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SUMMARY

Fig. 1: The robot, shown here
scratching one of the 20 surfaces
used in the experiments.

This study investigates the use of a vibrotactile sense for surface texture
recognition by a humanoid robot. The sensor is an artificial fingernail with
an attached 3-axis accelerometer, which the robot uses to scratch different
surfaces. Our method combines frequency-domain analysis of the acceleration
measurements with the Support Vector Machine (SVM) learning algorithm
to recognize surfaces. Using this approach the robot was able to recognize
twenty different surfaces with accuracy significantly better than chance. The
experimental results also show that combining predictionsfrom multiple
different scratches on a test surface results in higher recognition accuracy
than any isolated scratch alone.

MOTIVATION

There is evidence that humans use two different sensory modalities to
represent surface roughness: atactile modality for coarse surfaces and avibrotactile modality for finer
surfaces.1 The tactile modality is facilitated by specialized corticalneurons, which perceive spatial
variations through slowly adapting SA1 mechanoreceptors.1 The vibrotactile modality, in contrast, is
facilitated by perception of cutaneous vibrations primarily via Pacinian afferents.1

Humans also use exploratory behaviors such as scratching torecognize objects from tactile interactions.2

Exploratory behaviors applied to surfaces were observed in human infants as young as 6 months old.3 Our
goal is to combine exploratory behaviors with vibrotactiledata to enhance robotic perception of material
textures. In particular, our robot applied five different scratching behaviors on twenty surfaces in order
to recognize the surfaces. These behaviors are analogous to the lateral motion exploratory procedure
observed in adults by Lederman and Klatzky2 and therubbing exploratory behavior observed in infants
by Bourgeois et al.3

RELATED WORK

Kuchenbecker4 proposed using accelerometers, strain gauges and other types of contact sensors to
record tactile sensations with the idea of reproducing themlater so that similar sensations can be experi-
enced again. Howe and Cutkosky5 suggested detecting slip from the readings of a 3-axial accelerometer.
They also reported that the accelerometer’s output is affected mostly by the sliding velocity, a bit less by
the surface roughness and only slightly by the normal force applied. Hosoda et al.6 used a robotic finger
to apply two exploratory behaviors (pushing and rubbing) toobjects made of five different materials. The

1M. Hollins and S. Bensmaı̈a “The coding of roughness,” Canadian Journal of Experimental Psychology, vol. 61
(3): 184-195, 2007.

2S. Lederman and L. Klatzky “Hand movements: a window into haptic object recognition,” Cognitive Psychology,
vol. 19(3): 342-368, 1987.

3K. Bourgeois et al. “Infant manual exploration of objects, surfaces, and their interrelations,” Infancy 8(3): 233-
252, 2005.

4K. Kuchenbecker. “Haptography: capturing the feel of real objects to enable authentic haptic rendering,” In Proc.
of the 2008 Ambi-Sys workshop on Haptic user interfaces in ambient media systems, 2008.

5R. Howe and M. Cutkosky. “Sensing skin acceleration for slipand texture perception,” In Proc. of the 1989
IEEE International Conference on Robotics and Automation,vol. 1, pp. 145-150, 1989.

6K. Hosoda et al. “Anthropomorphic robotic soft fingertip with randomly distributed receptors,” Robotics and
Autonomous Systems, vol. 54(2): 104-109, 2006.



finger contained polyvinylidene fluoride (PVDF) films and strain gauges sensors. de Boissieu et al.7 used
three-axial force sensors embedded in an artificial finger thatwas mounted on a plotter to discriminate
between 10 different types of paper. Iwamoto et al.8 proposed embedding an accelerometer inside a ring
that a human can wear. The device was used to implement a “virtual mouse.”

RESULTS

Experimental Setup
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Fig. 2: The sensor:(a) the plastic fingernail with
the attached accelerometer;(b) the other side of the
accelerometer board (the ADXL345 is in the center).

All experiments were performed with the upper-torso hu-
manoid robot shown in Fig. 1. The robot has two 7-DOF
Barrett Whole Arm Manipulators as its arms, each of the
WAMs has a three-finger Barrett Hand as its end effector. A
plastic fingernail and a 3-axis accelerometer (see Fig. 2) were
mounted on the middle finger of the robot’s left hand. The
ADXL345 accelerometer manufactured by Analog Devices
was used along with the EVAL-ADXL345Z evaluation board
provided by the manufacturer. The accelerometer data was read over the USB bus at 400 Hz using the
Arduino Duemilanove microcontroller.

The robot scratched the 20 surfaces shown in Fig. 3. Data was also recorded as the robot performed
a scratch without a surface (i.e., scratching in mid-air) and added as the 21st surface in the dataset. With
each surface the robot performed 10 trials. Each trial consisted of 5 scratches (3 lateral and 2 medial)
executed at different velocities. Thus, the total number of behavioral interactions performed by the robot
was21× 10× 5 = 1050. To minimize transient noise effects due to wear and tear of the fingernail and,
possibly, minor sliding of the sensor along the finger, the surface was changed after every trial and not
scratched again until the robot scratched all other surfaces. In addition, this procedure also ensured that
the position of the target surface was somewhat different during each trial, thus avoiding the possibility
of providing overly regular inputs to the learning algorithm.
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Fig. 3: The 20 different surfaces scratched by the robot: 1) thick floor mat; 2) thin blue mat; 3) soft cloth; 4) leather with bumps; 5) thin floor
mat; 6) bulletin board; 7) corduroy; 8) leather (flat); 9) plastic kitchen roll; 10) table; 11) bed sheet; 12) back of corduroy; 13) back of thin
floor mat; 14) cloth with sparkles; 15) cotton wool (back of 8);16) plastic pattern (back of 4); 17) paper, white; 18) paper,yellow; 19) back
of the bubble wrap; 20) wood. Surface 21 is a control condition corresponding to the robot scratching in mid-air.
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Learning Methodology
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Fig. 4: Feature extraction.

For each of the1050 behavioral interactions, the robot recorded
n readings from the accelerometer in vectorsX, Y , Z which cor-
respond to the three axes so that[Xi, Yi, Zi] is the i-th reading for
i = 1, . . . , n. A magnitude acceleration vectorM was computed:

Mi =
√

X2

i
+ Y 2

i
+ Z2

i
. M was smoothed using a running average

filter with a window size of100 to produce a smoothed acceleration
vectorS. A magnitude deviation vectorD was computed:D = M−S
(see Fig. 4). Discrete Fourier Transform with129 frequency bins and a
window of size100 was applied toD to produce a spectrogram. This
spectrogram was converted to a25 × 5 spatial-temporal histogram.
This histogram was used as a feature vector by SVM with polynomial
kernel of exponent2 (applying other machine learning algorithms, e.g.,
k-NN and Bayesian Network resulted in similar, but slightly lower,
recognition performance).

Recognition Results

The accuracy of the robot’s surface recognition model was estimated from the dataset using 10-fold
cross-validation. Faster scratches usually resulted in better accuracy than slower ones (see Fig. 5(a)). For
each scratch, the surface recognition accuracy was better than random (chance accuracy is1/21 ≈ 4.76%).

When individual predictions from multiple behaviors are combined (using weights estimated from the
training set for each scratch), the accuracy increases (seeFig. 5(b)). This suggests that a combination
of several different behaviors informs the robot about the texture better than any single behavior alone.
Combining predictions from all5 exploratory scratches results in80% recognition accuracy.

Scratch Type Duration Accuracy
Lateral (fast) 3.9s 64.8%
Lateral (med.) 7.5s 65.7%
Lateral (slow) 14.7s 58.6%
Medial (fast) 4.6s 56.7%
Medial (slow) 8.7s 45.7%
Average 7.9s 58.3%

(a) Surface recognition accuracy.
Number of scratch behaviors
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(b) Combining multiple scratches.

Fig. 5: Recognition results for single and multiple scratches. (a) Surface recognition accuracy for individual scratching behaviors;(b) Accuracy
after combining the predictions from multiple scratching behaviors.

The pairwise confusion matrix was estimated for this model (see Fig. 6). A 2D Isomap9 embedding of
the distance metric computed from the confusion matrix was also calculated (see Fig. 7). The confusion
matrix provides a measure of similarity between any two surface textures as perceived by the robot. For
example, the two paper surfaces (17 and 18) were often confused with each other and also with other
thin surfaces – bed sheet (11) and the table (10). Another example of a group of similar surfaces is the
group of the softest surfaces – cloth (3), wool (15) and air (21).

9J. Tenenbaum et al. “A global geometric framework for nonlinear dimensionality reduction,” Science, vol. 290
(5500): 2319-2323, 2000.
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Fig. 6: The confusion matrix for surface recognition using a weighted combination of predictions from all 5 scratches.

Fig. 7: The confusion matrix embedded in a 2D Isomap.

CONCLUSIONS AND FUTURE WORK

This paper evaluated the effectiveness of a robotic vibrotactile sense for surface recognitions tasks.
The sensor was an artificial fingernail with an attached 3-axis accelerometer. The robot performed five
scratching behaviors multiple times on twenty different surfaces. The acceleration data captured during
these exploratory behaviors was used to recognize the surfaces. The recognition accuracy reached with
the SVM learning algorithm was significantly better than chance. An important observation from our
experiments is that by combining data from two or more behaviors the robot was able to achieve higher
recognition accuracy than for any single behavior alone. When the robot used all five exploratory behaviors
the accuracy reached80%.

Analysis of the confusion metric for different surfaces indicates that in many cases the surfaces that
are most similar to each other (e.g., the two papers) are often confused by the robot. This fact suggests
that a robot could build a meaningful surface categorization from vibrotactile data. Building such a
categorization by extending the approach described in thispaper is an interesting area of future work.
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