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Abstract— The ability to reason about multiple tools and their
functional similarities is a prerequisite for intelligent tool use.
This paper presents a model which allows a robot to detect the
similarity between tools based on the environmental outcomes
observed with each tool. To do this, the robot incrementally
learns an adaptive hierarchical representation (i.e., a taxonomy)
for the types of environmental changes that it can induce and
detect with each tool. Using the learned taxonomies, the robot
can infer the similarity between different tools based on the
types of outcomes they produce. The results show that the robot
is able to learn accurate outcome models for six different tools.
In addition, the robot was able to detect the similarity between
tools using the learned outcome models.

Index Terms— Developmental Robotics, Autonomous Tool
Use, Robot Manipulation.

I. I NTRODUCTION

Tool use is one of the hallmarks of intelligence and is
fundamental to human life. Many animals have also been
observed to use tools [1], indicating that such an ability isa
general adaptation mechanism that helps overcome physical
limitations imposed by an organism’s anatomy.

For a robot to adapt to human environments, it needs
to be able to recognize, reason, and learn the functional
properties of different tools it encounters. More specifically,
a robot needs to be able to distinguish between similar and
different tools based on their functional properties. While
object categorization based on visual features is a well
studied problem, this paper introduces a model which allows
the robot to detect functional similarity between tools based
on the robot’s interactive experience with them.

To detect the functional similarity between tools, a robot
needs to model the types of environmental changes (i.e.,
outcomes) it can induce and detect through actions with
each tool. This paper makes two contributions toward solving
this problem. First, this paper introduces a framework in
which the robot incrementally learns and uses anadaptive
hierarchical taxonomyfor the types of outcomes observed as
a result of the robot’s interaction with a tool. The proposed
method allows the robot to form novel classes of outcomes
as a result of ongoing experience with the tool.

Second, this paper shows how a robot can estimate the
functional similarity between tools based on the learned
compact representations for outcomes that the tools produce.

This allows the robot to compare tools based on what it can
do with them as opposed to comparing the tools based on
their visual features (e.g., shape, color, etc.).

II. RELATED WORK

In one of the earliest examples of autonomous tool use,
Bogoni [2] presents and evaluates a system in which the robot
identifies functional features of objects involved in cutting
and piercing operations. The robot uses a superquadratic
model of the tool’s shape in order to discover visual features
that are characteristic of successful tools (e.g., tools that can
pierce). In addition, several methods have been proposed
for object recognition based on functionality using computer
vision and 3D laser scanners [3], [4], [5]. However, these
systems try to categorize the objects (typically human-made
tools) without active autonomous exploration by a robot.

More recently, Kemp and Edsinger [6] explored how a
robot can identify task-relevant features of human-made tools
and showed how a robot can learn to detect and control the
tip of objects (e.g., the tip of a brush). In previous work,
Stoytchev [7], and Sinapovet al. [8] demonstrate how robots
can solve tool-using tasks using an affordance representation
for the tools.

In some tasks, the outcomes that the robot detects as a
result of its behaviors are high-dimensional. Sahinet al. [9]
and Montesanoet al. [10] propose to solve this problem by
clustering an initial set of observations intok clusters, each
representing a class of observed effects. The formation of
classes allows the robot to use machine learning methods
designed for discrete data (e.g., Support Vector Machines
in [9] and Baysean Networks in [10]). However, with both
of these methods the robot cannot discover novel classes of
observed effects as a result of new experience.

The method described here overcomes this problem by
presenting a framework in which the robot incrementally
learns and uses an adaptive hierarchical taxonomy to describe
the types of changes it can induce and detect in its environ-
ment through its own actions with a tool. Using the learned
representations, the robot is able to infer how similar two
tools are in terms of what the robot can do with them.
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Fig. 1. a) Snapshot from the dynamics simulator showing the robot arm;
b) View from the robot’s simulated camera.

Fig. 2. The six different tools used by the robot. From left toright: T-Stick,
L-Stick, Stick, L-Hook, Y-Stick, Arrow.

III. EXPERIMENTAL SETUP

All experiments were performed using a robot simulator
based on the Open Dynamics Engine [11] developed in-
house. The robot is a simulated CRS+ A251 arm with 6
degrees of freedom: a slider joint at the base, waist roll,
shoulder pitch, elbow pitch, wrist pitch, and wrist roll. The
robot also has a gripper attached to the wrist. A snapshot of
the simulated robot arm is shown in Fig. 1.a. Six different
tools are used by the robot:T-Stick, L-Stick, Stick, L-Hook, Y-
Stick, andArrow (see Fig. 2). The last object in the simulation
is a small cylindrical puck which can be moved by the tool
when the robot performs an action.

A. Sensory Input, Behaviors and Perceptual Cues

The robot’s sensory input is extracted from a camera
positioned directly overhead and looking downward. Fig.
1.b show a sample visual input image. The robot’s set of
behaviors,B, consists of 6 exploratory behaviors with the
tool: push, pull, slide-left, slide-right, rotate-leftand rotate-
right. Fig. 3.a and 3.b show the view from the robot’s camera
before and after a behavior has been executed.

The robot’s perceptual cues,Ci, are derived from the
camera frames which are retinally mapped to a 30x30 image
centered on the green puck, as shown in Fig. 3.c. Formally,
Ci ∈ R

30×30×3, i.e. Ci contains the RGB values of each
pixel in the retinal image. The retinal mapping method that
was used is described in [12].

B. Outcome Detection

After the robot executes a behavior, it tracks the puck’s dis-
placements over time. Lett be the time at which the robot ex-
ecutes a behaviorBi while observing cuesCi. The perceived
outcome is defined asOi = [dxt+1, dyt+1, · · · , dxt+k, dyt+k]
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Fig. 3. One sample trial with the L-Stick tool and therotate-rightbehavior.
a) Configuration of the robot, the tool, and the puck at the start of the
trial; b) End of trial configuration after therotate-right behavior has been
performed; c) Retinal image used as cue at beginning of the trial; d)
Observed outcome plotted as the trajectory of the puck in retinocentric
coordinates. The trajectory is plotted relative to the puck’s starting location.

such thatdxj anddyj are the horizontal and vertical displace-
ments of the puck between timesj − 1 and j as observed
in the robot’s camera image. Each outcome vectorOi can
be visualized as the trajectory of the puck’s movements,
as shown in Fig.3.d. Each behavior is executed for 3000
simulator time steps and the robot samples the position of the
puck in the input camera image every 600 time steps. Thus,
each outcome consists of a 10-dimensional feature vector
describing the vertical and horizontal movement of the puck
across 5 different points in time.

C. Data Collection

During each trial, the tool is positioned in front of the
robot and the puck is randomly placed in the vicinity of
the tool. The robot first grasps the tool and then randomly
selects a behaviorBi ∈ B for execution. Fig. 3 shows a trial
in which the robot applies itsrotate-right behavior with the
L-Stick. Once the behaviorBi has been executed, the robot
acquires the triple (Bi, Ci, Oi), indicating that outcomeOi

was observed after executing behaviorBi while detecting
perceptual cuesCi. The new data point is then used to update
the robot’s model for the given tool, as described below.

IV. T HEORETICAL MODEL

For many tasks (e.g., prediction of outcomes given behav-
iors and cues), it is important for the robot to form concept
classes describing the types of outcomes it observes. In both
[9] and [10], for example, the robot clusters an initial set of
observations and treats each cluster as a discrete class of out-
comes. This paper presents an alternative approach in which
the robot incrementally learns a hierarchy of outcome classes,
which allows it to discover novel concepts and to model the
observed outcomes at different levels of abstraction.

A. Taxonomy of Outcome Classes

In this work, the robot learns and uses a taxonomy describ-
ing the possibleclassesof outcomes that it is able to induce
and detect in its environment. Formally, a taxonomy,T , is a
tree defined over outcome classes (i.e., nodes)v0, . . . , vM .
Let Omean

j ∈ R
m denote the outcomeprototype for the



observed outcomes that belong to nodevj , wherem is the
dimensionality of each observed outcomeOi.

Given a taxonomyT and an observed outcomeOi, the
robot can classify the outcome according to the learned
taxonomy. LetPi = [vroot, . . . , vl] be a path from the root
nodevroot to some leaf nodevl, describing howOi relates
to T , such thatOi belongs to all class nodesvj on the path.

Fig. 4 shows a simple example of an acquired taxonomy in
which each observationOi is sampled from a 1-D mixture of
gaussians distribution. The taxonomy was constructed from
1000 data points (sampled from the distribution shown in
Fig. 4.b) using the method described below. The shaded
nodes in Fig. 4.a show how an example outcome is classified
according to the learned taxonomy.

B. Learning the Taxonomy

An incremental hierarchical top-down clustering approach
was used to learn a taxonomy of detected outcomes for each
tool. Given a newly observed outcome,Oi, the (possibly
empty) taxonomy,T , is updated as follows:

1) Let Pi = [v0, . . . , vl] be the classification path ofOi

according toT .
2) For each classvj ∈ Pi, recompute the estimate of

Omean
j using the outcomes that fall withinvj .

3) Add Oi to the leaf nodevl. If a splitting criterion is
met, cluster the outcomes invl into k clusters and for
each add a child node ofvl to the taxonomyT .

The X-Means clustering algorithm [13] was used in step 3.
X-Means is an extension to the standard K-Means clustering
algorithm with an added efficient estimation of the number
of clusters. An attempted split is performed on a leaf node if
the number of outcomes that fall into it exceeds a threshold
γ. In all experiments, the thresholdγ was set to 300 for the
root nodev0. For all subsequent nodesvj in the taxonomy
T , γ was set to70.

In step 1, the robot uses a top-down classification rule to
classify an outcomeOi according toT . Starting at the root,
the robot estimates the child outcome classvj for Oi such that
d(Oi, O

mean
j ) < d(Oi, O

mean
c ) for all other child outcome

classesvc of the root (i.e., standard K-means classification
rule with Euclidean distance functiond). If vj is not a leaf
node, the same rule is recursively applied until the full path
from the root to a leaf is constructed.

C. Comparing Tools Using their Outcome Taxonomies

The learned hierarchical representation for the types of
outcomes produced by each tool can be used in order to infer
how similar or different two tools are. The distance measure
that was used by the robot takes into account the functional
properties of the tools, i.e., two tools that produce similar
outcomes should be considered similar and vice versa.

The problem is formulated as follows. Given a set ofN

tools, and the learned taxonomiesT1, T2, . . . , TN for each
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v0 : [Omean
0 ≈ 2.4] M0

v1 :

[Omean
1 ≈ −10.0]

v2 :

[Omean
2 ≈ 11.2]

M2

v3 :

[Omean
3 ≈ 10.0]

v4 :

[Omean
4 ≈ 14.0]

a) A hierarchical taxonomy constructed for outcomes
sampled from the mixture of Gaussians distribution in b).

b) Probability distribution of the observed outcomes.

Fig. 4. An example hierarchical outcome taxonomyT . The outcome is a
1-D value sampled from a mixture of gaussians distribution shown in b). The
shaded nodes represent an example path,Pi, from the root to a leaf node
which shows how some given outcomeOi (e.g.,Oi = 14.5) is classified
according toT . M0 andM2 are the predictive models (described in section
IV.D) associated with the two non-leaf nodes inT .

tool, compute anN by N distance matrixA such that each
matrix elementaSR is a measure indicating the distance
between toolsS andR in terms of their functional properties.

Given an outcome taxonomyTS (obtained through expe-
rience with tool S), let LS = [OS

1 , OS
2 , . . . , OS

mS
] be the

set of leaf outcome class prototypes inTS . Furthermore, let
LR = [OR

1 , OR
2 , . . . , OR

mR
] be the set of leaf class prototypes

of some other taxonomyTR constructed after experience with
tool R. By comparing the leaf outcome classes in the two
taxonomiesTS and TR, the robot can estimate the distance
between toolsS and R in terms of the types of outcomes
that they produce.

More specifically, given an outcome prototypeOS
i in LS ,

let the functionBestMatch(OS
i ,LR) return the leaf proto-

type OR
j such thatOR

j is the prototype inLR that is most
similar to OS

i . In other words,d(OS
i , OR

j ) < d(OS
i , OR

p ) for
all other prototypesOR

p ∈ LR, whered(x, y) is the Euclidean
distance function.

Following, two distance measures are defined which com-
pare two taxonomiesTS andTR by taking into account the
leaf outcome class prototypes (i.e.,LS and LR) of each
taxonomy. The first function,D1, is defined as:

D1(TS , TR) =
1

|LS |

|LS |∑

i

d(OS
i , BestMatch(OS

i ,LR))

Intuitively, the functionD1 can be interpreted as asking the



question of whether toolR produces the same outcomes as
tool S. If TS andTR are identical, thenD1(TS , TR) = 0.0.
However, the distance functionD1 is not symmetric, i.e.,
D1(TS , TR) 6= D1(TR, TS), which is why another function,
D2, was defined and used to compute the distance between
two outcome taxonomies:

D2(TS , TR) =
1

2
D1(TS , TR) +

1

2
D1(TR, TS)

The distance measureD2 is symmetric and only takes into
account the outcome class prototypes at the leaves in each
taxonomy.D2 was used in all experiments to compute the
distance between two taxonomies acquired through experi-
ence with two different tools.

D. Prediction of Outcomes Using The Taxonomy

While the task of prediction is not the central theme
investigated in this paper, we briefly overview how the
learned taxonomy of outcomesT can be incorporated into
a learning framework that allows the robot to anticipate the
outcomes of its actions with the tool.

Let Xi = (Bi, Ci) be defined as an input data point
indicating that the robot is executing behaviorBi while
detecting perceptual cuesCi. The task of the robot is to
learn a predictive modelM(Xi) → P̂i such that for a given
data pointXi, the model returnŝPi which is the predicted
path from the root node to a leaf node in the taxonomyT .
This path indicates how the yet unobserved outcomeOi will
be classified into the taxonomy. Once the robot executes the
behaviorBi and observes the outcomeOi, the predicted path
P̂i can be compared with the actual pathPi and the quality of
the prediction can be evaluated. In the machine learning lit-
erature, this problem is known ashierarchical classification,
since the class labels are hierarchically structured [14].

While there are many algorithms developed to address
the incremental hierarchical classification problem (see [14]
for a review), the framework presented here uses a simple
solution: each non-leaf nodevj in the taxonomyT has an
associated predictive modelMj that is trained to predict
the child outcome class of the (yet unobserved) outcome
Oi associated withXi. Formally, for a non-leaf nodevj ,
Mj(Xi) → v̂k where v̂k is a child node ofvj in T . For
example, the root node in Fig. 4.a contains a model,M0,
which given an input data pointXi, predicts whether the
outcomeOi falls within v1 or v2. Thus, applying a recursive
top-down prediction routine results in a predicted path from
the root node to a leaf node in the tree.

Each modelMj is realized by an ensemble of classifiers
for incremental learning as proposed in [15], with a C4.5
decision tree for each classifier in the ensemble [16]. The
performance ofM is reported in terms of the normalized H-
Loss function as defined by Cesa-Bianchiet al. in [14]. The
intuition behind the normalized H-Loss function is that wrong
predictions should be penalized according to the depth in the
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Fig. 5. Partial visualization of the learned outcome taxonomyfor the L-Stick
tool after 1200 trials. For each outcome classvj the darker trajectory denotes
the outcome prototypeOmean

j , while the lighter trajectories visualize the
observed outcomes from the test set of trials that fall withinvj .
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Fig. 6. All twelve leaf outcome classes of the learned taxonomyfor the L-
Stick tool (shown in Fig. 5). The dark trajectory shows the outcome prototype
for each leaf class in the learned taxonomy, while the lightertrajectories
visualize the observed outcomes that fall withinvj .

taxonomy at which they occur. An H-Loss of1.0 indicates
that the estimated patĥPi diverges from the true pathPi

at the very root of the taxonomyT , while an H-Loss of
0.0 indicates perfect path prediction. For more details on the
precise mathematical formulation of this function, see [14].

V. EXPERIMENTAL RESULTS

A. Exploring Individual Tools

In the first experiment the robot performs 1200 trials
with the L-Stick tool and incrementally updates the outcome
taxonomyT and predictive modelM after each trial. Fig. 5
shows a partial visualization of the acquired taxonomy of
outcomes after all 1200 trials are completed. Each trajectory
is plotted relative to the puck’s starting location which is
randomly chosen in relation to the tool during each trial.
The first level of the taxonomy (i.e., the four child nodes of
the root) is created after the300th trial.
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Fig. 7. A visualization of the types of movement trajectories of the puck that
the robot can induce with its behaviors for each of the 6 tools. All trajectories
are plotted relative to the puck’s starting location, whichis chosen randomly
for each trial.

The root node contains all observed outcomes, each plotted
as a trajectory of the puck’s detected movement relative to
its starting position as detected in the robot’s camera image.
The visualization of the outcomes shows that with the L-Stick
tool the robot can push the puck forward, pull it backward,
as well as slide it left and right. When applying therotate-
right behavior, the robot is able to bring the puck closer.
However, when rotating the tool to the left, the puck moves
mostly sideways. In roughly half of the trials the puck does
not move at all due to initial configurations in which the
robot’s behavior with the tool does not affect the puck.

The learned outcome taxonomy for the L-Stick tool con-
tains 12 leaf classes, shown in Fig. 6. The acquired leaf
concept classes show that similar movements of the puck
are indeed grouped together. In addition, the robot is able to
form concept classes for outcomes that represent little or no
movement of the puck.

The same experiment was repeated with all six tools.
Fig. 7 visualizes the movement trajectories that the robot can
induce on the puck with each tool. Table I shows the number
of leaf concept classes in each taxonomy. The comparison
shows that different tools produce taxonomies of varying
complexity, e.g., the Stick tool produces the most simple
taxonomy while the Y-Stick and the T-Stick tools produce
the most complex ones.

Table I also shows the performance measures of the models
M for each tool, which are obtained by evaluating each
model on 600 novel trials (with the same tool) not previously
seen by the robot. For most tools, the normalized H-Loss
[14] is low, indicating that the robot is able to form accurate
predictive models that can anticipate outcomes. Simpler
taxonomies result in better prediction performance, e.g.,the
Stick tool produces the most predictable outcomes.

B. Estimating the Functional Similarity Between Tools

After performing 1200 trials with each of the six tools, the
robot uses the previously defined distance measure,D2, to

TABLE I

SUMMARY OF THE LEARNING RESULTS FOR A TAXONOMYT AND A

PREDICTIVE MODELM FOR EACH OF THE SIX TOOLS.

Tool Number of leaf outcome Normalized H-Loss of
classes inT the predictive modelM

T-stick 18 0.165
L-stick 12 0.084
Stick 7 0.013

L-Hook 14 0.085
Y-Stick 19 0.198
Arrow 14 0.133

infer the functional similarity between different tools. Fig. 8
shows the computed distance matrix for all pairs of tools.

As expected, Fig. 8 shows that the inferred distance
between identical tools is0.0. The two most similar tools
are the L-Stick and the L-Hook, which is not surprising
considering that their shapes are almost identical. Their func-
tional similarity is also evident from Fig. 7 which shows that
the L-Stick and the L-Hook tools produce nearly identical
outcomes. The two most distant tools are the Stick and the
Y-Stick. The Y-Stick tool is distant from almost all tools,
with the exception of the Arrow tool, with which it is most
similar.

Fig. 9 visualizes the estimated distance measurements
between the tools, by embedding the distance matrix onto
a two-dimensional plane using the Isomap method [17].
The figure shows that the differences between the T-Stick,
L-Stick, L-Hook, and Stick tools, estimated with theD2

distance measure, can be accurately described using a single
dimension, i.e., the data points for these tools lie on a line
in the 2-D embedding. Unlike those four tools, the Y-Stick
and Arrow tool contain diagonal segments, which might be
why they do not lie on the same line in the 2-D embedding.

0.0

0.0

0.0

0.0

0.0

0.0

9.73 17.69 10.44 21.95 16.39

9.73 14.96 8.72 25.76 19.98

17.69 14.96 13.11 29.58 25.04

10.44 8.72 13.11 23.71 18.06

21.95 25.76 29.58 23.71 16.90

16.39 19.98 25.04 18.06 16.90

Fig. 8. Distance matrix computed by applying theD2 distance measure
between each pair of taxonomies acquired by the robot from experience with
each of the six tools.
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Fig. 9. Two dimensional isomap embedding (with neighborhood graph) of
the distance matrix shown in Fig. 8 which describes the similarity between
the six different tools.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presented a framework in which the robot incre-
mentally learns an adaptive hierarchical representation for the
types of outcomes it can induce on an environmental object
through its actions with different tools. The model allows
the robot to form discrete outcome classeswithout a priori
knowledge of the underlying distribution of outcomes. Unlike
previous work, the model is adaptive, allowing the robot to
update the outcome class prototypes as well as to form novel
classes of outcomes as a result of new experience.

The results showed that the robot can learn accurate and
compact models for the types of outcomes observed with
each tool. The compact outcome model for each tool allows
the robot to use standard machine learning methods for
prediction. With this ability the robot can select a behavior
in order to achieve some desired outcome with the tool.

The learned outcome models also allowed the robot to
infer the functional similarity between different tools. The
robot was able to detect tools that were very similar (e.g.,
the L-Stick and the L-Hook tools) and tools that are very
different in terms of the outcomes they produce. The distance
measure between two tools took into account the functional
properties of the tool and the results indicate that there
is a strong relation between the shape and the functional
similarity between two tools.

There are several directions which may be pursued for
future work. First, the ability of the robot to infer the
similarity between tools can be used to estimate what a novel
tool affords the robot. For example, given a set of explored
tools, the robot can start to relate common perceptual features
of the tools (e.g., shape, color, etc.) to common functional
properties. This will allow the robot to estimate the functional
similarity between a familiar tool and a novel tool based on
relevant visual features.

Second, the ability to incrementally form concept hierar-
chies can be extended to the robot’s behaviors and cues. This
would allow the robot to learn a model that captures how
the learned concept classes of outcomes, behaviors, and cues
relate to each other. The taxonomy learning algorithm can
also be improved by considering more substantial changes to
the structure of the taxonomy as a result of new data (e.g.,
node merge, sibling addition, etc.).

Finally, the learned models for each tool can be compared
in a way that allows the robot not only to estimate a distance
measure between two tools, but also to infer what these
differences are. While in the current framework the robot
compares the tools based on the environmental outcomes they
produce, the comparison can be generalized to include other
factors, such as the behavioral and perceptual aspects of the
acquired model for each tool.
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