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SUMMARY

This study investigates the use of a vibrotactile sense fdasel texture ==
recognition by a humanoid robot. The sensor is an artificial fimgé with
an attached 3-axis accelerometer, which the robot usesr&ckcdifferent
surfaces. Our method combines frequency-domain analjsieacceleration =
measurements with the Support Vector Machine (SVM) learniiggraahm
to recognize surfaces. Using this approach the robot was tablecognize
twenty different surfaces with accuracy significantly bettean chance. The
experimental results also show that combining predictifnosn multiple
different scratches on a test surface results in highergrétion accuracy
than any isolated scratch alone.

ol

Fig. 1: The robot, shown here
M OTIVATION scratching one of the 20 surfaces

There is evidence that humans use two different sensory itiedato Usedn the experiments.
represent surface roughnesstaatile modality for coarse surfaces andvibrotactile modality for finer
surfaces. The tactile modality is facilitated by specialized cortigsurons, which perceive spatial
variations through slowly adapting SA1 mechanoreceptdfe vibrotactile modality, in contrast, is
facilitated by perception of cutaneous vibrations prifyavia Pacinian afferents.

Humans also use exploratory behaviors such as scratchiegdgnize objects from tactile interactiohs.
Exploratory behaviors applied to surfaces were observediiman infants as young as 6 months dlaur
goal is to combine exploratory behaviors with vibrotactita to enhance robotic perception of material
textures. In particular, our robot applied five differentagching behaviors on twenty surfaces in order
to recognize the surfaces. These behaviors are analogoine tatéral motion exploratory procedure
observed in adults by Lederman and Klatzkand therubbing exploratory behavior observed in infants
by Bourgeois et ai.

RELATED WORK

Kuchenbecker proposed using accelerometers, strain gauges and othes tfpcontact sensors to
record tactile sensations with the idea of reproducing theer so that similar sensations can be experi-
enced again. Howe and CutkoSksuggested detecting slip from the readings of a 3-axiallacu®eter.
They also reported that the accelerometer’s output is &fflectostly by the sliding velocity, a bit less by
the surface roughness and only slightly by the normal foppied. Hosoda et &.used a robotic finger
to apply two exploratory behaviors (pushing and rubbingdligects made of five different materials. The
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finger contained polyvinylidene fluoride (PVDF) films and strainiggs sensors. de Boissieu et aised
three-axial force sensors embedded in an artificial finger et mounted on a plotter to discriminate
between 10 different types of paper. lwamoto €t ptoposed embedding an accelerometer inside a ring
that a human can wear. The device was used to implement adbiriouse.”

RESULTS
Experimental Setup

All experiments were performed with the upper-torso hug®
manoid robot shown in Fig. 1. The robot has two 7-DOF
Barrett Whole Arm Manipulators as its arms, each of the
WAMs has a three-finger Barrett Hand as its end effector. i
plastic fingernail and a 3-axis accelerometer (see Fig. 2) were @
mounted on the middle finger of the robot’s left hand. Thﬂ;"&g aZnachTeh; ;:ecgslgrréfgetgg) r;lr?:tlgthfg:gselhn:llofvvtl;f;
ADXL345 accelerometer manufactured by Analog DeviC&Scelerometer board (the ADXL345 is in the center).
was used along with the EVAL-ADXL345Z evaluation board
provided by the manufacturer. The accelerometer data waksawsr the USB bus at 400 Hz using the
Arduino Duemilanove microcontroller.

The robot scratched the 20 surfaces shown in Fig. 3. Data wagedsrded as the robot performed
a scratch without a surface (i.e., scratching in mid-aid added as the 2surface in the dataset. With
each surface the robot performed 10 trials. Each trial ctetsisf 5 scratches (3 lateral and 2 medial)
executed at different velocities. Thus, the total numbereatfavioral interactions performed by the robot
was21 x 10 x 5 = 1050. To minimize transient noise effects due to wear and teaheffingernail and,
possibly, minor sliding of the sensor along the finger, thdaser was changed after every trial and not
scratched again until the robot scratched all other susfaceaddition, this procedure also ensured that
the position of the target surface was somewhat differenindueach trial, thus avoiding the possibility
of providing overly regular inputs to the learning algonith
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Fig. 3: The 20 different surfaces scratched by the robothitktfloor mat; 2) thin blue mat; 3) soft cloth; 4) leather withniyps; 5) thin floor
mat; 6) bulletin board; 7) corduroy; 8) leather (flat); 9) piaskitchen roll; 10) table; 11) bed sheet; 12) back of cooyurl3) back of thin
floor mat; 14) cloth with sparkles; 15) cotton wool (back of 85) plastic pattern (back of 4); 17) paper, white; 18) papelow; 19) back
of the bubble wrap; 20) wood. Surface 21 is a control conditiorresponding to the robot scratching in mid-air.
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Learning Methodol ogy

For each of thel050 behavioral interactions, the robot recorded
n readings from the accelerometer in vectdfs Y, Z which cor-
respond to the three axes so thal;,Y;, Z;] is the i-th reading for
i = 1,...,n. A magnitude acceleration vectay/ was computed:
M; = /X?+Y?+ Z2. M was smoothed using a running average
filter with a window size of100 to produce a smoothed acceleration
vectorS. A magnitude deviation vectdd was computedD = M — S
(see Fig. 4). Discrete Fourier Transform wit?9 frequency bins and a
window of size100 was applied taD to produce a spectrogram. This
spectrogram was converted to2& x 5 spatial-temporal histogram.
This histogram was used as a feature vector by SVM with polyabmi
kernel of exponer? (applying other machine learning algorithms, e.qg.,
k-NN and Bayesian Network resulted in similar, but slightbyer,
recognition performance).

3-axis accelerometer data
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Fig. 4: Feature extraction.
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Recognition Results

The accuracy of the robot's surface recognition model waisnagtd from the dataset using 10-fold
cross-validation. Faster scratches usually resulted ttebaccuracy than slower ones (see Fig. 5(a)). For
each scratch, the surface recognition accuracy was ble#erandom (chance accuracyl j21 ~ 4.76%).

When individual predictions from multiple behaviors arentmned (using weights estimated from the
training set for each scratch), the accuracy increasesHgeeb(b)). This suggests that a combination
of several different behaviors informs the robot about #hdure better than any single behavior alone.
Combining predictions from abb exploratory scratches results &% recognition accuracy.
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Scratch Type | Duration | Accuracy| <
Lateral (fast) 39s | 648% | 3%
Lateral (med.)] 7.5s | 65.7% | & ISPt
Lateral (slow)| 14.7s 58.6% :é o
Medial (fast) 4.6s 56.7% g o
Medial (slow) 8.7s 45.7% 2 &
Average 79s | 583% | feo
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(a) Surface recognition accuracy. (b) Combining multiple scratches.

Fig. 5: Recognition results for single and multiple scratclie) Surface recognition accuracy for individual scratchingaaors;(b) Accuracy
after combining the predictions from multiple scratching deébrs.

The pairwise confusion matrix was estimated for this modet (Sig. 6). A 2D Isomapembedding of
the distance metric computed from the confusion matrix wes ealculated (see Fig. 7). The confusion
matrix provides a measure of similarity between any twoaseftextures as perceived by the robot. For
example, the two paper surfaces (17 and 18) were often cexhfwith each other and also with other
thin surfaces — bed sheet (11) and the table (10). Anothengbeaof a group of similar surfaces is the
group of the softest surfaces — cloth (3), wool (15) and aly.(2

9J. Tenenbaum et al. “A global geometric framework for noggindimensionality reduction,” Science, vol. 290
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Fig. 6: The confusion matrix for surface recognition using eighited combination of predictions from all 5 scratches.
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Fig. 7: The confusion matrix embedded in a 2D Isomap.

CONCLUSIONS AND FUTURE WORK

This paper evaluated the effectiveness of a robotic vibtileasense for surface recognitions tasks.
The sensor was an artificial fingernail with an attached 3-axiglacometer. The robot performed five
scratching behaviors multiple times on twenty differentfaces. The acceleration data captured during
these exploratory behaviors was used to recognize thecestfd he recognition accuracy reached with
the SVM learning algorithm was significantly better than clearn important observation from our
experiments is that by combining data from two or more bedravihe robot was able to achieve higher
recognition accuracy than for any single behavior aloneekithe robot used all five exploratory behaviors
the accuracy reachet)%.

Analysis of the confusion metric for different surfacesigades that in many cases the surfaces that
are most similar to each other (e.g., the two papers) ara afbafused by the robot. This fact suggests
that a robot could build a meaningful surface categorizafimm vibrotactile data. Building such a
categorization by extending the approach described inpéyjier is an interesting area of future work.
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