This change is useful when LIBLINEAR is used as a library by another application.

5. To ensure that CV results are reproducible evenwith parallel processing, the PRNG
should be re-seeded before processing each repetition. To achieve this, modify the
last for-loop in the function cross_validation() in linear.cpp as follows:

for(i=0;i<nr_fold;i++)
{

seed_liblinear_PRNG(default_sfmt_seed);
...

}

6. To enable parallel processing, use OpenMP (OpenMP v.3, 2008) to distribute the
fold combinations to the worker threads by adding the following #pragma option
before the same for-loop as in the previous step:

#pragma omp parallel for
for(i=0;i<nr_fold;i++)

To enable OpenMP it may be necessary to modify the compilation options, e.g., by
adding -f openmp to the CFLAGS variable.

ReScience C 5.3 (#1) – Sukhoy and Stoytchev 2019 3

https://rescience.github.io/


Eliminating the Variability of Cross-Validation Results with LIBLINEAR due to Randomization and Parallelization

OS
Original Version Modified Version

5 Folds 10 Folds 20 Folds 5 Folds 10 Folds 20 Folds
Linux 96.858 96.883 96.952 96.912 96.903 96.932
macOS 96.883 96.828 96.927 96.912 96.903 96.932
Windows 96.858 96.749 96.799 96.912 96.903 96.932

Table 1. CV accuracy for LIBLINEAR on rcv1_train (in %), shown for 3 platforms.

OS
Original Version with Parallelization Modified Version with Parallelization

5 Folds 10 Folds 20 Folds 5 Folds 10 Folds 20 Folds
Linux 96.861 (0.0062) 96.873 (0.0037) 96.951 (0.0082) 96.912 (0) 96.903 (0) 96.932 (0)
macOS 96.883 (0.0037) 96.830 (0.0035) 96.923 (0.0031) 96.912 (0) 96.903 (0) 96.932 (0)
Windows 96.863 (0) 96.759 (0) 96.804 (0) 96.912 (0) 96.903 (0) 96.932 (0)

Table 2. Means and standard deviations of the CV accuracies for 10 independent runs on
rcv1_train (in %), shown for parallelized versions of LIBLINEAR on 3 platforms.

4 Results

Table 1 compares the cross-validated accuracies for the rcv1_train data set14. These
results were obtained using LIBLINEAR-2.21 and its patched version described in the
previous section (excluding step 6). The results are shown for three platforms: 1) Linux
(32 cores, RedHat 4.4.7-18 with GCC 4.4.7), 2) macOS X (4 cores, version 10.13.6 with
Xcode 10.1), and 3) Windows (2 cores, version 10 with Visual Studio 2017). The results
(shown in bold) imply that the modified version of the library produced the same cross-
validation results on all three platforms.
Table 2 shows the accuracy statistics for the parallelized CV. To enable parallel process-
ing, the original version of LIBLINEAR was patched using only step 6 from Section 3;
the PRNG remained unchanged. The modified version was patched using all six steps
from Section 3 and the results with this version are shown in bold. The table shows that
random fluctuations are introduced by parallelization and that the proposed technique
eliminates them (i.e., the standard deviation is zero). The results in both tables were
obtained using the following command line:

$ train -c 4 -e 0.1 -v <n_folds> rcv1_train.binary

where <n_folds> specified the number of folds, i.e., 5, 10, or 20.
On Windows, the PRNG state in Visual Studio is already thread-local, which prevented
fluctuations (see the last row of Table 2). Without re-seeding the PRNGs, however, the
results still depend on the number of threads T . To show this, we performed another
experiment on Windows that used only step 6 from Section 3 and also varied T from 1
to the number of folds N , where N was set to 5, 10, and 20. The results in terms of
average and standard deviation (in %) were as follows: 96.860 (0.0044) for 5-fold CV;
96.760 (0.0068) for 10-fold CV, and 96.800 (0.0043) for 20-fold CV. Table 2 shows that the
results with the modified version (i.e., with all six steps) depend on N but not on T .

5 Conclusion

This paper described a technique that solves intrinsic reproducibility problems of ran-
domized learning algorithms that stem from: 1) using a platform-dependent PRNG; and
2) sharing the PRNG state across parallel threads. A recipe for patching parallelized
cross-validation was described for LIBLINEAR, which is a popular machine learning li-
brary. After applying this patch to LIBLINEAR, the CV results became reproducible on
three different platforms, i.e., Linux, macOS, and Windows, because the random fluc-
tuations arising from PRNG state sharing were eliminated.

ReScience C 5.3 (#1) – Sukhoy and Stoytchev 2019 4

https://rescience.github.io/


Eliminating the Variability of Cross-Validation Results with LIBLINEAR due to Randomization and Parallelization

References

1. R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R.Wang, andC.-J. Lin. “LIBLINEAR: A library for large linear classification.”
In: Journal of Machine Learning Research 9 (2008), pp. 1871–1874.

2. V. Vapnik. Statistical Learning Theory. New York: Wiley, 1998.
3. N. Barnes. “Publish your computer code: It is good enough.” In: Nature 467.7317 (2010), p. 753.
4. R. Peng. “Reproducible research in computational science.” In: Science 334.6060 (2011), pp. 1226–1227.
5. D. Ince, L. Hatton, and J. Graham-Cumming. “The case for open computer programs.” In: Nature 482.7386

(2012), p. 485.
6. M. Hutson. “Artificial Intelligence faces reproducibility crisis.” In: Science 359.6377 (2018), pp. 725–726.
7. P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. “Deep reinforcement learning that

matters.” In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. 2018, pp. 3207–3214.
8. O. Gundersen and S. Kjensmo. “State of the art: Reproducibility in Artificial Intelligence.” In: Proceedings of

the Thirtieth AAAI Conference on Artificial Intelligence. 2018, pp. 1644–1651.
9. D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, and D. Den-

nison. “Hidden technical debt in machine learning systems.” In: Advances in Neural Information Processing
Systems. 2015, pp. 2503–2511.

10. POSIX 7. IEEE Computer Society and The Open Group. IEEE Standard for Information Technology – Portable
Operating System Interface (POSIX) Base Specifications, Issue 7, Version 1003.1-2017. Jan. 2018.

11. M. Saito and M. Matsumoto. “SIMD-oriented Fast Mersenne Twister: A 128-bit pseudorandom number gener-
ator.” In: Monte Carlo and Quasi-Monte Carlo Methods 2006. Ed. by A. Keller et al. Errata: http://www.math.
sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/errata.pdf. Berlin, Germany: Springer, 2008, pp. 607–622.

12. M. Matsumoto and T. Nishimura. “Dynamic creation of pseudorandom number generators.” In: Monte Carlo
and Quasi-Monte Carlo Methods 2000 (1998), pp. 56–69.

13. OpenMP v.3. OpenMP Architecture Review Board. OpenMP Application Program Interface Version 3.0. May
2008.

14. D. Lewis, Y. Yang, T. Rose, and F. Li. “RCV1: A new benchmark collection for text categorization research.” In:
Journal of Machine Learning Research 5 (2004), pp. 361–397.

ReScience C 5.3 (#1) – Sukhoy and Stoytchev 2019 5

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/errata.pdf
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/errata.pdf
https://rescience.github.io/

	Introduction
	A Recipe for Reproducible Parallelizable Cross-Validation
	Modifications for LIBLINEAR
	Results
	Conclusion

