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Introduction

To function in human-inhabited environments a robot must
be able to press buttons. There are literally thousands of
different buttons, which produce various types of feedback
when pressed. This work focuses on doorbell buttons, which
provide auditory feedback. Our robot learned to predict if a
specific pushing movement would press a doorbell button
and produce a sound. The robot explored different buttons
with random pushing behaviors and perceived the proprio-
ceptive, tactile, and acoustic outcomes of these behaviors.

Previous related work in robotics has focused mainly on
visual feedback. Thomaz (2006) proposed using social guid-
ance to teach a robot which button it has to press. Miura et
al.’s (2005) robot searched for an image template of a button
in the region pointed to by a human and pressed it. Nguyen
et al. (2009) used PPS-Tags to make switches more visible
so that a robot can press them more easily. In contrast, the
robot in our study relied exclusively on multi-modal feed-
back, i.e., auditory, proprioceptive and tactile feedback.

In Psychology, Hauf and Ascherleben (2008) reported
that 9 months old human infants already anticipate that
pressing a button would produce interesting sounds or lights.
E.J. Gibson (1988) suggested that humans actively apply ex-
ploratory behaviors on objects to learn their affordances.

Experimental Setup

The experiments were performed using the upper-torso hu-
manoid robot shown in Fig. 1(a), which has two 7-dof Bar-
rett Whole Arm Manipulators (WAMs) for arms and two
three-finger hands also made by Barrett Technology. The
robot experimented with the 3 doorbell buttons shown in
Fig. 1(b) and performed 400 trials with each, for a total of
1200 trials. The experiments were performed in 4 rounds. In
each round the robot performed 100 trials with each of the
buttons. Each trial took approximately 10 seconds to com-
plete. During each trial the robot first pushed the area around
the button and then slid its finger five times over the area.
The start position of pushing behaviors was fixed above the
button; the end position was randomly sampled around the
button. The sliding behaviors were implemented by moving
the robot’s finger in a random direction from the stop posi-
tion of the previous behavior (either a push or a slide). For
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Figure 1: Experimental setup: (a) The upper-torso humanoid robot;
(b) The three buttons explored by the robot.

each trial the robot recorded auditory, proprioceptive, and
tactile data and the temporal intervals for all behaviors. The
Audio-Technica U853AW Hanging Microphone mounted in
the robot’s head recorded sound at 44.1 kHz. The Ana-
log Devices ADXL345 3-axis accelerometer attached to the
robot’s finger recorded the tactile data at 400 Hz. Propri-
oceptive data, in the form of joint angles and torques, was
recorded from the WAM arm at 500 Hz.

Methodology
For each of the three sensory modalities the robot detected
‘interesting’ events and timestamped them. If the robot
heard a buzzing sound, it recorded an auditory event. If
the robot noticed that the torque on any joint exceeded its
predefined limit then it recorded a proprioceptive event, in-
terrupted the current behavior, and started the next one.
Spikes in the magnitude of the accelerometer’s readings
were recorded as tactile events. The goal of the experiments
was three-fold: 1) to learn which behaviors trigger different
events; 2) to localize events in space for each button; 3) to
investigate if and how events from different modalities co-
occur in time.
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(a) Precision
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(b) Kappa statistic

Figure 2: Learning curves for predicting if a pushing behavior
triggers an auditory event as a function of the number of learning
trials: (a) precision — number of true positives as a percentage
of all positives; (b) kappa statistic — a more robust measure of
how good the robot’s predictions are, which takes into account the
probability of chance agreement. For each data point, the values
were averaged over 1000 runs of 10-fold cross-validation.

Each behavior was parameterized by its start and desired
destination positions in joint space. The joint space coordi-
nates of the destination position of a pushing behavior were
used as features to learn to predict whether the robot will
hear the buzzer if it pushes in that direction. The robot
trained a separate k-NN classifier for each button to facil-
itate the learning task. Other classifiers were tested as well,
but k-NN was typically among the best.

Results
The robot learned to predict if a pushing behavior triggers
an auditory event. By varying the number of training trials,
the robot found that approximately 160 learning trials were
required to get the best possible performance with both rect-
angular buttons (see Fig. 2). For the round button, which
is smaller and thus harder to press, the robot continuously
gained new insights over all available trials.

To localize events in space the robot used forward kine-
matics to find the Cartesian coordinates of its fingertip when
the event was detected. Fig. 3 shows the spatial distribu-
tion of auditory events around each of the three buttons. The
events were mapped to the pictures of the buttons by ap-
plying an affine transform. The affine transform was com-
puted separately using several anchor points for which the
pixel coordinates and the Cartesian coordinates were known.
Fig. 3 shows that the auditory events are localized around the
functional components of the buttons. The apparent scatter-
ing of the points is due to the fact that in some cases the robot
pressed the button with the side of its finger and not with the
fingertip, which was the only thing that was tracked.

For the trials with auditory events the robot measured
the temporal intervals between events in different modali-
ties (see Fig. 4). The results indicate that auditory events
co-occur with proprioceptive and tactile ones. This suggests
a possibility for future work: using these cross-modal tem-
poral dependencies and their co-occurrence in space, detect
if the functional components of a button are working prop-
erly.

Conclusion and Future Work
This paper showed that a robot can learn to predict if pushing
doorbell buttons in a certain way triggers an auditory event.
Depending on the button, a robot may continuously gain new
insights from unfocused random exploration or it may reach
a limit and make no further learning progress.
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Figure 3: Auditory events localized in space for each button for
both pushing and sliding behaviors.
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Figure 4: Histograms for the temporal intervals between auditory
events and proprioceptive events (a), and auditory and tactile events
(b) for both pushing and sliding behaviors. The bin size of each
histogram is 20 ms.

In future work, we will investigate the effect of active
learning on the speed of learning. Preliminary results indi-
cate that a robot learns faster when it selects behaviors that
are more likely to trigger an auditory event. Given the abil-
ity to tell in advance if a specific pushing behavior will re-
sult in an auditory event, a robot can generate movements
that press buttons more efficiently. Different active learning
policies may be evaluated in this context.

The spatial co-occurrence patterns of events from dif-
ferent modalities that a robot observes while exploring,
may provide the data necessary for segmenting objects
into functional parts and identifying these parts in novel
objects. The temporal co-occurrence patterns may pro-
vide the data necessary for the robot to optimize its be-
haviors for triggering specific types of events in differ-
ent modalities. For additional details and results, see
http://www.ece.iastate.edu/~lipingwu/AAAI10.html.
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