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Abstract— The ability to reason about multiple tools and their
functional similarities is a prerequisite for intelligent tool use.
This paper presents a model which allows a robot to detect the
similarity between tools based on the environmental outcomes
observed with each tool. To do this, the robot incrementally
learns an adaptive hierarchical representation (i.e., a taxonoy)
for the types of environmental changes that it can induce and
detect with each tool. Using the learned taxonomies, the robot
can infer the similarity between different tools based on the
types of outcomes they produce. The results show that the robo
is able to learn accurate outcome models for six different tools.
In addition, the robot was able to detect the similarity between
tools using the learned outcome models.

Index Terms— Developmental Robotics, Autonomous Tool
Use, Robot Manipulation.

I. INTRODUCTION

This allows the robot to compare tools based on what it can
do with them as opposed to comparing the tools based on
their visual features (e.g., shape, color, etc.).

II. RELATED WORK

In one of the earliest examples of autonomous tool use,
Bogoni [2] presents and evaluates a system in which the robot
identifies functional features of objects involved in audti
and piercing operations. The robot uses a superquadratic
model of the tool's shape in order to discover visual feature
that are characteristic of successful tools (e.g., toas tan
pierce). In addition, several methods have been proposed
for object recognition based on functionality using congput
vision and 3D laser scanners [3], [4], [5]. However, these
systems try to categorize the objects (typically human-enad

Tool use is one of the hallmarks of intelligence and istgo|s) without active autonomous exploration by a robot.
fundamental to human life. Many animals have also been \jore recently, Kemp and Edsinger [6] explored how a
observed to use tools [1], indicating that such an abilit is yopot can identify task-relevant features of human-madsto
general adaptation mechanism that helps overcome physicghq showed how a robot can leamn to detect and control the

limitations imposed by an organism’s anatomy.

tip of objects (e.g., the tip of a brush). In previous work,

For a robot to adapt to human environments, it needsoytchev [7], and Sinapost al. [8] demonstrate how robots
to be able to recognize, reason, and learn the functionglap solve tool-using tasks using an affordance representat

properties of different tools it encounters. More specifica

for the tools.

a robot needs to be able to distinguish between similar and |, some tasks, the outcomes that the robot detects as a
different tools based on their functional properties. Whileag it of its behaviors are high-dimensional. Sagiral. [9]
object categorization based on visual features is a well 4 Montesanet al. [10] propose to solve this problem by
studied problem, this paper introduces a model which allowgyystering an initial set of observations intoclusters, each

the robot to detect functional similarity between tools dzhs representing a class of observed effects. The formation of

on the robot’s interactive experience with them.

classes allows the robot to use machine learning methods

To detect the functional similarity between tools, a robotyesigned for discrete data (e.g., Support Vector Machines
needs to model the types of environmental chaqges ('-.ei-m [9] and Baysean Networks in [10]). However, with both
outcomes) it can induce and detect through actions withy these methods the robot cannot discover novel classes of
each tool. This paper makes two contributions toward sglvin gpserved effects as a result of new experience.

this problem. First, this paper introduces a framework i The method described here overcomes this problem by

which the robot incrementally learns and usesaalaptive

presenting a framework in which the robot incrementally

hierarchical taxonomyor the types of outcomes observed as|gans and uses an adaptive hierarchical taxonomy to descri
a result of the robot’s interaction with a tool. The proposedi,q types of changes it can induce and detect in its environ-
method allows the robot to form novel classes of outcomeg,ant through its own actions with a tool. Using the learned

as a result of ongoing experience with the tool.

Second, this paper shows how a robot can estimate thg

representations, the robot is able to infer how similar two
ols are in terms of what the robot can do with them.

functional similarity between tools based on the learned
compact representations for outcomes that the tools peoduc
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Fig. 3. One sample trial with the L-Stick tool and tie¢ate-rightbehavior.

a) b) a) Configuration of the robot, the tool, and the puck at thet st& the
i L . trial; b) End of trial configuration after theotate-right behavior has been

Fig. 1. a) Snapshot from the dynamics simulator showing thetrabm;  performed; c) Retinal image used as cue at beginning of thé tija
b) View from the robot's simulated camera. Observed outcome plotted as the trajectory of the puck imaetntric

coordinates. The trajectory is plotted relative to the pmiskarting location.

such thatlz; anddy; are the horizontal and vertical displace-
ments of the puck between timgs— 1 and j as observed

in the robot’s camera image. Each outcome vedgrcan
Fig. 2. The six different tools used by the robot. From leftight: T-Stick, ~ b€ visualized as the trajectory of the puck’s movements,
L-Stick, Stick, L-Hook, Y-Stick, Arrow. as shown in Fig.3.d. Each behavior is executed for 3000
simulator time steps and the robot samples the positioneof th
puck in the input camera image every 600 time steps. Thus,
Ill. EXPERIMENTAL SETUP each outcome consists of a 10-dimensional feature vector
All experiments were performed using a robot Simu|atordescribing the vertical and horizontal movement of the pUCk
based on the Open Dynamics Engine [11] developed inacross 5 different points in time.
house. The robot is a simulated CRS+ A251 arm with 6 )
degrees of freedom: a slider joint at the base, waist rollC- Data Collection
shoulder pitch, elbow pitch, wrist pitch, and wrist roll. &h During each trial, the tool is positioned in front of the
robot also has a gripper attached to the wrist. A snapshot abbot and the puck is randomly placed in the vicinity of
the simulated robot arm is shown in Fig. 1.a. Six differentthe tool. The robot first grasps the tool and then randomly
tools are used by the robdE:Stick, L-Stick, Stick, L-Hook, Y- selects a behaviaB; € B for execution. Fig. 3 shows a trial
Stick andArrow (see Fig. 2). The last object in the simulation in which the robot applies itsotate-right behavior with the
is a small cylindrical puck which can be moved by the toolL-Stick. Once the behavioB; has been executed, the robot

when the robot performs an action. acquires the triple 8;, C;, O;), indicating that outcome);
was observed after executing behaviBy while detecting
A. Sensory Input, Behaviors and Perceptual Cues perceptual cue€’;. The new data point is then used to update

The robot's sensory input is extracted from a camerdhe robot's model for the given tool, as described below.

positioned directly overhead and looking downward. Fig.
1.b show a sample visual input image. The robot’s set of
behaviors,B, consists of 6 exploratory behaviors with the For many tasks (e.g., prediction of outcomes given behav-
tool: push, pull, slide-left, slide-right, rotate-leéind rotate-  iors and cues), it is important for the robot to form concept
right. Fig. 3.a and 3.b show the view from the robot’'s camereclasses describing the types of outcomes it observes. m bot
before and after a behavior has been executed. [9] and [10], for example, the robot clusters an initial sét o
The robot's perceptual cues;;, are derived from the observations and treats each cluster as a discrete class-of o
camera frames which are retinally mapped to a 30x30 imageomes. This paper presents an alternative approach in which
centered on the green puck, as shown in Fig. 3.c. Formallyhe robot incrementally learns a hierarchy of outcome egss
C; € R39%30x3 je, C; contains the RGB values of each which allows it to discover novel concepts and to model the
pixel in the retinal image. The retinal mapping method thatobserved outcomes at different levels of abstraction.
was used is described in [12].

IV. THEORETICAL MODEL

A. Taxonomy of Outcome Classes

B. Outcome Detection In this work, the robot learns and uses a taxonomy describ-

After the robot executes a behavior, it tracks the puck’s dising the possiblelassesof outcomes that it is able to induce
placements over time. Léte the time at which the robot ex- and detect in its environment. Formally, a taxonorfy,is a
ecutes a behaviaB; while observing cue§’;. The perceived tree defined over outcome classes (i.e., nodgs). ., vy;.
outcome is defined a3; = [dx¢+1, dyri1, -+ dTisk, dyisk] Let O;-”e‘“’ € R™ denote the outcomgrototype for the



observed outcomes that belong to nage wherem is the

dimensionality of each observed outcoifg Vo @ [ogreen ~2.4] |'"'(Mo)
Given a taxonomyZ and an observed outconm@;, the

robot can classify the outcome according to the learned| v, : vy

taxonomy. LetP; = [vro0t, - - -, 1] be a path from the root [oTean ~ _10.0] (omean ~ 112

nodew,.,; to some leaf node;, describing howO; relates

to 7, such thatD, belongs to all class nodes on the path. o o
Fig. 4 shows a simple example of an acquired taxonomy in 3 4
which each observatiof; is sampled from a 1-D mixture of (03" = 109 o4F" ~ o

gaussians distribution. The taxonomy was constructed fromg) A hierarchical taxonomy constructed for outcomes
1000 data points (sampled from the distribution shown in sampled from the mixture of Gaussians distribution in b).
Fig. 4.b) using the method described below. The shaded
nodes in Fig. 4.a show how an example outcome is classifit
according to the learned taxonomy.

o
[
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B. Learning the Taxonomy

An incremental hierarchical top-down clustering approacl | .
was used to learn a taxonomy of detected outcomes for ea i

tool. Given a newly observed outcome);, the (possibly ) propanility distribution of the observed outcomes.
empty) taxonomy/Z, is updated as follows:
Fig. 4. An example hierarchical outcome taxonofy The outcome is a

1) Let B; - [vo, ..., u] be the classification path a@; 1-D value sampled from a mixture of gaussians distributiomshin b). The
according to7. shaded nodes represent an example pBthfrom the root to a leaf node

2) For each C|a33)j € P;, recompute the estimate of which shows how some given outconig (e.g.,O; = 14.5) is classified
mean ; i according ta7. My and M5 are the predictive models (described in section
Oj using the outcomes that fal! v'wthrm].. . . IV.D) associated with the two non-leaf nodesZn
3) Add O, to the leaf nodey;. If a splitting criterion is
met, cluster the outcomes in into k clusters and for

each add a child .node af o the taxonomyr'. . tool, compute anV by N distance matrix4 such that each
The X-Means clustering algorithm [13] was used in step 3matrix elementa., is a measure indicating the distance
X-Means is an extension to the standard K-Means clusteringetween toolss and R in terms of their functional properties.

algorithm with an added efficient estimation of the number  Gjyen an outcome taxononts (obtained through expe-
of clusters. An attempted split is performed on a leaf node itjience with tool S), let L5 = [0%,0% 05 | be the
] ’ ) * mgs

. k) P mRpR

root nodewy. For all subsequent nodes in the taxonomy  of some other taxonomyy, constructed after experience with
7, v was set to70. o tool R. By comparing the leaf outcome classes in the two

In step 1, the robot uses a top-down classification rule taxonomiesZs and 7, the robot can estimate the distance
classify an outcome); according to7. Starting at the root, petween toolsS and R in terms of the types of outcomes
the robot estimates the child outcome clasfor O; such that  hat they produce.
d(0;, 07") < d(0;, 0™) for all other child outcome  \ore specifically, given an outcome prototy@s in L,
classesv. of the root (i.e., standard K-means classification|g; the functionBestMatch(OF, L) return the leaf proto-
rule with Euclidean distance functiod). If v; is not a leaf type OF such thatOZ is the ;orototype inCy that is most
node, the same rule is recursively applied until the fullpat gjilar'to OS. In other wordsd(05,0%) < d(OS, OF) for

. 1 . 1 b) j 1 b p

from the root to a leaf is constructed. all other prototype®?* € L, whered(z, y) is the Euclidean

C. Comparing Tools Using their Outcome Taxonomies dlstance.functlon. ) , ,
Following, two distance measures are defined which com-

The learned hierarchical representation for the types Oi)are two taxonomie§s and 75 by taking into account the
outcomes produced by each tool can be used in order to infel ¢ 5 tcome class prototypes (i.e£s and Lz) of each
how similar or different two tools are. The distance Measurgayonomy. The first functionD;, is defined as:

that was used by the robot takes into account the functional
properties of the tools, i.e., two tools that produce simila 1 |£s| S g
outcomes should be considered similar and vice versa. Dy(7s,Tr) = Zs| > d(O], BestMatch(O7, L))
) : s| 4
The problem is formulated as follows. Given a set/éf i
tools, and the learned taxonomi€s, 75, ..., 7y for each Intuitively, the functionD; can be interpreted as asking the




guestion of whether tooR produces the same outcomes as
tool S. If 7 and 7y are identical, therD;(7g,7r) = 0.0.
However, the distance functiof; is not symmetric, i.e.,
D1(7s,Tr) # D1(Tr,7s), which is why another function,
D-, was defined and used to compute the distance between
two outcome taxonomies:

1 1
Dy(7s,Tr) = 5731(757 Tr) + 591(71%775)

The distance measuf®, is symmetric and only takes into
account the outcome class prototypes at the leaves inee | W' | |
taxonomy.D, was used in all experiments to compute the (@eseendants not shown)
distance between two taxonomies acquired through experi- : : :
ence with two different tools. ] ]

(descendants not shown) (destemdd shown)
" "

| = I
D. Prediction of Outcomes Using The Taxonomy . .

While the task of prediction is not the central theme (eah (iah
investigated in this paper, we briefIy overview how theFig.5. Partialviwalization of the learned outcometaxon@nyhe L-Stick
. . tool after 1200 trials. For each outcome cla@she da(ker trajectory d_enotes
learned taxonomy of outcome® can be incorporated into the outcome prototyp©?<<™, while the lighter trajectories visualize the
a learning framework that allows the robot to anticipate theobserved outcomes from the test set of trials that fall withjn
outcomes of its actions with the tool. «
Let X; = (B;,C;) be defined as an input data point |
indicating that the robot is executing behavid; while
detecting perceptual cues;. The task of the robot is to
learn a predictive modeM (X;) — P, such that for a given ] :
data pointX;, the model returns®, which is the predicted | — ] — | | | !
path from the root node to a leaf node in the taxonaimy - ] ‘ ‘
This path indicates how the yet unobserved outca@maevill
be classified into the taxonomy. Once the robot executes t 1 1 1 1
behaviorB; and observes the outcomg, the predicted path 1 : ;
P, can be compared with the actual pathand the quality of - \ ] \ ] ] h
the prediction can be evaluated. In the machine learning li. —
e.rature’ this prOblem IS known mramhlcal classification Fig. 6. All twelve leaf outcome classes of the learned taxonfonyhe L-
since the class labels are hierarchically structured [14].  stick tool (shown in Fig. 5). The dark trajectory shows thecome prototype
While there are many algorithms developed to addresfr each leaf class in the learned taxonomy, while the lightejectories
the incremental hierarchical classification problem (sbg [ Visualize the observed outcomes that fall within
for a review), the framework presented here uses a simple
solution: each non-leaf node; in the taxonomyZ has an
associated predictive model/; that is trained to predict
the child outcome class of the (yet unobserved) outcom
O, associated withX;. Formally, for a non-leaf nodey,
M;(X;) — v wherevj is a child node ofv; in 7. For
example, the root node in Fig. 4.a contains a modéd},
which given an input data poink;, predicts whether the
outcomeO; falls within v; or v,. Thus, applying a recursive A. Exploring Individual Tools
top-down prediction routine results in a predicted patmfro  In the first experiment the robot performs 1200 trials
the root node to a leaf node in the tree. with the L-Stick tool and incrementally updates the outcome
Each model)/; is realized by an ensemble of classifierstaxonomyZ and predictive modelM after each trial. Fig. 5
for incremental learning as proposed in [15], with a C4.5shows a partial visualization of the acquired taxonomy of
decision tree for each classifier in the ensemble [16]. Th@utcomes after all 1200 trials are completed. Each trajgcto
performance ofM is reported in terms of the normalized H- is plotted relative to the puck’s starting location which is
Loss function as defined by Cesa-Bianehial. in [14]. The  randomly chosen in relation to the tool during each trial.
intuition behind the normalized H-Loss function is thatwgo  The first level of the taxonomy (i.e., the four child nodes of
predictions should be penalized according to the depthén ththe root) is created after thg00*" trial.

| ; L i

taxonomy at which they occur. An H-Loss 0f0 indicates

that the estimated patf?; diverges from the true patt?,

&t the very root of the taxonom¢, while an H-Loss of

0.0 indicates perfect path prediction. For more details on the

precise mathematical formulation of this function, see].[14
V. EXPERIMENTAL RESULTS



TABLE |

SUMMARY OF THE LEARNING RESULTS FOR A TAXONOMY7Z AND A
PREDICTIVE MODEL M FOR EACH OF THE SIX TOOLS
Tool Number of leaf outcomel Normalized H-Loss of
classes inZ the predictive modeM

T-stick 18 0.165
L-stick 12 0.084
Stick 7 0.013
L-Hook 14 0.085
Y-Stick 19 0.198
Arrow 14 0.133

Fig. 7. A visualization of the types of movement trajectoriéthe puck that
the robot can induce with its behaviors for each of the 6 toblitrajectories infer the functional similarity between different toolsigF8
are plotted relative to the puck’s starting location, whigtthosen randomly . . .

shows the computed distance matrix for all pairs of tools.

for each trial.
As expected, Fig. 8 shows that the inferred distance
between identical tools i6.0. The two most similar tools

The root node contains all observed outcomes, each plottegte the L-Stick and the L-Hook, which is not surprising
as a trajectory of the puck’s detected movement relative t@onsidering that their shapes are almost identical. Thuicf
its starting position as detected in the robot's camera &mag tional similarity is also evident from Fig. 7 which shows tha
The visualization of the outcomes shows that with the LiStic the L-Stick and the L-Hook tools produce nearly identical
tool the robot can push the puck forward, pull it backward,outcomes. The two most distant tools are the Stick and the
as well as slide it left and right. When applying thetate-  v.Stick. The Y-Stick tool is distant from almost all tools,
right behavior, the robot is able to bring the puck closer.with the exception of the Arrow tool, with which it is most
However, when rotating the tool to the left, the puck movessimilar.
mostly sideways. In roughly half of the trials the puck does Fig. 9 visualizes the estimated distance measurements
not move at all due to initial configurations in which the petween the tools, by embedding the distance matrix onto
robot’s behavior with the tool does not affect the puck. a two-dimensional plane using the Isomap method [17].

The learned outcome taxonomy for the L-Stick tool con-The figure shows that the differences between the T-Stick,
tains 12 leaf classes, shown in Fig. 6. The acquired leaf-Stick, L-Hook, and Stick tools, estimated with tH@,
concept classes show that similar movements of the puclfistance measure, can be accurately described using & singl
are indeed grouped together. In addition, the robot is able tdimension, i.e., the data points for these tools lie on a line
form concept classes for outcomes that represent littleoor nin the 2-D embedding. Unlike those four tools, the Y-Stick
movement of the puck. and Arrow tool contain diagonal segments, which might be

The same experiment was repeated with all six toolswhy they do not lie on the same line in the 2-D embedding.
Fig. 7 visualizes the movement trajectories that the robot ¢

induce on the puck with each tool. Table | shows the number

of leaf concept classes in each taxonomy. The comparison T r I rl Y ¢

shows that different tools produce taxonomies of varying

complexity, e.g., the Stick tool produces the most simple T 0.0 | 9.73|17.69| 10.44| 21.95/16.39

taxonomy while the Y-Stick and the T-Stick tools produce

the most complex ones. r 9.73| 0.0 |14.96| 8.72|25.76/19.98
Table | also shows the performance measures of the models

M for each tool, which are obtained by evaluating each I 17.69|14.96| 0.0 | 13.11|29.58| 25.04

model on 600 novel trials (with the same tool) not previously

seen by the robot. For most tools, the normalized H-Loss rl 10.44| 8.72113.11) 0.0 |23.71/18.06

[14] is low, indicating that the robot is able to form accerat

predictive models that can anticipate outcomes. Simpler Y 21.95/25.76| 29.58/ 23.71| 0.0 |16.90
taxonomies result in better prediction performance, elg,
Stick tool produces the most predictable outcomes. 1‘ 16.39(19.98| 25.04| 18.06/16.90| 0.0

B. Estimating the Functional Similarity Between Tools
Fig. 8. Distance matrix computed by applying tie distance measure

After performing 1_200 trials \_Nith e"’_‘Ch of the six tools, the between each pair of taxonomies acquired by the robot froreréxpce with
robot uses the previously defined distance measlge,to  each of the six tools.
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Fig. 9. Two dimensional isomap embedding (with neighborho@ablg)y of

the distance matrix shown in Fig. 8 which describes the siityldretween
the six different tools.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presented a framework in which the robot incre-

mentally learns an adaptive hierarchical representatiotiie

Second, the ability to incrementally form concept hierar-
chies can be extended to the robot’s behaviors and cues. This
would allow the robot to learn a model that captures how
the learned concept classes of outcomes, behaviors, asd cue
relate to each other. The taxonomy learning algorithm can
also be improved by considering more substantial changes to
the structure of the taxonomy as a result of new data (e.g.,
node merge, sibling addition, etc.).

Finally, the learned models for each tool can be compared
in a way that allows the robot not only to estimate a distance
measure between two tools, but also to infer what these
differences are. While in the current framework the robot
compares the tools based on the environmental outcomes they
produce, the comparison can be generalized to include other

factors, such as the behavioral and perceptual aspect® of th
acquired model for each tool.
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