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who was a carpenter and taught me

how to use the tools in his workshop when I was a child.

He wanted me to become an architect. I hope that being

a roboticist would have been a distant second on his list.
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PREFACE

I was fortunate to stumble upon the topic of autonomous tool use in robots for my disserta-

tion. When I joined the robotics lab at Georgia Tech I began to look for a good dissertation

topic. For almost two years I was reading the robotics literature with that goal in mind.

I enjoyed reading but the more I read the more I felt that all the good dissertation topics

have already been taken. So I started reading books from other fields of science in hope of

finding an inspiration. Finally, the years of reading paid off when I stumbled across Thomas

Power’s book entitled “Play and Exploration in Children and Animals.”

At first I was angry at myself for even borrowing a book from the library about children

playing with toys (that’s what the picture on the front cover showed). Nevertheless, I

decided to browse through the pages. Several pages contained tables that compared the

known object exploration strategies in animals and humans. The book also contained a

reprint of Benjamin Beck’s taxonomy of tool using modes in animals (see Table 2.3). It

immediately struck me that the problem of autonomous tool use has not been well addressed

in robotics. Within five minutes I had already decided to abandon all of my other research

ideas and start working in this new direction.

The more I read about this new topic the more I liked it. The more I read, however,

the harder it was to figure out how to even begin to address this enormous topic. From the

very beginning I was interested in the developmental aspect of tool use. One of the biggest

challenges was to focus my ideas on creating a well defined developmental trajectory that

the robot can take in order to learn to use tools autonomously, which is the topic of this

dissertation.
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SUMMARY

The ability to use tools is one of the hallmarks of intelligence. Tool use is fundamental

to human life and has been for at least the last two million years. We use tools to extend our

reach, to amplify our physical strength, and to achieve many other tasks. A large number

of animals have also been observed to use tools. Despite the widespread use of tools in the

animal world, however, studies of autonomous robotic tool use are still rare.

This dissertation examines the problem of autonomous tool use in robots from the point

of view of developmental robotics. Therefore, the main focus is not on optimizing robotic

solutions for specific tool tasks but on designing algorithms and representations that a robot

can use to develop tool-using abilities.

The dissertation describes a developmental sequence/trajectory that a robot can take

in order to learn how to use tools autonomously. The developmental sequence begins with

learning a model of the robot’s body since the body is the most consistent and predictable

part of the environment. Specifically, the robot learns which perceptual features are as-

sociated with its own body and which with the environment. Next, the robot can begin

to identify certain patterns exhibited by the body itself and to learn a robot body schema

model which can also be used to encode goal-oriented behaviors. The robot can also use its

body as a well defined reference frame from which the properties of environmental objects

can be explored by relating them to the body. Finally, the robot can begin to relate two

environmental objects to one another and to learn that certain actions with the first object

can affect the second object, i.e., the first object can be used as a tool.

The main contributions of the dissertation can be broadly summarized as follows: it

demonstrates a method for autonomous self-detection in robots; it demonstrates a model

for extendable robot body schema which can be used to achieve goal-oriented behaviors,

including video-guided behaviors; it demonstrates a behavior-grounded method for learning

the affordances of tools which can also be used to solve tool-using tasks.
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CHAPTER I

INTRODUCTION

1.1 Tool use in animals and robots

The ability to use tools is one of the hallmarks of intelligence. Tools and tool use are

fundamental to human life and have been for at least the last two million years (Reed,

1988, p. 77). We use tools to extend our reach, to amplify our physical strength, to transfer

objects and liquids, and to achieve many other everyday tasks. Some hand tools like the

axe, knife, and needle are almost indispensable for any human society (Campbell, 1984). It

is hard to even imagine what our lives would be like without tools.

For many years it was believed that humans were the only tool-using species on Earth.

In fact, tool use was considered to be one of the key features that distinguished us from

other animals. Starting with Darwin (1871), however, this belief was challenged more and

more vigorously.

During the last century, substantial evidence has been collected which clearly demon-

strates that a large number of animals from different phyletic groups use tools both in

captivity and in the wild (Beck, 1980). Some birds, for example, use twigs or cactus pines

to probe for larvae in crevices in the bark of trees which they cannot reach with their beaks

(Lack, 1953). Egyptian vultures use stones to break the hard shells of ostrich eggs (Goodall

and van Lawick, 1966; Alcock, 1970). Chimpanzees use stones to crack nuts open (Struh-

saker and Hunkeler, 1971; Boesch and Boesch, 1983, 1990), sticks to reach food (Köhler,

1931), dig holes, or attack predators (van Lawick-Goodall, 1970). Orangutans fish for ter-

mites with twigs and grass blades (Ellis, 1975; Parker, 1968) and use sticks as levers to

pry open boxes or crevices (Ellis, 1975; Darwin, 1871). Sea otters use stones to open hard-

shelled mussels (Hall and Schaller, 1964; Riedman, 1990). Horses and elephants use sticks

to scratch their bodies (Chevalier-Skolnikoff and Liska, 1993). These examples and many

more (see (Beck, 1980) and (van Lawick-Goodall, 1970) for a detailed overview) suggest that
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the ability to use tools is an adaptation mechanism used by many organisms to overcome

the limitations imposed on them by their anatomy.

Despite the widespread use of tools in the animal world, however, studies of autonomous

robotic tool use are still rare. There are industrial robots that use tools for tasks such as

welding, cutting, and painting, but these operations are carefully scripted by a human

programmer. Robot hardware capabilities, however, continue to increase at a remarkable

rate. Humanoid robots such as Honda’s Asimo, NASA’s Robonaut, and Sony’s Qrio feature

motor capabilities similar to those of humans (Hirai et al., 1998; Ambrose et al., 2000; Fujita

et al., 2003). In the near future similar robots will be working side by side with humans in

homes, offices, hospitals, and in outer space. However, it is difficult to imagine how these

robots that will look like us, act like us, and live in the same physical environment like us,

will be very useful if they are not capable of something so innate to human culture as the

ability to use tools. Because of their humanoid “anatomy” these robots undoubtedly will

have to use external objects in a variety of tasks, for instance, to improve their reach or to

increase their physical strength. These important problems, however, have not been well

addressed by the robotics community to date.

This dissertation investigates if robots can be added to the list of tool-using “species”.

More specifically, the dissertation investigates computational representations and algorithms

which facilitate the development of tool-using abilities in autonomous robots.

The experiments described in this dissertation were inspired and influenced by the long

history of tool-using experiments with animals (summarized in Section 2.1.3). The meth-

ods and experiments described here were also influenced by psychological, ethological, and

neuroscience research. No claim is made, however, that this dissertation attempts to model

how human or animal tool-using abilities are encoded or developed. The related work in

these fields of science serves only as an inspiration to this robotics research.
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1.2 Research Questions

Research Question

Can autonomous robots be effective tool-using agents?

The problem of autonomous tool use in robots may be addressed in multiple ways.

This dissertation, however, examines this problem from the point of view of developmental

robotics, which is one of the newest branches of robotics (Weng et al., 2001; Zlatev and

Balkenius, 2001). Therefore, the focus of this dissertation is not on optimizing robotic

solutions for specific tool tasks but on designing algorithms and representations that a

robot can use to develop tool-using abilities.

In order to answer the main research question this work investigates three subsidiary

questions.

Subsidiary Question 1

Can a robot identify which sensory stimuli are produced by its own

body and which are produced by the external world?

Several major developmental theories have proposed that development requires “an ini-

tial investment in the task of differentiating the self from the external world” (Watson,

1994). In other words, normal development requires self-detection abilities in which the

“self” emerges from actual experience and is not innately predetermined (Watson, 1994).

There is also evidence from primate studies that the most proficient tool-using species are

those that can make a clear distinction between the tool and their own bodies (Povinelli

et al., 2000).

This research question explores a method for autonomous self-detection in robots. This

question also evaluates if the results of the self-detection method can be used by the robot

to classify visual stimuli as either “self” or “other.”
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Subsidiary Question 2

Can a robot learn a pliable sensorimotor model of its own body and

morph this model to facilitate goal-oriented tasks?

The neuroscience literature tells us that the brain keeps and constantly updates a model

of the body called body schema. This model is not static and can be extended by external

objects such as tools in a matter of seconds. For example, Iriki et al. (1996) have shown

that the body representation of a monkey can be extended when the monkey is holding a

tool and this extension may be important for tool-using behaviors. A similar extension of

the body occurs when a monkey observes its own hand in a TV monitor (Iriki et al., 2001).

This extension of the body allows the monkey to perform video-guided behaviors during

which it can observe its hand movements only through the TV monitor.

This research question investigates if a robot can learn a sensorimotor model of its own

body from self-observation data. This question also investigates if the pliability of this

representation can help the robot achieve tool-using tasks and video-guided behaviors.

Subsidiary Question 3

Can a robot use exploratory behaviors to both learn and represent

the functional properties or affordances of tools?

The related work on animal object exploration indicates that animals use stereotyped

exploratory behaviors when faced with a new object (see Section 2.1.1). For some species of

animals these tests include almost their entire behavioral repertoire (Lorenz, 1996). Recent

studies with human subjects also suggest that the internal model that the brain uses to

represent a new tool might be encoded in terms of specific past experiences (Mah and

Mussa-Ivaldi, 2003).

This research question evaluates whether a robot can use exploratory behaviors to au-

tonomously learn the functional properties or affordances (Gibson, 1979) of tools. This

question also investigates if a robot can use this behavior-grounded affordance representa-

tion to solve tool-using tasks.
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1.3 Contributions of the Dissertation

This dissertation makes the following contributions to the field of robotics:

• It demonstrates a method for autonomous self-detection in robots (Chapter 5).

• It demonstrates a model for extendable robot body schema (Chapter 6).

• It demonstrates a method for learning the affordances of tools by a robot (Chapter 7).

Although researchers in robotics have addressed issues such as manipulation and grasp-

ing of objects they generally have not treated these objects as tools. Rather, they have

addressed the problem of holding an object for the purposes of transporting it. Some in-

dustrial applications of robot arms use specialized instruments, but they are usually firmly

attached to the end effector and thus do not qualify as tools (see definitions in Section

2.1). Furthermore, the control laws for these instruments are usually provided by a human

programmer or in some cases learned from human demonstration. Thus, no existing work

to date in the robotics literature, to my knowledge, has attempted to investigate in a prin-

cipled manner the general problem of handling external objects as tools and learning their

affordances.

This dissertation makes a step toward the goal of building intelligent robots that can

adapt to their environment by extending their capabilities through the use of tools. Robots

that are capable of so doing will be far more useful than the robots of today. Abilities for

autonomous tool use would be especially useful for humanoid robots operating in human-

inhabited environments. Because of their humanoid anatomy, these robots will be faced

with many of the same challenges that humans face in their daily lives. Overcoming these

challenges will undoubtedly require the use of external objects as tools in a variety of tasks.

Planetary exploration missions may also benefit from research on autonomous robot

tool use. For example, some NASA plans for space exploration missions call for collecting

soil and rock samples from distant planets and bringing them back to Earth. This task

requires using a shovel or tongs (Li et al., 1996). In some cases a hammer must be used to
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expose the internal geological makeup of the rock samples (Li et al., 1996). In all of these

scenarios it may be possible to engineer acceptable solutions by providing the robot with

preprogrammed behaviors for tool use. However, the available tools may break or become

deformed. Autonomous adaptation would be critical for the success of the mission in these

situations.

In the near future, research on autonomous robotic tool use may play a major role

in answering some of the fundamental questions about the tool-using abilities of animals

and humans. After ninety years of tool-using experiments with animals (see Section 2.1.3)

there is still no comprehensive theory attempting to explain the origins, development, and

learning of tool behaviors in living organisms.

1.4 Overview

The rest of this document is organized as follows. Chapter 2 surveys the existing literature

on tool use in several fields of science: ethology, psychology, anthropology, neuroscience,

robotics, and artificial intelligence. Chapter 3 formulates some basic principles which are

used to formulate a developmental approach to autonomous tool use in robots. Chapter 4 de-

scribes the evaluation platforms that were used to perform experiments. Chapter 5 describes

an algorithm for autonomous self-detection in robots and the experimental conditions under

which it was tested. Chapter 6 describes a computational model for an extendable robot

body schema and shows how it can be used to facilitate tool-using tasks and video-guided

behaviors. Chapter 7 describes a behavior-grounded approach to autonomous learning of

tool affordances and shows how the learned affordances can be used to solve tool-using

tasks. Chapter 8 draws conclusions and suggests directions for future work.
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CHAPTER II

RELATED WORK

The interdisciplinary nature of this dissertation mandates an extensive overview of the

existing body of literature in ethology, psychology, anthropology, robotics, and artificial

intelligence. The goal of this chapter is to establish a solid theoretical foundation for the

work presented in later chapters as well as to differentiate this research from previous work.

2.1 Tool Use

Before the related work is presented it is necessary to give a working definition for tool

use. Several definitions for tool use have been given in the literature. The definition that is

adopted throughout this work is the one given by Beck:

“Tool use is the external employment of an unattached environmental object to
alter more efficiently the form, position, or condition of another object, another
organism, or the user itself when the user holds or carries the tool during or
just prior to use and is responsible for the proper and effective orientation of the
tool.” (Beck, 1980, p. 10).

According to this definition, an object is considered to be a tool if it is not a part of

the user’s body. The user must be in physical contact with the tool (i.e., hold or carry it)

during or right before its use. The tool must be used to act on an object, another organism,

or the user itself. And finally, the user must orient the tool in a position that is effective

for the current task.

Alternative definitions for tool use have been given by Alcock (1972), van Lawick-

Goodall (1970), and Parker and Gibson (1977). They are similar to Beck’s definition and

therefore are listed here only for completeness.

“[Tool use is] the manipulation of an inanimate object, not internally manufac-
tured, with the effect of improving the animal’s efficiency in altering the form
or position of some separate object.” (Alcock, 1972, p. 464)
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“Tool use is the use of an external object as a functional extension of mouth
or beak, hand or claw, in the attainment of an immediate goal.” (van Lawick-
Goodall, 1970, p. 195).

“[Goal directed] manipulation of one detached object relative to another (and in
some cases through a force field) involving subsequent change of state of one or
both of the objects, e.g., hitting one object with another, either directly or by
throwing, raking in one object with another, opening one object with another as
a lever.” (Parker and Gibson, 1977).

2.1.1 Object Exploration

The definition for tool use given above is broad enough to allow for almost any environ-

mental object to be a used as a tool if it is manipulable by the user. For this to happen,

however, both the physical and functional properties of the object need to be explored and

understood by its user through some form of object manipulation. The psychological liter-

ature distinguishes three main forms of such object manipulation: exploration, object play,

and tool use (Power, 2000, p. 19-22).

• Exploration is used to reduce uncertainty about the object through information

gathering. Exploration typically occurs during the first encounter with an object or a

new environment. Its purpose is to answer the intrinsic question of “What does this

object do?” Behaviorally it consists of a long stereotyped sequence of behaviors that

rely on the synchrony between visual and tactile sensors.

• Object Play occurs after initial exploration of the object. It tries to answer the

implicit query of “What can I do with this object?” It involves a series of short

behavioral sequences that are highly variable and idiosyncratic in nature. In object

play it is typical to observe little coordination between different sensory modalities.

• Tool Use is goal-directed behavior that has a clear objective to use the object as a

means to an end. The object is used to achieve, more easily, specific behavioral goals.

For most common objects the first two modes of object manipulation occur in both

animals and humans during the first years of life (Power, 2000). However, even adult
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Table 2.1: Types of object manipulation behaviors identified in primates in multi-species
studies. From Power (2000, p. 25).

Investigating Relating Procuring
Sniffing Rubbing Buccal prehension
Poking/touching Rolling Picking up
Mouthing/licking/biting Draping/Wrapping Holding
Scratching Hitting/Striking Carrying
Rotating Dropping Transferring
Bringing to Eyes Lining Up

Transforming Other large-motor behaviors
Tearing/breaking Waving/shaking
Twisting/untwisting Pushing/ pulling
Wadding/forming Throwing

animals and humans use exploratory behaviors when faced with a new object. Table 2.1

lists some commonly used object manipulation routines which are instrumental in gathering

information about object properties such as mass, durability, stiffness, and ease of handling.

It has long been recognized that the opportunity to explore can serve as a very powerful

motivator (Girdner, 1953; Montgomery and Segall, 1955). Numerous psychological theorists

have written about the intense interest of infants and young children in everyday objects

(Piaget, 1952; White, 1959; Hunt, 1965; Wenar, 1976; J., 1988). Several theories have

postulated that animals explore in order to satisfy their “stimulus hunger” (Barnett, 1958) or

that they seek stimuli “for their own sake” (Berlyne, 1966). As mentioned above, exploration

typically occurs during an organism’s first exposure to an object or when some change in the

environment is observed (Berlyne, 1950; Inglis, 1983; Montgomery, 1953). In this respect

exploration is similar to two other typical responses: fear and avoidance (Power, 2000, p.

19). Which of the three responses is chosen often depends on the degree of neophobia (i.e.,

fear of new things) induced by the object (Power, 2000, p. 19).

In any case, if exploration is chosen an interesting thing occurs: the object is subjected

to a battery of tests in the form of exploratory behaviors. For some species of animals these

tests include almost the entire behavioral repertoire of the animal. The following quote

from Conrad Lorenz, one of the founding fathers of ethology, summarizes this point well:
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“A young corvide bird, confronted with an object it has never seen, runs through
practically all of its behavioral patterns, except social and sexual ones. It treats
the object first as a predator to be mobbed, then as a dangerous prey to be killed,
then as a dead prey to be pulled to pieces, then as food to be tasted and hidden,
and finally as indifferent material that can be used to hide food under, to perch
upon, and so on.

[...] The appetite for new situations, which we usually call curiosity, supplies
a motivation as strong as that of any other appetitive behavior, and the only
situation that assuages it is the ultimately established familiarity with the new
object - in other words, new knowledge.

[...] In fact, most of the difference between man and all the other organisms
is founded on the new possibilities of cognition that are opened by exploratory
behavior.” (Lorenz, 1996, p. 44)

Table 2.2 lists some exploratory procedures and links them to object properties that can

be learned by applying these procedures to the object.

Table 2.2: Postulated links between knowledge about objects and exploratory procedures
that may be used to gain this knowledge. From Power (2000, p. 69).

KNOWLEDGE ABOUT OBJECT EXPLORATORY PROCEDURE

Substance-related properties
Texture Lateral motion
Hardness Pressure
Temperature Static contact
Weight Unsupported holding

Structure-related properties
Weight Unsupported holding
Volume Enclosure, contour following
Global shape Enclosure
Exact shape Contour following

Functional properties
Part motion Part motion test
Specific motion Function test

Power’s and Lorenz’s observations that object exploration can be achieved through

active experimentation with stereotyped behaviors motivates our use of a similar approach

to robotic tool exploration. Specifically, waving, pushing, and pulling behaviors will be used

to learn about tools and their affordances.
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2.1.2 Modes of Tool Use

The last mode of object manipulation listed in the previous section is tool use. According

to Beck (1980), whose taxonomy is widely adopted today, most animals use tools for four

different functions: 1) to extend their reach; 2) to amplify the mechanical force that they can

exert on the environment; 3) to enhance the effectiveness of antagonistic display behaviors;

and 4) to control the flow of liquids. Table 2.3 lists 19 modes of tool use that fit into one

of these four categories (only two others do not fit). The limited number of additional uses

shows that tool use has some well defined evolutionary advantages that are readily adopted

by many species (Beck, 1980, p. 123).

The first function of tool use, extension of reach, is applicable to situations in which

the animal is somehow prevented from getting close enough to some incentive. The tool

is used to bring the incentive within the sphere of reach of the animal. If the incentive is

located above the animal, the tool can be propped against a supporting structure in order

to climb to the incentive, or several objects can be stacked on top of each other to achieve

the same objective. If the incentive is another living animal, baiting can be used to catch

it without scaring it away. Inserting and probing is used when the incentive is located

in narrow crevices or holes which may be within the sphere of reach but are inaccessible

because the animal’s prehensive structures are too thick (Beck, 1980, p. 123).

The second function of tool use is to amplify the mechanical force that an animal can

exert on the environment. The six modes listed under this function in Table 2.3 work by

increasing the mass, decreasing the elasticity, and/or increasing the speed of the animal’s

prehensive structures. For example, clubbing or hitting increases the speed and thus the

force of a swing (Beck, 1980, p. 123). Prying uses leverage to amplify the applied force.

Prodding and jabbing deliver the force more effectively by concentrating it on a small area.

Another common use of tools in the animal world is to amplify aggressive or antagonistic

behaviors. The modes that fall into this category are: drop or throw down, unaimed throw,

brandish or wave, and drag, kick or roll (see Table 2.3). Orangutans, for example, have been

observed to throw stones and sticks at human observers (Harrisson, 1963). Some squirrels

try to scare away garter and rattle snakes by kicking sand into their faces (Owings et al.,
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1977; Owings and Cross, 1977).

The fourth function of tool-use is to control liquids more effectively. This mode includes

containment, transportation and wiping of liquids. For example, chimpanzees use clumps of

leaves to wipe mud, sticky foods, and blood from their bodies (Goodal, 1964; van Lawick-

Goodall, 1970). They also use leaves as sponges to absorb water (Goodal, 1964; van Lawick-

Goodall, 1970; McGrew, 1977). A laboratory crow at the University of Chicago was observed

to carry water in a plastic cup in order to moisten its dry food (Beck, 1980, p. 29).

The robot tool tasks described in later chapters fall in the extension of reach category

in Beck’s taxonomy. Tasks from this category have been used for the last 90 years to test

and formulate theories of tool use in animals. The next section reviews the most prominent

of these studies.
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Table 2.3: Modes of tool use in animals. An ’x’ indicates that this mode has been observed
in the members of a specific phyletic group. From Beck (1980, p.120-1).

Mode of Tool Use Arthropods Fish Reptiles Birds Nonprimate New Old Apes

and and Mammals World World

Mollusks Amphibians Monkeys Monkeys

Extend Reach

Reach x x x x x
Prop and Climb x x
Balance and climb x x
Stack x x
Bait x x x x x
Insert and probe x x x x

Amplify Mechanical Force

Pound, Hammer x x x x x x
Aimed throw x x x x x x x
Club, Hit x x x
Pry x x x x
Dig x x x x
Prod, Jab x x

Augment Antagonistic Display

Drop, Throw Down x x x x
Unaimed Throw x x x
Brandish, Wave x x x x x
Drag, Kick, Roll x x

Control Flow of Liquids

Wipe x x x x x
Contain x x x
Sponge, Absorb x x x

Not Fitting Any of the Above

Drape, Affix x x x
Hang and swing x x
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2.1.3 Animal Tool Use

There are numerous accounts of animal tool use, some of which were listed in Chapter 1.

Table 2.3 (see previous section) lists the observed modes of tool use among the members of

many phyletic groups of animals. Because many animal species, not only mammals, have

been observed to use tools, the phenomenon “apparently does not require a highly evolved

central nervous system” (Campbell, 1985, p. 277). Yet it must be cognitively complex

since man and chimpanzees are the only truly proficient tool users (Tomasello and Call,

1997, p. 58). While many animals are capable of tool use, not all of them are considered

to be intelligent tool users since their use of tools is limited to narrowly specialized feeding

adaptations (Parker and Gibson, 1977). Therefore, the majority of tool use experiments

have been performed with primates.

Wolfgang Köhler was the first to systematically study the tool behavior of chimpanzees.

The goals of his research were to establish if chimpanzees “behave with intelligence and

insight under conditions which require such behavior” (Köhler, 1931, p. 1). Köhler views

apes as good experimental subjects because they make mistakes that expose their limited

cognitive abilities and thus can serve as the basis for building a theoretical model of the

“nature of intelligent acts.” He notes that humans will not be good subjects since they rarely

encounter simple tasks for the first time and even in unfamiliar situations they perform the

task mentally before they act so their behaviors cannot be easily observed.1

Köhler performed a large number of experiments with nine chimpanzees from 1913 to

1917 while he was stranded on an island during the First World War. The experimental

designs were quite elaborate and required use of a variety of tools: straight sticks, L-sticks,

T-sticks, ladders, boxes, rocks, ribbons, ropes, and coils of wire. The incentive for the

animal was a banana or a piece of apple which could not be reached without using one or

more of the available tools. The experimental methodology was to let the animals freely

experiment with the available tools for a limited time period. If the problem was not solved

during that time, the experiment was terminated and repeated at some later time.

1He noted, however, that experiments with children (which had not been performed at the time of his
writing) would also be valuable (Köhler, 1931, p. 268).
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Figure 2.1: Three of the experiments performed by Köhler. The tools (boxes and sticks
in these cases) were randomly placed in the environment. The chimpanzees had to learn
how to use and/or arrange them to get the bananas.

In order to explain the abilities of apes to achieve complex tasks Köhler formulated

a theory which he called a theory of chance. It states that tasks are often solved by a

“lucky accident” which may occur while performing an action possibly unrelated to the

current objective. When solving a task, the animals try different actions in an attempt to

solve a “half-understood” problem. The solution may arise by some “chance outcome” of

these actions (Köhler, 1931, p. 193). Köhler also observed that “impatience and anger in

complicated cases take over” (Köhler, 1931, p. 262). The same was observed by Klüver

(1933). Beck (1980) also witnessed the same phenomena and hypothesized that observing

the outcomes of misplaced aggression and anger can lead to accidental discovery of tool use.

Köhler divides the errors that his subjects made into three main categories from the

point of view of the observer: 1) good errors - those that make a “favorable impression”

to the observer; the animal almost gets the task done; 2) errors caused by complete lack of

comprehension of the conditions of the task - as if the animal has some “innocent limitation”

which prevents it from grasping the task; and 3) “crude stupidities” - arising from habits

in seemingly simple situations in which the animal should be able to achieve the task.

Other pioneering studies were performed by Bingham (1929), Yerkes and Yerkes (1929),

Klüver (1933), and Yerkes (1943). The conclusions reached by them were in agreement with

Köhler’s finding. Klüver (1933), for example, concluded that the monkeys often achieved

success after performing a series of attempts in which they displayed a variety of behaviors
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Figure 2.2: An experiment designed to test if chimpanzees appreciate the hook affordance
of the tool. The task is to bring one of the platforms within reach using one of the tools
and get the banana. See text for details. From Povinelli et al. (2000, p. 223).

with external objects. One of these behaviors eventually produced the desired result. How-

ever, more complicated problems requiring fine manipulation or precise ordering of actions

often remained unsolved.

In more recent experimental work, Povinelli et al. (2000) replicated many of the exper-

iments performed by Köhler and used statistical techniques to analyze the results. One

experiment, shown on Figure 2.2, required the chimpanzees to choose the appropriate tool

for bringing a platform with bananas within reach. The two tools were a hook positioned

with the hook towards the ape and a straight stick. While this task may seem trivial, five

of the seven chimpanzees chose the straight stick on their first trial. On subsequent trials

they still did not show a clear preference for the hook which is the better tool for this task.

Even more interestingly, the chimpanzees that picked the hook tool used it first without

reorienting it. After their apparent lack of progress some of them reoriented the tool and

tried again. The ones that picked the straight stick, however, also reoriented it even though

this provides no advantage. Thus, the chimpanzees did not show that they understand the

advantage that the hook offers in this task (Povinelli et al., 2000, p. 231).

The main conclusion reached by the researchers was that chimpanzees do not understand

the functionalities of tools. Instead the solutions to the tool tasks may be due to simple

rules extracted from experience like “contact between objects is necessary and sufficient to
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Figure 2.3: The tube problem described by Visalberghi (1993). (a) A peanut is placed
inside a transparent plastic tube. To get the lure the monkey must use a stick to push it
out of the tube. (b) The test tools given to the monkeys after training with the straight
stick. See text for details.

establish covariation in movement” (Povinelli et al., 2000, p. 305) and “reorient the tool if

there is no progress and try again” (Povinelli et al., 2000, p. 231). Thus, the chimpanzees

may have only tried to establish contact between the tool and the platform regardless of

the shape of the tool. When the tool did not cause the desired movement of the platform

they either switched tools or reoriented the current tool (Povinelli et al., 2000, p. 305).

Furthermore, it was concluded that chimpanzees do not reason about their own actions and

tool tasks in terms of abstract unobservable phenomena such as force and gravity. Even

the notion of contact that they have is that of “visual contact” and not “physical contact”

or “support” (Povinelli et al., 2000, p. 260).

In another recent study, Visalberghi and Trinca (1989) tested capuchin monkeys on

a tube task: a peanut was placed in the middle of a transparent tube whose length and

diameter were such that the animal could not grab the peanut directly. After training with

a straight stick a variety of tools were provided to the monkeys that could be used to push

the lure out of the tube – short and long sticks, thick sticks, bundled sticks, and H-sticks

with blocked ends (Figure 2.3). Although many of the test subjects eventually succeeded
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Figure 2.4: (a) The trap tube problem described by Visalberghi and Limongelli (1994);
the end from which the stick is inserted affects the final outcome. (b) The inverted trap
tube problem; the end from which the stick is inserted does not affect the final outcome.

in performing this task, they made a number of errors, for example, inserting a short stick

into the tube and then inserting another short stick in the opposite side of the tube or

freeing one end of an H-stick and then inserting the other end into the tube. This led

the researchers to conclude that capuchin monkeys “do not abstract at a representational

level the characteristics of the tool required by the task they face”. They also concluded

that capuchins “do not acquire a general set of rules concerning the properties of the stick”

(Visalberghi, 1993).

In a subsequent study the tube was modified to have a small trap hole right in the middle

(Figure 2.4) so that if the food is pushed inside the hole it cannot be taken out (Visalberghi

and Limongelli, 1994). Initially, it seemed that the animals learned the task. However,

they did not learn which is the better end of the tube for inserting the stick and inserted it

equiprobably into either side of the tube. Corrections were made based on the movement of

the food and its location relative to the trap. Interestingly, the monkeys continued to avoid

the trap even when the tube was rotated 180 degrees so that the trap was upside-down

and could no longer capture the food. It seems that performance in this task was guided
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entirely by the position of the food relative to the hole. When it was observed that the food

is moving towards the hole, the stick was inserted in the other direction (Visalberghi and

Limongelli, 1994).

The results of the experiments described in this section seem to indicate that in many

situations non-human primates do not have a clear idea about the functional properties of a

tool and yet they are capable of solving tool tasks. It seems that they base their solutions on

heuristics extracted from observable phenomena of their actions. In many cases movement

of the attractor object is the most important thing to which they pay attention. This

movement also serves as an indicator of their progress in the task. Another conclusion is

that most experiments with new tools and tasks were solved purely by accident after a series

of seemingly random exploratory behaviors.

Many of these observations are taken into account in Chapter 3 which formulates a

theoretical model of autonomous robotic tool use. The robot experiments described in later

chapters were inspired by the primate experiments described in this section.
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2.2 Origins of Tool-Using Behaviors

Ethologists and anthropologists have identified several factors as important or contributing

to the origins of animal and human tool use. The next two subsections describe the currently

adopted theories in these two fields of science.

2.2.1 Ethological Viewpoint

Beck’s explanation for discovery of tool use is trial-and-error learning. He argues that it

is a process in which “the animal makes a variety of responses, one of which fortuitously

produces reinforcement.” (Beck, 1980, p. 141-2). This is similar to the operant conditioning

training methods (Skinner, 1938) except that in the latter case the trainer uses a variety of

techniques to elicit the first response. However, in the case of tool discovery, often there is

no teacher to provide reinforcement.

In many cases it seems that the origins of a tool-using behavior may involve only a small

change like a stimulus substitution in an existing behavioral sequence (Beck, 1980, p. 181).

Another way to achieve the same result is to transfer an existing behavioral pattern to a

slightly novel stimulus situation (Beck, 1980, p. 181). It is still debatable what triggers this

substitution or transfer. Beck, however, suggests that observing the results of frustration

and displaced aggression may lead to an accidental discovery of tool use (Beck, 1980, p.

181).

In the animal, world tool behaviors can also be learned through active tuition by a parent

or through imitation (Kawamura, 1959; McGrew, 1978; de Waal, 2001). Active tuition,

however, is very rare and some authors have even questioned whether it exists (Povinelli

et al., 2000, p. 302). The woodpecker finch, for example, can learn to use twigs or cactus

spines to push arthropods out of tree holes without social learning (Tebbich et al., 2001).

In fact, this behavior can be acquired even by finches whose parents have never used tools

to get their prey. Instead, the motivation provided by the environmental conditions seems

to have a greater impact: dry environments have less food and stimulate the development

of the behavior, while wet climates suppress it (Tebbich et al., 2001).

There are many ecological conditions that may have contributed to the evolution of tool
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use. The one condition on which most scientists agree, however, involves extractive foraging

on embedded foods (Parker and Gibson, 1977; Beck, 1980). Examples of embedded foods

include nuts, mollusks, and insects that dwell in underground nests, i.e., foods whose edible

portions are protected by a hard shell or are hard to reach.

The evolutionary significance of tools for tool-using species has been seen by others

as a compensation for the animal’s “lack of biological equipment” or as a substitute for

adaptation through morphology (Alcock, 1972; Parker and Gibson, 1977; Wilson, 1975).

These species resort to the functionally equivalent behavior of tool use to compensate for

their lack of anatomical specializations (Alcock, 1975).

A tool behavior can give a significant competitive advantage to the species that use

that behavior. Alcock suggests that tool-using species have been able to invade ecological

niches that are not at all characteristic of their phylogenetic groups (Alcock, 1972, p. 472).

Tools may also provide a key advantage in the competition for resources with other species

living in the same ecological niche. The tool-using species may obtain a monopoly or near

monopoly of a specific resource and thus eliminate all competitors (Campbell, 1985, p.

277). Tool behaviors that increase or diversify food supplies indirectly improve the animal’s

reproductive chances and thus the survival of the species.

Another important factor in the evolution of tool behaviors is the presence of a powerful

motivator. As mentioned above, food extraction is probably the most powerful motivator

in the animal world. However, if food resources are plentiful and food can be obtained with

little effort and bare hands tool behaviors are unlikely to evolve. This may have been the

case with a group of wild African chimpanzees that use almost no tools and live in an area

where food supplies are abundant (Poirier and McKee, 1999, p. 66).

These findings are insightful and at the same time quite relevant to robotics. The robots

of today are becoming more capable and they are beginning to spread to environments

inhabited by other species – the humans (Menzel and D’Aluisio, 2000). Since humans are

tool-using species, the robots will have to “adapt” to the demands of their new ecological

niches and become tool-using “species” themselves in order to compete successfully. Thus,
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in order to achieve the vision of mass adoption of robots into our everyday lives (discussed

in Chapter 1) the fundamental questions of how to autonomously learn, represent, and use

the functional properties of tools need to be addressed. Finding answers to these questions

is the main motivation behind this dissertation.

2.2.2 Anthropological Viewpoint

The archaeological record left behind by our ancestors clearly indicates that tools have been

an essential part of humanity for at least the last two million years. The oldest stone tools

found date to between 2 to 2.5 million years ago. They are simple chips or pebbles from

river gravels. Many of them were never shaped and can only be identified as tools if found

together with shaped stones in caves where they do not occur naturally (Washburn, 1979,

p. 9).

Over the ages, both the design of the tools and the methods of manufacture increased at

a steady pace. Figure 2.5 shows four tools made during different stages of human evolution.

Both the sophistication of the design and the number of operations needed to manufacture

the tool increase from left to right. The most common manufacturing techniques also

evolved from the simple striking of a stone with another stone, to using hard and soft

materials as hammers to better control the flaking, and finally to grinding and polishing

(Tattersall et al., 1988, p. 542-548). Producing a tool such as the one shown on the

rightmost image in Figure 2.5 required nine major manufacturing steps and approximately

251 individual operations (Campbell, 1985, p. 398).

There is no archaeological evidence to suggest that stone tools were used earlier than

2.5 million years ago. However, it seems likely that other tools were used before that but

they were not preserved. These tools were made of bio-degradable materials like bone, horn,

teeth, leather, wood, bark, and leaves and stems of plants (Campbell, 1985, p. 278). Similar

tools are used by modern day hunter-gatherer communities living in Africa and Australia.

The most common tool used by these modern foragers is the digging stick which would

not be preserved because of its composition (Poirier and McKee, 1999, p. 175). In fact,

stone tools, because of their hardness, may have been invented in order to cut softer raw
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Figure 2.5: Progression of stone tool technology. Both the sophistication of the design and
the number of operations needed to manufacture the tool increase as technology improves.
From left to right: two hand axes made by Homo erectus; a scraping tool made in Nean-
derthal times; a stone knife made by Paleolithic people of modern type. From Campbell
(1985, p. 398).

materials like wood and bone which were already being used for toolmaking (Campbell,

1985, p. 279).

The ability to use tools may have evolved gradually but the advantages that it offered

were quite substantial. The quality of life made possible by tools changed the pressures of

natural selection and even changed the structure of man (Washburn, 1979, p. 11). Darwin

(1871) was among the first to suggest that tool use required free hands and thus may have

been a selective evolutionary advantage towards the adoption of two-legged locomotion.

Stone tools may have played an important role in the adoption of a carnivorous diet in the

early hominids as well. Initially our ancestors had a vegetarian diet but gradually began

scavenging the remains of dead animals killed by other carnivores. These leftovers had to be

cut and it is unlikely that bare hands and teeth were sufficient for this job (Collins, 1976).

In fact, it has been shown that some of the early stone tools have been used to cut meat by

analyzing the microwear patterns of their edges (Keeley, 1979).

The benefits of tool use may have lead to the gradual increase of localization abilities

and memory capacity for the purpose of remembering the location of raw tool materials.

This would have been especially important in harsh environments where such materials

are sparse. Some theories propose that certain gatherings of stone tools in large numbers

were, in fact, early tool repositories (Potts, 1984). Remembering the location of these stone
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caches would be crucial for the survival of the tribe, especially for a hunter-gatherer tribe

that may traverse tens of kilometers per day.

Calvin (1983) proposed an interesting theory according to which stone throwing (a

specific mode of tool use) may have played an important role in the lateralization of the brain

and even the development of language. Throwing a stone requires precise coordination of

sequential one-handed motor skills and thus may have required increased cognitive abilities

which concentrated in one of the brain’s hemispheres. Language is another sequential skill

that may have benefited from the cognitive abilities developed for stone throwing. In fact,

the brain centers for throwing and language are located close to each other in the left

hemisphere of the brain and may have evolved simultaneously (Kimura, 1979; Lieberman,

1991). Language may have evolved for another reason also connected with tools. The

increasing importance of tools for the survival of the species may have put evolutionary

pressure towards the development of a communication system. Without communication it

is hard to refer to specific tools in daily activities and even harder to pass the ability to use

and manufacture tools from one generation to the next (Poirier and McKee, 1999, p. 135).

The combined effect of increased hand manipulation required for tool use, carnivorous

diet, and increasing requirements on the mental and communication abilities undoubtedly

contributed to the increase in brain size (Poirier and McKee, 1999, p. 138). This provided

more “computational resources” that could be used to invent new tools for other tasks.

The increasing sophistication of tools and tool-making technology over the last two

million years has resulted in today’s technological society. Almost every aspect of our lives

today is affected by our abilities to use and manufacture tools. Table 2.4 divides human

technology into seven main categories. According to this categorization, the invention of

stone tools marks the beginning of human technology. Even though our ancestors may have

been using tools long before that, technology did not start until they realized how to use

tools to manufacture new tools. In fact, most primate animals living today are capable of

tool use and tool modification but only man has been known to manufacture new tools using

existing tools (Poirier and McKee, 1999, p. 68). A similar distinction is made between fire

use and fire making. While the early hominids may have been using fire created by natural
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Table 2.4: Categories of technology identified by Campbell (1985, p. 279).
1. Prototechnology a) Tool use

b) Tool modification

2. Technology a) Tool manufacture
b) Stone technology (and secondary tools)

3. Pyrotechnology a) Fire use
b) Fire control
c) Fire making
d) Metal industries (smelting, casting, forging)

4. Facilities a) Containers, cords, etc.
b) Energy control

5. Machines
6. Instruments
7. Computers

means such as lightning and forest fires, many years would pass before they were capable

of starting fire on their own (Poirier and McKee, 1999, p. 244). With the ability to make

fire, metallurgy emerged which made the production of more complicated and more robust

tools possible. From then on, human technology has advanced very rapidly to such an

extent that our modern lives seem impossible without automobiles, computers, electricity,

and telephones.

During the evolution of humankind, tools were used for different purposes (Table 2.4).

The first tools were used to extend or amplify motor and physical abilities. Pounding,

cutting, digging, and scraping provided a definite advantage; tools that could be used

for these actions were in high demand (Washburn, 1979, p. 9). This trend was changed

much later towards producing tools that amplify our sensing abilities. Instruments like the

telescope and the microscope allowed people to see objects at great distances and magnify

hard-to-see objects (Campbell, 1985, p. 397). Another trend has begun with the invention

of the computer which promises to revolutionize our computational and planning abilities.

Similar to the history of evolution of human tool behavior, the robot experiments de-

scribed in later chapters involve simple tools like sticks that extend the physical capabilities
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of the robot. Another reason for choosing the stick as the primary tool in those experi-

ments comes from the psychological work discussed in the next section. According to some

psychological theories the first intelligent behaviors in children are those that use a stick to

bring distant objects within grasping range.

2.3 Psychological Influences

Psychologists have long been interested in the abilities of humans and animals to use tools

to manipulate external objects. According to some psychological theories interactions with

external objects are so important that they directly influence the development of human

intelligence (Piaget, 1952). Other theories have focused on the capacity of tools to trans-

form organisms into more capable ones (Gibson, 1979). Yet others, have focused on the

differences between animal and human tool-using behaviors in search of the origins of hu-

man intelligence (Vauclair, 1984; Power, 2000). This section provides a brief summary of

the psychological theories of tool use that have influenced this dissertation work.

2.3.1 Piaget

Jean Piaget formulated probably one of the most influential theories of child development.

According to his theory, external objects play an important role in the development of

human sensorimotor abilities. Piaget’s theory also suggests that intelligent behaviors are

first developed in the process of interaction with objects. The first manifestation of inventive

intelligence, according to Piaget, is observed when a child successfully manages to bring

distant objects closer by pulling the support on which they are placed or by using a stick

to bring them within its field of prehension (Piaget, 1952, p. 280).

“The desire to strike or swing objects fortuitously reveals to the child the power of the

stick when by chance the latter extends the action of the hand. [...] Thereafter, when

the child aims to reach an object situated outside his field of prehension, it is natural

that his desire should arouse the schemata in question. [...] It is not enough to strike

an object with a stick in order to draw it to oneself [therefore] it is necessary to discover

how to give an object an appropriate movement. [...] [T]he child, as soon as he sees the

object being displaced a little under the influence of the stick’s blows, understands the

possibility of utilizing these displacements with the view of drawing the object in question
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to him. This comprehension is not only due to the initial schemata which are at the root

of the subject’s searching (schema of grasping and that of striking) [...] but it is also

due to the “auxiliary” schemata which join themselves to the former.” (Piaget, 1952, p.

301-2).

According to Piaget, even the mathematical abilities of humans have their origins in object

interaction as children first learn the concept of a number by counting external objects.

Piaget’s theory divides the first two years of human life into six distinct stages (Piaget,

1952). Most of the perceptual and motor skills of the child are developed during these two

years. With each additional stage, the behaviors of the child progress from simple to more

intelligent ones. The role that external objects play in the development of the child also

increases with each additional stage. A brief summary of the major developments in each

stage is provided below.

• Stage I: Reflex Structures (0-1 Month)

Piaget suggests that at birth children have no cognitive structures. Instead they have

reflex structures for sucking, grasping, and crying. For example, newborn children close

their hands when their palms are touched. Similarly, children start sucking any object that

comes into contact with their lips (Piaget, 1952, p. 89).

• Stage II: Primary Circular Reactions (1-4 Months)

The infant’s reflex structures are gradually transformed into sensorimotor action schemas,

which Piaget calls primary circular reactions. This happens after repeated use of the reflex

structures, which the baby would apply to any object. For example, babies would grasp

blankets, pillows, fingers, etc. Stage II infants, however, are not concerned with the objects

around them and would not pay attention to the effects of their actions on the external

world. They would execute an action even if it is not applied to any object. It is not un-

common for them to open and close their hands in mid-air. The repeated use of the action

forms the primary circular reaction.
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• Stage III: Secondary Circular Reactions (4-8 Months)

At the end of Stage II, infants are more capable of exploring their world. They can form

associations between their actions and the results produced in the external environment.

The child actively tries to reproduce or prolong these results. Through this repetition

the child discovers and generalizes behavioral patterns that “produce and make interesting

sights last” (Piaget, 1952, p. 171). Piaget calls these behavioral patterns secondary circular

reactions. External objects play an important role in stage III but differences between

objects are not noticed as the infant handles them in the same way.

• Stage IV: Coordination of Secondary Schemes (8-12 Months)

Stage IV marks the beginning of problem solving. Babies are now capable of coordinat-

ing their secondary schemas in a means-ends fashion. Instead of merely reproducing the

results of their actions, children would use one schema to achieve a specific goal. That goal

can simply be to use another schema. For example, in order to play with a toy covered

with a cloth the child would first remove the cloth and then pick up the toy. Overcoming

these obstacles with intermediate means and unforeseen difficulties requires adaptation of

familiar schemas to the realities of new situations (Piaget, 1952, p. 213).

The coordination of secondary schemas gradually leads to their generalization and ap-

plicability to a growing number of objects (Piaget, 1952, p. 238). Children become capable

of applying them to many new situations and that accelerates their exploration capabilities.

One limitation of Stage IV is that infants are capable of employing only familiar schemes.

If a task requires a new way of interaction with the world, the baby simply cannot solve it.

• Stage V: Tertiary Circular Reactions (12-18 Months)

Stage V babies are real explorers. They systematically vary and gradate their behaviors

and pay close attention to the observed results. They discover new means through such

active experimentation. Piaget calls these experiments tertiary circular reactions (Piaget,

1952, p. 267). The experiments are guided by the search of novelty as a goal in and of

itself which is why Piaget also calls them ”experiments in order to see” (Piaget, 1952, p.

264). For the first time the child can truly adapt to unfamiliar situations by using existing
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schemas as well as actively seeking and finding new methods (Piaget, 1952, p. 265).

Stage V also marks the beginning of intelligent tool use. According to Piaget, the first

manifestation of that is the child’s ability to bring distant objects within reach. This is

achieved by pulling the support on which the objects are standing or by using a stick to

push them within the field of prehension. This complex action is formed by the coordination

of different schemas for grasping, striking, and bringing to oneself. The first two schemas

serve as means to achieving the final goal and are directed by the last schema.

• Stage VI: Invention of New Means Through Mental Combinations (18 Months)

Exploration and problem solving in Stage VI continues much in the same way as in

stage V with one important difference: the actual experimentation now occurs mentally.

The child only pauses to think for a while before solving a problem.

The theoretical approach to robotic tool use, presented in Chapter 3, was inspired by

Piaget’s ideas. The computational method for learning the affordances of tools presented

in Chapter 7 resembles the tertiary circular reactions described by Piaget. Also, Piaget’s

suggestion that one of the first intelligent acts in children is the use of a stick to bring

out-of-reach objects within grasping range has inspired the choice of tools and tool tasks in

the robot experiments.

2.3.2 Gibson

James Gibson (1979) was a proponent of the ecological approach to perception which ad-

vocates that perception is more a direct process than a cognitive process. At the time of

Gibson’s writing, the predominant view in psychology was that objects have properties or

qualities associated with them and in order to perceive and object an organism should per-

ceive all of its properties. These properties are: color, texture, composition, size, shape,

and features of shape, mass, elasticity, rigidity, and mobility among others.

Gibson proposed an alternative theory according to which objects are perceived in terms

of their affordances, not their qualities. An affordance is defined as an “invariant combina-

tion of variables.” Presumably it is easier to perceive this invariant than to perceive all the

variables separately. In Gibson’s own words: “it is never necessary to distinguish all the
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features of an object and, in fact, it would be impossible to do so; perception is economical”

(Gibson, 1979, p. 134-5). The most important property of a chair, for example, is that it

affords sitting; its exact shape, color, and material of which it is made are only secondary

in importance. Gibson’s theory does not suggest that we are not capable of distinguishing

object properties if we have to. It only states that when perceiving objects we first observe

their affordances and then their properties. According to Gibson, the same process occurs

in child development: infants first notice the affordances of objects and only later do they

begin to recognize their properties (Gibson, 1979, p. 134).

While Gibson is not specific about the way in which object affordances are learned he

seems to suggest that some affordances are learned in infancy when the child experiments

with objects. For example, an object affords throwing if it can be grasped and moved away

from one’s body with a swift action of the hand and then letting it go. The perceptual

invariant in this case is the shrinking of the visual angle of the object as it is flying through

the air. This highly interesting “zoom” effect will draw the attention of the child (Gibson,

1979, p. 235).

Gibson divides environmental objects into two main categories: attached and detached.

Attached objects are defined as substances “partially or wholly surrounded by the medium”

which cannot be displaced without becoming detached (Gibson, 1979, p. 241). Detached

objects, on the other hand, are objects that can be displaced; they are portable and afford

carrying.

Detached objects must be comparable in size with the animal under consideration in

order to afford behavior. For example, an object is graspable if it is approximately “hand

size” (Gibson, 1979, p. 234) or has opposable surfaces the distance between which is less

than the span of the hand (Gibson, 1979, p. 133). Thus, an object affords different things

to people with different body sizes; an object might be graspable for an adult but may not

be graspable for a child. Therefore, Gibson suggests that a child learns “his scale of sizes

as commensurate with his body, not with a measuring stick” (Gibson, 1979, p. 235).

Using the above definitions, Gibson defines tools as detached objects that are graspable,

portable, manipulable, and usually rigid (Gibson, 1979, p. 40). A hammer, for example,
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is an elongated object that is graspable at one end, weighted at the other end, and affords

hitting or hammering. A knife, on the other hand, is a graspable object with a sharp blade

that affords cutting. A writing tool like a pencil leaves traces when applied to surfaces and

thus affords trace-making (Gibson, 1979, p. 134).

Gibson views tool-using as a rule governed activity. The rules are extensions to the

rules used to control our hands and bodies when we perform a similar task without a tool.

For example, the “rule for [using] pliers is analogous to that for prehending” (Gibson, 1979,

p. 235). This line of reasoning is further extended to suggest that tools can be viewed as

extensions to our hands and bodies and that they blur the boundary between us and the

environment:

“When in use a tool is a sort of extension of the hand, almost an attachment to it
or a part of the user’s own body, and thus is no longer a part of the environment
of the user. But when not in use the tool is simply a detached object of the
environment, graspable and portable, to be sure, but nevertheless external to
the observer. This capacity to attach something to the body suggests that the
boundary between the animal and the environment is not fixed at the surface of
the skin but can shift.” (Gibson, 1979, p. 41)

Note that this extension qualifies some everyday objects like clothes as tools. Although

clothes are rarely qualified as tools, this extension makes perfect sense if we think of clothes

as tools that afford us to maintain our body temperature. When being worn, clothes become

part of the wearer’s body and are no longer part of the environment. When not being worn,

clothes are just detached objects made of fabric (Gibson, 1979, p. 41).

Gibson is not the only one that has postulated that tools can act as extensions of the

human body. Neuroscientists have suggested that the body schema (i.e., the representation

of the body in the brain) is very pliable and can be modified by the use of external objects

such as tools (see Section 6.2). Chapter 6 describes a computational model for a robot body

schema that has extensibility properties similar to its biological analog.
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2.4 AI and Robotics

As it was mentioned in Chapter 1, studies of autonomous tool use in robotics and AI

are still rare. Nevertheless, multiple researchers have addressed different aspects of the

broader problem of robot tool use. The computational aspects of tool use published in the

literature can be divided into three main categories: Tool Modeling, Tool Recognition, and

Tool Application (Figure 2.6). This section reviews the related work in these areas.

Tool Tool

Tool Use

Recognition Application
Tool

Modeling
Figure 2.6: The computational aspects of tool use published in the Robotics and AI
literature can be divided into three main categories.

The first aspect of tool use found in the literature is tool modeling. Tool models are

computational representations and data structures that capture the shape and/or function-

ality of a tool. In many instances tool shape and tool functionality are treated as separate

entities and additional data structures are required to perform the mapping between the

two. Depending on the assumptions made by different approaches this mapping can be

one-to-one, one-to-many, many-to-one, or many-to-many. Shape representation methods

can be divided into three types depending on the detail with which they model the bound-

ary or volume of the tool: exact boundary, exact volume, or an approximation of the two.

Function representation methods use a library of functional primitives, often described in

terms of geometric relationships between object parts, to represent the object. Figure 2.7

shows this classification graphically.

The second component of tool use described in the literature is tool recognition. The

goal of the recognition process is to identify the type of tool and to extract its functional
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Exact Volume
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Figure 2.7: Tool models are representations that capture the shape and functionality of
a tool. Additional representations and data structures are often necessary to perform the
mapping between shape and functionality.

properties so that the tool can be successfully applied to a task. This problem is a subset of

the more general problem of object recognition. Therefore, most of the techniques in this

category come from the field of computer vision. The algorithms used in the recognition

process fall into two main categories: shape-based and function-based. Until recently al-

most all of the approaches to object recognition were shape-based. More recently, however,

function-based approaches have been gaining popularity. This is especially true for recog-

nizing objects that have clearly defined functionality like hand tools. The sensing modality

used to perceive the tool for recognition purposes can be visual, haptic, or a combination

of the two. This classification is shown on Figure 2.8.

The third component of robotic tool use is tool application. Tool application is the act of

using the tool to achieve a task. The approaches described in the literature can be classified

Algorithm

Sensing Modality
Recognition

Haptic

Tool
Visual

Function−based 

Shape−based

Figure 2.8: Tool recognition approaches can be classified based on the type of the recog-
nition algorithms used and the type of sensing modality used to perceive the tool.
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Prehensile
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Rigid
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Figure 2.9: Robotic tool application can be classified based on the five criteria shown
here.

based on five criteria: control mode, grasp type, tool type, robot capabilities that the tool

extends, and number of robots using the tool (Figure 2.9). The control mode can be either

autonomous or teleoperated. There are two main types of grasps used to control a tool:

prehensile and non-prehensile. The tools used can be rigid objects, flexible objects like

ropes, or articulated objects like scissors that have moving parts. A tool usually extends

the physical capabilities of a robot like the ability to reach further, however, a tool can

also be used to extend the sensing capabilities of the robot (e.g., a stick can be used to hit

an object to discover its acoustic properties (Krotkov, 1995)). In most instances tool use

is performed by a single robot but the manipulation of large objects sometimes requires a

cooperative team of robots.

The following subsections summarize the related work in these three areas.

2.4.1 Tool Modeling

A variety of shape representation techniques for 2D and 3D objects have been developed

over the years (Ballard and Brown, 1982; Haralick and Shapiro, 1993). Most of them

were invented for computer graphics and computer vision applications, but some have their

origins in early AI work. Shape representation methods can be divided into three main
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categories as described below.

The first category includes methods that describe objects in terms of their boundaries.

Some examples include: polylines, chain codes, B-splines, wire frames, and surface-edge-

vertex representations. The methods in the second category focus on representing the area

(or volume in the 3D case) of objects. Example methods from this category are: spatial

occupancy arrays, quad-trees, and oct-trees. The methods in the last category represent

either the boundary or the volume of the object but use approximation techniques which

are more economical and often give better results in object recognition tasks. Some examples

are: skeleton or stick figure representations, sticks, plates and blobs (Shapiro et al., 1984;

Mulgaonkar et al., 1984), generalized cylinders (Brooks, 1980), superquadratics (Barr, 1981),

and superellipses (Gardiner, 1965).

Finding the mapping between object shape and object functionality is a difficult prob-

lem. The nature of this mapping is not always clear since an object usually has more than

one functionality. Furthermore, the functionality depends on the intended task. Under

some assumptions, however, it is possible to use reasoning and infer the functionality of

an object from its shape. The most prominent approaches in AI that have addressed this

problem in the context of tool use are reviewed below. Section 2.4.2 describes additional

approaches to this problem used in the context of tool recognition.

In an early conceptual work, Lowry (1982) describes a framework for reasoning between

structural and functional relationships of objects. In this framework, structure is described

with a hierarchy of generalized cylinders and motion sequences of the spines of the gen-

eralized cylinders. Function, on the other hand, is expressed by a hierarchy of kinematic

primitives, functional primitives, and causal networks. Analogical reasoning and represen-

tation constraints are used to link the functional and topological hierarchies describing an

object. Both qualitative and quantitative reasoning can be used to extract relationships

between the two hierarchies. For example, structural symmetry usually is a good predictor

of functional symmetry.

Brady et al. (1985) present an outline for a system intended to assist people with con-

struction and assembly work. The project, named the mechanic’s mate, has three main
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Figure 2.10: Semantic network representation for a hammer. From Connell and Brady
(1987).

objectives: 1) to understand the interplay between planning and reasoning in the domain

of hand tools and fasteners; 2) to explore different geometric tool representations; and 3)

to explore qualitative and quantitative representations that capture the dynamics of using

tools, fasteners and objects. Smoothed local symmetries are suggested as shape representa-

tion primitives for this system (Brady and Asada, 1984). Case-based planning is suggested

as a way of specializing existing tool-plans to new situations.

Connell and Brady (1987) describe a system which performs analogical reasoning about

shapes in the domain of hand tools. They use semantic nets to describe the structural

relations between the object subparts. A hammer, for example, has a head and a handle both

of which have two ends and two sides. These descriptions can be learned from positive and

negative examples of objects. However, these representations can be complex (see Figure

2.10) and small errors due to poor learning or object recognition may lead to completely

different object functionality. To minimize such errors an algorithm based on gray coding

was used so that small changes or errors in the symbolic representation cause only small

changes in the semantic representation. Viana and Jaulent (1991) describe a different

approach to bridging the gap between shape and functionality descriptions. They use fuzzy

set representations to compute the compatibility between an object shape and a required

function.
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The EDISON system (Hodges, 1992, 1993, 1995) uses naive mechanical knowledge to

reason about the function of devices with moving parts such as a nutcracker and a can

opener. A Functional Ontology for Naive Mechanics (FONM) is defined which includes

physical, behavioral, and functional properties of objects and devices. Semantic networks

are used to describe the shapes of the devices. As discussed above, this representation

has the disadvantage of creating a many-to-one mapping from form to function. Hodges,

however, sees this as an advantage and claims that this diversity can help with finding

innovative uses of the device. Reasoning is used to find functional equivalences between

devices or some of their parts. These equivalences can later be exploited in problem solving.

A recent overview of the different approaches to reasoning about the functionality of

tools is given by Bicici and St. Amant (2007). The authors conclude that relying only on

the shape of an object to determine its functionality is limited. They suggest that “an agent

that is interested in learning how a tool can be used [...] needs to look for the changes it

can achieve in the physical world by using the tool” (Bicici and St. Amant, 2007, p. 20).

The tool representation described in Chapter 7 is consistent with this observation.

2.4.2 Tool Recognition

Many studies in computer vision and AI have focused on object recognition. One specific

area of research which is relevant to the current discussion is function-based object recog-

nition. Systems that subscribe to this methodology use information about the shape of an

object to reason about the purposes that the object might serve, thus helping the recogni-

tion process (DiManzo et al., 1989; Stark and Bowyer, 1991, 1996; Stark et al., 1997; Sutton

et al., 1993; Green et al., 1995). These approaches have proven to be useful for recognition

of objects with clearly defined functionality like hand tools. This subsection reviews only

the approaches that have explicitly dealt with the domain of tools.

One of the most detailed and complete function-based recognition systems to date is

GRUFF (Generic Recognition Using Form and Function) (Stark and Bowyer, 1996). The

GRUFF project began in 1987 and evolved through four different generations including more

object categories with each generation (Stark and Bowyer, 1991; Sutton et al., 1992, 1993,
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1994). GRUFF-1 uses function-based definitions of chairs only; GRUFF-2 includes objects

in the “furniture” category; GRUFF-3 incorporates “dishes”, “cups”, “bowls”, “plates”,

“pans”, and “pitchers”; and GRUFF-4 includes objects in the “hand-tools” category.

GRUFF takes as input a CAD description of an object and outputs a list of possible

shape interpretations for this object. A set of knowledge primitives describing basic physical

properties are used to reason about the input shape. The primitives take as input portions

of object descriptions and output a value between 0 and 1. A global evaluation measure is

obtained by combining all primitive measurements. The following knowledge primitives are

currently used: relative orientation, dimensions, proximity, clearance, stability, and enclo-

sure. Each primitive can take several parameters which modify its output. For example, the

relative orientation primitive takes the normals of two surfaces and compares if the angle

between the normals falls within a specified range. This primitive can also be used as a

measure of the transformation required to align the two surfaces so that the normals are

parallel.

In the GRUFF project object categories are described with definition trees. The root of

the tree represents the most general category (e.g., chair). The nodes of the tree represent

different sub-categories (e.g., lounge chair, balance chair, high chair). The leaves of the tree

represent invocations of the knowledge primitives that describe a specific functional property

(e.g., provides arm support, provides back support). When evaluating object functionality

GRUFF tries to evaluate if the object can function as an instance of some category instead

of looking at its intended purpose (e.g., GRUFF can recognize that a trashcan turned upside

down can serve as a chair).

Fine-tuning the object membership functions which rely on many knowledge primitive

functions proved to be increasingly more difficult as more objects were added to the CAD

database. Because of this difficulty, a learning variant of GRUFF called OMLET was

developed (Stark et al., 1997). OMLET learns the membership functions from correctly

classified examples of objects.

Rivlin et al. (1995) describe another computer vision system that recognizes simple

hand tools. Unlike GRUFF, however, they are not trying to reason about global object
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Figure 2.11: Object functionality representation used by Rivlin et al. (1995).

characteristics such as stability, height, or existence of large horizontal surfaces. Instead,

they reason about object parts defined qualitatively with an extended version of the sticks,

plates, and blobs paradigm (Shapiro et al., 1984; Mulgaonkar et al., 1984). The spatial

relations between primitives are also expressed quantitatively. Angle of joining, for example,

can be oblique, perpendicular, tangential, etc. The position of the joint on each surface is

also qualitatively described as near the middle, near the side, near the corner, or near the

end of a surface. Functional primitives are defined and linked by functional relations. The

mapping between shape primitives (and their relations) and functional primitives is achieved

by a one-to-one function (see figure 2.11). In general this mapping falls in the many-to-many

category but the authors make the assumption that hand tools have only one functionality.

Another assumption in this research is that hand tools have clearly defined end effectors

(those parts which deliver the action) and handles (those parts which provide the interface

between the agent and the end-effector).

Kise et al. (1993) also describe a system that recognizes objects in the hand-tools cate-

gory (e.g., wrenches and bottle openers). They introduce the concept of “functands”, which

are defined as recipients of direct effects of functional primitives (Kise et al., 1993). The

functional model of a tool consists of functands and a variety of functional primitives. A

chair, for example, provides back support which is a functional primitive. The recipient of

this primitive is a functand which in this case is the back of a human body (Kise et al.,

1994). Similarly, a wrench is defined as a “lever working on a nut and a hand”. The main
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goal of this approach is to verify a hypothesized functionality for an object. However, the

approach seems computationally complex since it requires testing all possible combinations

of functands against all functional primitives. In the case of chair, for example, this requires

estimating the degree of support offered by the object for all possible human body postures.

Bogoni and Bajcsy describe a system that evaluates the applicability of differently

shaped tools for cutting and piercing operations (Bogoni and Bajcsy, 1995; Bogoni, 1995).

A robot manipulator is used to move the tool into contact with various materials (e.g.,

wood, sponge, plasticine) while a computer vision system tracks the outline of the tool

and measures its penetration into the material. The outlines of the tools are modeled

by superquadratics and clustering algorithms are used to identify interesting properties of

successful tools (see Section 2.4.3 for more details).

All of the methods discussed so far use either visual information derived from a camera

or shape information obtained form a CAD model. Several studies, however, have used

haptic information as the primary sensing modality (Allen, 1990; Stansfield, 1987). Allen

uses a robotic arm and a library of haptic exploratory procedures to derive models of

objects that can be used for recognition purposes. For example, contour following hand

movements are used to generate a generalized cylinders model of the object, while grasping

by containment is used to generate a superquadratics model of the object (Allen, 1990). A

hybrid visual-haptic approach to object recognition is described in (Stansfield, 1987).

While these systems may perform well on object recognition tasks, only the work of

Bogoni and Bajcsy (1995) has been tested on a real robot platform to perform a tool

task. The functional models of tools used by these systems are more suitable for object

recognition than for robotic tasks since they do not incorporate the properties of robot-tool

and tool-object interaction.

2.4.3 Tool Application

St. Amant and Wood (2005) provide an overview of the literature on physical tool use and

argue that creating artificial habile agents (i.e., tool-using agents) is an important challenge

for robotics and AI. St. Amant and Wood (2005) also introduce the concept of a “tooling
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test” - a variant of the Turing Test which involves a physical interaction with the world. A

robot can pass this test if an independent human observer cannot distinguish whether the

tool-using robot is acting on its own or is remotely controlled by another human.

The work of Bogoni and Bajcsy (1995) is the only example, to my knowledge, that has

attempted to study object functionality with the intention of using the object as a tool for a

robot. In his Ph.D. dissertation Bogoni (1995) uses a robot arm to manipulate a variety of

pointed objects in order to determine their applicability for cutting and piercing operations.

The tools used in his work consist of two clearly detectable parts: a handle and an

endpoint. The physical tools are three-dimensional objects but their shape, extracted from

a camera image, is approximated by a pair of two-dimensional superellipses (one for the

handle and one for the endpoint). Each superellipse is defined by four parameters, which

control the tapering, width, and length of the shape.

The robot-tool interaction is scripted by a discrete event system (a graph of robot actions

and perceptual events). Sensory routines that look for specific events are defined (e.g., the

output of a touch sensor is used to to determine when the tool has touched the surface of

the object).

The robot experiments evaluate the applicability of differently shaped tools for cutting

and piercing tasks. The tools are applied to different types of materials like styrofoam,

pine wood, plasticine, and sponge. The outcome of each experiment is either a success

or a failure. Clustering algorithms are used to identify the interesting properties of the

successful tools. Specifically, interesting properties are identified by the parameters of the

superellipses for which the difference between the class means (µsuccess and µfailire) is the

largest relative to the class standard deviation for the given parameter.

Experimental data is used to build force-shape maps for each tool. These maps provide

a way of classifying a tool with respect to its shape, the force exerted on it, and the

depth of penetration for a given material. The maps are represented by interpolated three-

dimensional surfaces constructed by fitting second order curves to the empirical data. The

three axis of the force-shape map represent force, depth of penetration, and tool sharpness.

A shortcoming of this approach is that both the shape and the functionality of the tool
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are represented by the same superquadratic (i.e., the mapping between tool shape and tool

functionality is one-to-one). For the chopping and piercing tasks, this is not a problem since

the only critical functionality of the tool is its sharpness which can be extracted directly

from its shape. Another shortcoming is that the limitations and capabilities of the robot

are not taken into consideration; the robot manipulator only serves to lower the tool along

the vertical direction. In this way, the point of contact between the tool and the object is

always predetermined - the edge of the chopper or the tip of the piercer. In more general

tool tasks, however, the tool and the object are likely to come into contact at more than

one point along their boundaries and the outcome of the task may depend on the point of

contact.

Asada and Asari (1988) describe a method for learning manipulator tool tasks from hu-

man demonstration. Both the displacement of the tool and the force exerted by the human

are stored and used to approximate a robot controller. If F = (F1, ..., F6)
T is the force and

moment applied to the tool by the human and x = (x1, ..., x6)
T is the position and orienta-

tion of the tool, the goal is to come up with a robot control law F = ĝ(x, x′, x′′, ..., x(n)) that

approximates the performance of the human expert. The function ĝ must approximate the

human data well and yet should be easy to compute to allow real time robot control. This

method has been applied to a grinding task in which the tool is moved vertically depending

on the surface’s unevenness.

Donald, Gariepy, and Rus (1999, 2000) conducted a series of robot experiments in

constrained prehensile manipulation using ropes. This work is an example of collaborative

tool use because a team of robots is used to achieve the task of moving large objects tied with

a rope. The tool in this case is a flexible object, which makes the task of the robots more

complex. This complexity is reduced by carefully coordinating the actions of the robots

and by defining three basic manipulation skills. These skills are: tieing a rope around an

object, translating a bound object by pulling it, and rotating a bound object using flossing

movements of the rope.
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MacKenzie and Arkin (1996) used a behavior-based approach to control a mobile ma-

nipulator for a drum sampling task. A sampling instrument is attached to the end-effector

of the robot manipulator, which allows the robot to inspect the contents of drums for po-

tentially hazardous materials. Motor schemas are used to control the direction of movement

of the sampling instrument. The schemas are controlled by perceptual features of drums

and open bung holes extracted from camera images. The pseudo-forces calculated by the

motor schemas are applied to the tip of the sampling instrument. The Jacobian of the

manipulator is then used to convert these forces into corresponding joint torques (Cameron

et al., 1993). In this way the instrument, the arm, and the base move as a cohesive unit.

Krotkov (1995) notes that relatively little robotics research has been geared towards dis-

covering external objects’ properties other than shape and position. In particular, Krotkov’s

research is concerned with robotic identification of material properties of objects. Some of

the exploration methods employed by the robot in Krotkov’s work use tools coupled with

sensory routines to discover object properties. For example, the “whack and watch” method

uses a wooden pendulum to strike an object and estimate its mass and coefficient of sliding

friction based on the displacement and acceleration of the object after impact. The “hit

and listen” method uses a blind person’s cane to determine acoustic properties of objects.

The cane is dropped from fixed heights on a variety of objects and the sound frequency

patterns detected after impact are used to classify the types of materials the objects are

made of (Durst and Krotkov, 1993).

Fitzpatrick et al. (2003) used a similar approach to program a robot to poke objects

with its arm (without using a tool) and learn the rolling properties of the objects from the

resulting displacements. In their work they used a single poking behavior parameterized by

four possible starting positions for the robot’s arm. The robot learns a model of how each

object slides (e.g., toy cars tend to slide in the direction of their elongated axis while balls

can slide in any direction).

Tool tasks generally require grasping of the tool. The robotics literature offers numerous

examples of robotic grasping of objects. Of particular interest to the current discussion are
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several studies that have addressed the problem of grasping objects based on their intended

functionality. Cutkosky (1989) formulated a grasp taxonomy based on observations of tool

grasps used by human mechanics. His taxonomy is based on the type of tool task and

relates grip power to object size and dexterity of manipulation. The taxonomy can be

used to find suitable grasp choices depending on a task requirements (e.g,. force, mobility,

sensitivity) and tool/object attributes (e.g., geometry, texture, fragility). Stansfield (1991)

describes a knowledge-based system that uses simple heuristics to choose grasps for initially

unknown objects. The system uses a structured light to extract a fixed set of view-dependent

object features (Stansfield, 1988). This line of work is similar to the general function-based

recognition problem. Kang and Ikeuchi use human input gathered through a data glove to

teach a robot different grasping strategies through demonstration (Kang and Ikeuchi, 1995;

Kang, 1994).

Several approaches to object manipulation, however, do not use grasping. Examples

of such non-prehensile manipulation include pushing, throwing, rolling, tumbling, pivot-

ing, snatching, sliding, and slipping (Mason, 1982, 1986; Lynch and Mason, 1999; Lynch,

1998; Zumel and Erdmann, 1996; Aiyama et al., 1993). Other examples include impulse

manipulation where the robot applies an instantaneous force at a specific location on the

object causing the object to move slightly in that direction (Huang et al., 1995); palm ma-

nipulation in which the entire surface of the robot end manipulator is used as opposed to

the use of the fingertips alone (Erdmann, 1996); and sensorless manipulation in which the

robot indirectly manipulates objects confined in a container or a tray by sliding the objects

along walls, into walls, and into corners to reduce the number of possible orientations of

the objects (Erdmann and Mason, 1986). These manipulations are very useful in many

practical situations and the fact that grasping is not necessary simplifies robot hardware.

The hardware simplification, however, comes at the expense of increased complexity of the

control and planning algorithms. While similar to tool use this area does not address the

problem of using objects as tools. Instead, it focuses on the direct manipulation of objects

without using grasping.

There are numerous other examples of robot systems performing tasks, which although
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not qualified as tool use by their authors, fall into that category based on the definition given

in Section 2.1. These tasks include: juggling a tennis ball with a paddle (Aboaf et al., 1989),

juggling a devil’s stick (Schaal and Atkeson, 1994), using a stick for drumming (Kotosaka

and Schaal, 2001), and playing air hockey (Bentivegna and Atkeson, 2001). In general, the

solutions to these tasks are tuned to the particular domain by providing detailed kinematic

and dynamic models to the robot. In some cases these models are learned from human

demonstration which serves as a way of reducing the complexity of the learning task.

Despite the advances in robotics described above there are still a number of domains that

require more intelligent tool-using robots. Many problems in these domains are not solvable

with existing robot technology. NASA, for example, has demonstrated that there is a

palpable need for tool-using robots in high-risk high-cost missions like planetary exploration.

This domain requires collecting soil and rock samples using a shovel or tongs. In some cases

a hammer must to be used to expose the internal geological makeup of rock samples (Li

et al., 1996). The twin NASA rovers, Spirit and Opportunity, that landed on Mars in 2004

carried rock abrasion tools on board. The operation of these tools was controlled remotely

from Earth. This may not be feasible, however, for more distant planets.

Another domain for tool-using robots is space station and satellite maintenance. The

construction of the International Space Station requires thousands of hours of exhausting

and dangerous space walks. Therefore, NASA is developing a humanoid robot that will

help with this task (Ambrose et al., 2000). Since all space station components were initially

designed to be assembled by humans, the robonaut must be capable of handling the tools

required for the assembly tasks (Li et al., 1996). The initial goal of NASA, however, is to

use the robot in a teleoperated mode.
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CHAPTER III

A DEVELOPMENTAL APPROACH TO AUTONOMOUS TOOL USE

BY ROBOTS

This chapter formulates five basic principles of developmental robotics and gives an example

of how these principles can be applied to the problem of autonomous tool use in robots. The

five principles are formulated based on some of the recurring themes in the developmental

learning literature and in the author’s own research. These principles follow logically from

the verification principle (see Section 3.2) which is assumed to be self-evident.

3.1 Introduction

Developmental robotics is one of the newest branches of robotics (Weng et al., 2001; Zlatev

and Balkenius, 2001). The basic research assumption of this field is that “true intelligence in

natural and (possibly) artificial systems presupposes three crucial properties: embodiment

of the system, situatedness in a physical or social environment, and a prolonged epigenetic

developmental process through which increasingly more complex cognitive structures emerge

in the system as a result of interactions with the physical or social environment” (Zlatev

and Balkenius, 2001).

The study of autonomous tool-using abilities in robots is a task that is ideally suited

for the methods of developmental robotics. There are three main reasons why. First, tool-

using abilities develop relatively early in the life cycles of animals and humans: 1.5-2 years

after birth (Piaget, 1952; Tomasello and Call, 1997; Power, 2000). This time is an order

of magnitude shorter than the time required for full maturation, which in humans takes

approximately 20 years. For robots that learn developmentally this translates to shorter

learning times. Second, the ability to use tools precedes the development of other cognitive

abilities that are potentially more difficult to model with existing AI techniques (e.g., the

development of tool-using abilities in human infants precedes the development of language).

And finally, the developmental sequence leading to autonomous tool use is surprisingly
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uniform across different primate species (Tomasello and Call, 1997; Power, 2000). It follows

the developmental sequence outlined by Piaget (see Section 2.3.1). Most of the observed

variations between species deal with the duration of the individual stages and not with

their order (Tomasello and Call, 1997; Power, 2000). This lack of variation suggests that

evolution has stumbled upon a developmental solution to the problem of autonomous tool

use which works for many different organisms. This increases the probability that the same

sequence may work for robots as well.

Many fields of science are organized around a small set of fundamental laws, e.g., physics

has Newton’s laws and thermodynamics has its fundamental laws as well. Progress in a field

without any fundamental laws tends to be slow and incoherent. Once the fundamental laws

are formulated, however, the field can thrive by building upon them. This progress continues

until the laws are found to be insufficient to explain the latest experimental evidence. At

that point the old laws must be rejected and new laws must be formulated so the scientific

progress can continue.

In some fields of science, however, it is not possible to formulate fundamental laws

because it would be impossible to prove them, empirically or otherwise. Nevertheless, it is

still possible to get around this obstacle by formulating a set of basic principles that are

stated in the form of postulates or axioms, i.e., statements that are presented without proof

because they are considered to be self-evident. The most famous example of this approach,

of course, is Euclid’s formulation of the fundamental axioms of Geometry.

Developmental robotics is still in its infancy, however, and it would be premature to try

to come up with the fundamental laws or axioms of the field. There are some recurring

themes in the developmental learning literature and in the author’s own research, however,

that can be used to formulate some basic principles. These principles are neither laws (as

they cannot be proved at this point) nor axioms (as it would be hard to argue at this point

that they are self-evident and/or form a consistent set). Nevertheless, these basic principles

can be used to guide future research until they are found to be inadequate and it is time to

modify or reject them. Five basic principles are described below.
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3.2 The Verification Principle

Developmental Robotics emerged as a field partly as a reaction to the inability of traditional

robot architectures to scale up to tasks that require close to human levels of intelligence.

One of the primary reasons for scalability problems is that the amount of programming and

knowledge engineering that the robot designers have to perform grows very rapidly with

the complexity of the robot’s tasks. There is mounting evidence that pre-programming

cannot be the solution to the scalability problem. The environments in which the robots

are expected to operate are simply too complex and unpredictable. It is naive to think that

this complexity can be captured in code before the robot is allowed to experience the world

through its own sensors and effectors.

Consider the task of programming a household robot, for example, with the ability to

handle all possible objects that it can encounter inside a home. It is simply not possible for

any robot designer to predict the number of objects that the robot may encounter and the

contexts in which they can be used over the robot’s projected service time.

There is yet another fundamental problem that pre-programming not only cannot ad-

dress, but actually makes worse. The problem is that programmers introduce too many

hidden assumptions in the robot’s code. If the assumptions fail, and they almost always

do, the robot begins to act strangely and the programmers are sent back to the drawing

board to try and fix what is wrong. The robot has no way of testing and verifying these

hidden assumptions because they are not made explicit. Therefore, the robot is not capable

of autonomously adapting to situations that violate these assumptions. The only way to

overcome this problem is to put the robot in charge of testing and verifying everything that

it learns.

After this introduction, the first basic principle can be stated. It is the so-called verifi-

cation principle that was first postulated by Richard Sutton in a series of on-line essays in

2001 (Sutton, 2001a,b). The principle is stated as follows:

The Verification Principle: An AI system can create and maintain knowledge

only to the extent that it can verify that knowledge itself. (Sutton, 2001b)
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According to Sutton, “the key to a successful AI is that it can tell for itself whether or

not it is working correctly”(Sutton, 2001b). The only reasonable way to achieve this goal

is to put the AI system in charge of its own learning using the verification principle. If

verification is not possible for some concept then the AI system should not attempt to learn

that concept. In other words, all AI systems and AI learning algorithms should follow the

motto: No verification, No learning.

Sutton also points out that the verification principle eventually will be adopted by

many AI practitioners because it offers fundamental practical advantages over alternative

methods when it comes to scalability. Another way of saying the same thing is: “Never

program anything bigger than your head”(Sutton, 2001b). Thus, the verification principle

stands for autonomous testing and verification performed by the robot and for the robot.

As explained above, it would be unrealistic to expect the robot programmers to fix their

robots every time when the robots encounter a problem due to a hidden assumption. In

fact, it should be the robots telling their programmers what is wrong with them and not the

other way around! This point is also mentioned by Dennett (Dennett, 1989) who points out

that any sufficiently complicated system, almost by default, must be considered intelligent.

Furthermore, when something goes wrong with any sufficiently complex system the people

in charge of operating it have no choice other than to accept the system’s own explanation

for what is wrong with it.

Sutton was the first researcher in AI to state the verification principle explicitly. How-

ever, the origins of the verification principle go back to the ideas of the logical positivists

philosophers of the 1930’s. The two most prominent among them were Rudolf Carnap and

Alfred Ayer. They both argued that statements that cannot be either proved or disproved

by experience (i.e., metaphysical statements) are meaningless. Ayer defined two types of

verifiability, “strong” and “weak”, which he formulated as follows:

“a proposition is said to be verifiable, in the strong sense of the term, if and only
if, its truth could be conclusively established in experience. But it is verifiable,
in the weak sense, if it is possible for experience to render it probable.” (Ayer,
1952, p. 37)
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Thus, in order to verify something in the “strong” sense one would have to physically

perform the verification sequence. On the other hand, to verify something in the “weak”

sense one does not have to perform the verification sequence directly but one must have the

prerequisite sensors, effectors, and abilities to perform the verification sequence if necessary.

For example, a blind person may be able to verify in the “strong” sense the statement

“this object is soft” by physically touching the object and testing its softness. He can also

verify this statement in the “weak” sense as he is physically capable of performing the

verification procedure if necessary. However, in Ayer’s view, the same blind person will not

be able to verify, neither in the “strong” nor in the “weak” sense, the statement “this object

is red” as he does not have the ability to see and thus to perceive colors. In Ayer’s own

words:

“But there remain a number of significant propositions, concerning matters of
fact, which we could not verify even if we chose; simply because we lack the prac-
tical means of placing ourselves in the situation where the relevant observations
could be made.” (Ayer, 1952, p. 36)

The verification principle is easy to state. However, once a commitment is made to

follow this principle the implications are far-reaching. In fact, the principle is so different

from the practices of traditional autonomous robotics that it changes almost everything.

In particular, it forces the programmer to rethink the ways in which learnable quantities

are encoded in the robot architecture as anything that is potentially learnable must also be

autonomously verifiable.

The verification principle is so profound that the remaining four principles can be con-

sidered as its corollaries. As the connection may not be intuitively obvious, however, they

will be stated as separate principles.

3.3 The Principle of Embodiment

An important implication of the verification principle is that the robot must have the ability

to verify everything that it learns. Because verification cannot be performed in the absence

of actions the robot must have some means of affecting the world, i.e., it must have a body.
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The principle of embodiment has been defended many times in the literature, e.g.,

(Varela et al., 1991; Brooks and Stein, 1994; Brooks et al., 1999; Clark, 1997; Pfeifer and

Scheier, 1999; Gibbs, 2006). It seems that at least in robotics there is a consensus that this

principle must be followed. After all, there aren’t any robots without bodies.

Most of the arguments in favor of the embodiment principle that have been put forward

by roboticists, however, are about justifying this principle to its opponents (e.g., Brooks

and Stein (1994); Brooks et al. (1999)). The reasons for this are historical. The early AI

systems (or as Brooks calls them Good Old Fashioned AI - GOFAI) were disembodied and

consisted of learning algorithms that manipulated data in the computer’s memory without

the need to interact with the external world.

As a result of this historic debate most of the arguments in favor of embodiment miss

the main point. The debate should not be about whether or not to embrace the principle

of embodiment. Instead, the debate should be about the different ways that can be used

to program truly embodied robots. Gibbs makes a similar observation about the current

state of the art in AI and robotics: “Despite embracing both embodiment and situatedness

in designing enactive robots, most systems fail to capture the way bodily mechanisms are

truly embedded in their environments.”(Gibbs, 2006, p. 73).

Some of the arguments used to justify the embodiment principle can easily be explained

from the point of view of the verification principle. Nevertheless, the connection between

the two has not been made explicit so far. Instead of rehashing the debate in favor of

embodiment – which has been argued very eloquently by others, e.g., (Varela et al., 1991;

Gibbs, 2006) – I am only going to focus on a slightly different interpretation of embodiment

in light of the verification principle.

In my opinion, most arguments in favor of the embodiment principle make a distinction

between the body and the world and treat the body as something special. In other words,

they make the body/world boundary explicit. This distinction, however, is artificial. The

only reason why the body may seem special is because the body is the most consistent,

the most predictable, and the most verifiable part of the environment. Other that that,

there should be no difference between the body and the external world. To the brain the
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body may seem special but that is just because “the brain is the body’s captive audience”

(Demasio, 1994, p. 160). In other words, the body is always there and we can’t run away

from it.

According to the new interpretation of the embodiment principle described here, the

body is still required for the sake of verification. However, the verification principle must

also be applicable to the properties of the body. That is to say, the properties of the body

must be autonomously verifiable as well. Therefore, the learning and exploration principles

that the robot uses to explore the external world must be the same as the ones that it uses

to explore the properties of its own body.

This interpretation reduces the special status of the body. Instead of treating the body

as something special, the new interpretation treats the body as simply the most consistent,

the most predictable, and the most verifiable part of the environment. Because of that the

body can be easily distinguished from the environment. Furthermore, in any developmental

trajectory the body must be explored first.

In fact, distinguishing the body from the external world should be relatively easy because

there are certain events that only the owner of the body can experience and no one else.

Rochat (2003) calls these events self-specifying and lists three such events: 1) efferent-

afferent loops (e.g., moving ones hand and seeing it move); 2) double touch (e.g., touching

one’s two index fingers together); 3) vocalization behaviors followed by hearing their results

(e.g., crying and hearing oneself cry). These events are characterized by the fact that they

are multimodal, i.e., they involve more than one sensory or motor modality. Also, these

events are autonomously verifiable because you can always repeat the action and observe

the same result.

Because the body is constructed from actual verifiable experience, in theory, it should be

possible to change one’s body representation. In fact, it turns out that this is surprisingly

easy to do. Some experiments have shown that the body/world boundary is very pliable

and can be altered in a matter of seconds (Ramachandran and Blakeslee, 1998; Iriki et al.,

1996). For example, it comes as a total surprise for many people to realize that what they

normally think of as their own body is just a phantom created by their brains. There is a
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very simple experiment which can be performed without any special equipment that exposes

the phantom body (Ramachandran and Blakeslee, 1998). The experiment goes like this: a

subject places his arm under a table. The person conducting the experiment sits right next

to the subject and uses both of his hands to deliver simultaneous taps and strokes to both

the subject’s arm (which is under the table) and the surface of the table. If the taps and

strokes are delivered synchronously then after about 2 minutes the subject will have the

bizarre sensation that the table is part of his body and that part of his skin is stretched out

to lie on the surface of the table. Similar extensions and re-mappings of the body have been

reported by others (Botvinick and Cohen, 1998; Iriki et al., 1996; Ishibashi et al., 2000).

The conclusions from these studies may seem strange because typically one would assume

that embodiment implies that there is a solid representation of the body somewhere in the

brain. One possible reason for the phantom body is that the body itself is not constant

but changes over time. Our bodies change with age. They change as we gain or lose

weight. They change when we suffer the results of injuries or accidents. In short, our

bodies are constantly changing. Thus, it seems impossible that the brain should keep a

fixed representation for the body. If this representation is not flexible then sooner or later

it will become obsolete and useless.

Another possible reason for the phantom body is that it may be impossible for the brain

to predict all complicated events that occur within the body. Therefore, the composition

of the body must be constructed continuously from the latest available information. This

is eloquently stated by Demasio:

”Moreover, the brain is not likely to predict how all the commands - neural and
chemical, but especially the latter- will play out in the body, because the play-out
and the resulting states depend on local biochemical contexts and on numerous
variables within the body itself which are not fully represented neurally. What is
played out in the body is constructed anew, moment by moment, and is not an
exact replica of anything that happened before. I suspect that the body states are
not algorithmically predictable by the brain, but rather that the brain waits for
the body to report what actually has transpired.” (Demasio, 1994, p. 158)

Chapter 5 uses the insights from this section to formulate an algorithm for autonomous

self-detection by a robot. The algorithm uses proprioceptive-visual efferent-afferent loops
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as self-specifying events to identify which visual features belong to the robot’s body.

Chapter 6 describes a computational representation for a robot body schema (RBS). This

representation is learned by the robot from self-observation data. The RBS representation

meets the requirements of both the verification principle and the embodiment principle as

the robot builds a model for its own body from self-observation data that is repeatably

observable.

3.4 The Principle of Subjectivity

The principle of subjectivity also follows quite naturally from the verification principle. If

a robot is allowed to learn and maintain only knowledge that it can autonomously verify

for itself then it follows that what the robot learns must be a function of what the robot

has experienced through its own sensors and effectors, i.e., its learning must be a function

of experience. As a consequence, two robots with the same control architectures but with

different histories of interactions could have two totally different representations for the

same object. In other words, the two representations will be subjective.

Ayer was probably the first one to recognize that the verification principle implies sub-

jectivity. He observed that if all knowledge must be verifiable through experience then it

follows that all knowledge is subjective as it has to be formed through individual experi-

ences (Ayer, 1952, p. 125-126). Thus, what is learned depends entirely on the capabilities

of the learner and the history of interactions between the learner and the environment or

between the learner and its own body. Furthermore, if the learner does not have the ca-

pacity to perform a specific verification procedure then the learner would never be able

to learn something that depends on that procedure (as in the blind person example given

above). Thus, subjectivity may be for developmental learning what relativity is for physics

– a fundamental limitation that cannot be avoided or circumvented.

The subjectivity principle captures very well the subjective nature of object affordances.

A similar notion was suggested by Gibson who stated that a child learns “his scale of sizes

as commensurate with his body, not with a measuring stick” (Gibson, 1979, p. 235). Thus,

an object affords different things to people with different body sizes; an object might be
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graspable for an adult but may not be graspable for a child. Noë has recently given a modern

interpretation of Gibson’s ideas and has stressed that affordances are also skill relative:

“Affordances are animal-relative, depending, for example, on the size and shape
of the animal. It is worth noting that they are also skill-relative. To give an
example, a good hitter in baseball is someone for whom a thrown pitch affords
certain possibilities for movement. The excellence of a hitter does not consist
primarily in having excellent vision. But it may very well consist in the mastery
of sensorimotor skills, the possession of which enables a situation to afford an
opportunity for action not otherwise available.” (Noë, 2004, p. 106)

From what has been said so far one can infer that the essence of the principle of sub-

jectivity is that it imposes limitations on what it potentially learnable by a specific agent.

In particular, there are two types of limitations: sensorimotor and experiential. Each of

them is discussed below along with the adaptation mechanisms that have been adopted by

animals and humans to reduce the impact of these limitations.

3.4.1 Sensorimotor Limitations

The first limitation imposed on the robot by the subjectivity principle is that what is

potentially learnable is determined by the sensorimotor capabilities of the robot’s body. In

other words, the subjectivity principle implies that all learning is pre-conditioned on what

the body is capable of doing. For example, a blind robot cannot learn what is the meaning

of the color red because it does not have the ability to perceive colors.

While it may be impossible to learn something that is beyond the sensorimotor limita-

tions of the body, it is certainly possible to push these limits farther by building tools and

instruments. It seems that a common theme in the history of human technological progress

is the constant augmentation and extension of the existing capabilities of our bodies. For

example, Campbell outlines several technological milestones which have essentially pushed

one body limit after another (Campbell, 1985). The technological progression described

by Campbell starts with tools that augment our physical abilities (e.g., sticks, stone axes,

and spears), then moves to tools and instruments that augment our perceptual abilities

(e.g., telescopes and microscopes), and it is currently at the stage of tools that augment our

cognitive abilities (e.g., computers and PDAs).
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Regardless of how complicated these tools and instruments are, however, their capabili-

ties will always be learned, conceptualized, and understood relative to our own sensorimotor

capabilities. In other words, the tools and instruments are nothing more than prosthetic

devices that can only be used if they are somehow tied to the pre-existing capabilities of

our bodies. Furthermore, this tool-body connection can only be established through the

verification principle. The only way in which we can understand how a new tool works is by

expressing its functionality in terms of our own sensorimotor repertoire. This is true even

for tools and instruments that substitute one sensing modality for another. For example,

humans have no natural means of reading magnetic fields but we have invented the com-

pass which allows us to do that. The compass, however, does not convert the direction of

the magnetic field into a modality that we can’t interpret, e.g., infrared light. Instead, it

converts it to human readable form with the help of a needle.

The exploration process involved in learning the functional properties or affordances

of a new tool is not always straight forward. Typically this process involves active trial

and error. Probably the most interesting aspect of this exploration, however, is that the

functional properties of the new tool are learned in relation to the existing behavioral

repertoire of the learner.

The related work on animal object exploration indicates that animals use stereotyped

exploratory behaviors when faced with a new object (Power, 2000; Lorenz, 1996). This set

of behaviors is species specific and may be genetically predetermined. For some species of

animals these tests include almost their entire behavioral repertoire: “A young corvide bird,

confronted with an object it has never seen, runs through practically all of its behavioral

patterns, except social and sexual ones.”(Lorenz, 1996, p. 44)

Unlike crows, adult humans rarely explore a new object by subjecting it to all possible

behaviors in their behavioral repertoire. Human object exploration tends to be more fo-

cused although that is not always the case with human infants (Power, 2000). Nevertheless,

an extensive exploration process similar to the one displayed by crows can sometimes be

observed in adult humans as well. This process is easily observed in the members of tech-

nologically “primitive” societies when they are exposed for the first time to an object from
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a technologically advanced society (Diamond, 1999, p. 246).

Chapter 7 describes a method for autonomous learning of object affordances by a robot.

The robot learns the affordances of different tools in terms of the expected outcomes of

specific exploratory behaviors. The affordance representation is inherently subjective as it

is expressed in terms of the behavioral repertoire of the robot (i.e., it is skill relative). The

affordance representation is also subjective because the affordances are expressed relative

to the capabilities of the robot’s body. For example, if an object is too thick to be grasped

by the robot the robot learns that the object is not graspable even though it might be

graspable for a different robot with a larger gripper (Stoytchev, 2005).

3.4.2 Experiential Limitations

In addition to sensorimotor limitations the subjectivity principle also imposes experiential

limitations on the robot. Experiential limitations restrict what is potentially learnable

simply because learning depends on the history of interactions between the robot and the

environment, i.e., it depends on experience. Because, among other things, experience is a

function of time this limitation is essentially due to the finite amount of time that is available

for any type of learning. One interesting corollary of this is that: the more intelligent the

life form the longer it has to spend in the developmental stage.

Time is a key factor in developmental learning. By default developmental learning

requires interaction with the external world. There is a limit on how fast this interaction

can occur which ultimately restricts the speed of learning. While the limitation of time

cannot be avoided it is possible to speed up learning by relying on the experience of others.

The reason why this does not violate the subjectivity principle is because verification can

be performed in the “weak sense” and not only in the “strong sense.” Humans, for example,

often exploit this shortcut. Ever since writing was invented we have been able to experience

places and events through the words and pictures of others. These vicarious experiences

are essential for us.

Vicarious experiences, however, require some sort of basic overlap between our under-

standing of the world and that of others. Thus, the following question arises: if everything
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that is learned is subjective then how can two different people have a common understanding

about anything? Obviously this is not a big issue for humans because otherwise our civi-

lization will not be able to function normally. Nevertheless, this is one of the fundamental

questions that many philosophers have grappled with.

To answer this question without violating the basic principles that have been stated

so far we must allow for the fact that the representations that two agents have may be

functionally different but nevertheless they can be qualitatively the same. Furthermore,

the verification principle can be used to establish the qualitative equivalence between the

representations of two different agents. This was well understood by Ayer who stated the

following:

“For we define the qualitative identity and difference of two people’s sense-
experiences in terms of the similarity and dissimilarity of their reactions to
empirical tests. To determine, for instance, whether two people have the same
colour sense we observe whether they classify all the colour expanses with which
they are confronted in the same way; and when we say that a man is color-blind,
what we are asserting is that he classifies certain colour expanses in a differ-
ent way from that in which they would be classified by the majority of people.”
(Ayer, 1952, p. 132)

Another reason why two humans can understand each other even though they have

totally different life experiences is because they have very similar physical bodies. While no

two human bodies are exactly the same they still have very similar structure. Furthermore,

our bodies have limits which determine how we can explore the world through them (e.g.,

we can only move our hands so fast). On the other hand, the world is also structured and

imposes restrictions on how we can explore it through our actions (e.g., an object that is too

wide may not be graspable). Because we have similar bodies and because we live in the same

physical world there is a significant overlap which allows us to have a shared understanding.

Similar ideas have been proposed in psychology and have been gaining popularity in recent

years (Glenberg, 1997; O’Regan and Noë, 2001; Noë, 2004; Gibbs, 2006).

Consequently, experience must constantly shape or change all internal representations

of the agent over time. Whatever representations are used they must be flexible enough

to be able to change and adapt when new experience becomes available. There is a good
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amount of experimental evidence to suggest that such adaptation takes place in biological

systems. For example, the representation of the fingers in the somatosensory cortex of a

monkey depends on the pattern of their use (Wang et al., 1995). If two of the fingers are

used more often than other fingers then the number of neurons in the somatosensory cortex

that are used to encode these two fingers will increase (Wang et al., 1995).

The affordance representation described in Chapter 7 is influenced by the actual history

of interactions between the robot and the tools. The affordance representation is pliable

and can accommodate the latest empirical evidence about the properties of the tool. For

example, the representation can accommodate tools that can break – a drastic change that

significantly alters their affordances.

3.5 The Principle of Grounding

While the verification principle states that all things that the robot learns must be verifiable,

the grounding principle describes what constitutes a valid verification. Grounding is very

important because if the verification principle is left unchecked it can easily go into an

infinite recursion. At some point there needs to be an indivisible entity which is not brought

under further scrutiny, i.e., an entity which does not require additional verification. Thus,

figuratively speaking, grounding puts the brakes on verification.

Grounding is a familiar problem in AI. In fact, one of the oldest open problems in AI is

the so-called symbol grounding problem (Harnad, 1990). Grounding, however, is also a very

loaded term. Unfortunately, it is difficult to come up with another term to replace it with.

Therefore, for the purposes of this document the term grounding is used only to refer to

the process or the outcome of the process which determines what constitutes a successful

verification.

Despite the challenges in defining what constitutes grounding, if we follow the principles

outlined so far we can arrive at the basic components of grounding. The motivation for

stating the embodiment principle was that verification is impossible without the ability

to affect the world. This implies that the first component that is necessary for successful

verification (i.e., grounding) is an action or a behavior.
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The action by itself, however, is not very useful for the purposes of successful verifica-

tion (i.e., grounding) because it does not provide any sort of feedback. In order to verify

anything the robot needs to be able to observe the outcomes of its own actions. Thus, the

second component of any verification procedure must be the outcome or outcomes that are

associated with the action that was performed.

This leads us to one of the main insights of this section, namely, that grounding consists

of ACT-OUTCOME (or BEHAVIOR-OBSERVATION) pairs. In other words, grounding is

achieved through the coupling of actions and their observable outcomes. Piaget expressed

this idea when he said that “children are real explorers” and that “they perform experiments

in order to see.” Similar ideas have been proposed and defended by others, e.g., (Gibson,

1979, 1969; Varela et al., 1991; Noë, 2004; O’Regan and Noë, 2001; Gibbs, 2006).

Grounding of information based on a single act-outcome pair is not sufficient, however,

as the outcome may be due to a lucky coincidence. Thus, before grounding can occur the

outcome must be replicated at least several times in the same context. If the act-outcome

pair can be replicated then the robot can build up probabilistic confidence that what was

observed was not just due to pure coincidence but that there is a real relationship that can

be reliably reproduced in the future.

Therefore, grounding requires that action-outcome pairs be coupled with some sort of

probabilistic estimates of repeatability. Confidence can be built up over time if multiple

executions of the same action lead to the same outcome under similar conditions. In many

situations the robot should be able to repeat the action (or sequence of actions) that were

executed just prior to the detection of the outcome. If the outcome can be replicated then

the act-outcome pair is worth remembering as it is autonomously verifiable. Another way to

achieve the same goal is to remember only long sequences of (possibly different) act-outcome

pairs which are unlikely to occur in any other context due to the length of the sequence.

This latter method is closer to Gibson’s ideas for representing affordances.

Stating that grounding is performed in terms of act-outcome pairs coupled with a prob-

abilistic estimate is a good start but leaves the formulation of grounding somewhat vague.

Each action or behavior is possibly itself a very complicated process that involves multiple
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levels of detail. The same is true for the outcomes or observations. Thus, what remains to

be addressed is how to identify the persistent features of a verification sequence that are

constant across different contexts. In other words, one needs to identify the sensorimotor

invariants. Because the invariants remain unchanged they are worth remembering and thus

can be used for grounding.

While there could be potentially infinite number of ways to ground some information

this section will focus on only one of them. It is arguably the easiest one to pick out from

the sensorimotor flux and probably the first one to be discovered developmentally. This

mechanism for grounding is based on detection of temporal contingency.

Temporal contingency is a very appealing method for grounding because it abstracts

away the nature and complexity of the stimuli involved and reduces them to the relative

time of their co-occurrence. The signals could come from different parts of the body and

can have their origins in different sensors and actuators.

Temporal contingency is easy to calculate. The only requirement is to have a mechanism

for reliable detection of the interval between two events. The events can be represented as

binary and the detection can be performed only at the times in which these signals change

from 0 to 1 or from 1 to 0. Furthermore, once the delay between two signals is estimated it

can be used to predict future events.

Timing contingency detection is used in Chapter 5 to detect which perceptual features

belong to the body of the robot. In order to do that, the robot learns the characteristic

delay between its motor actions (efferent stimuli) and the movements of perceptual features

in the environment (afferent stimuli). This delay can then be used to classify the perceptual

stimuli that the robot can detect into “self” and “other”.

Detection of temporal contingency is very important for the normal development of

social skills as well. In fact, it has often been suggested that contingency alone is a powerful

social signal that plays an important role in learning to imitate (Jones, 2006) and language

acquisition (Goldstein et al., 2003). Watson (Watson, 1985) proposed that the “contingency

relation between a behavior and a subsequent stimulus may serve as a social signal beyond

(possibly even independent of) the signal value of the stimulus itself.” Exploring this
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suggestion might be a fruitful direction for future work in social robotics.

3.6 The Principle of Gradual Exploration

The principle of gradual exploration recognizes the fact that it is impossible to learn every-

thing at the same time. Before we learn to walk we must learn how to crawl. Before we

learn to read we must learn to recognize individual letters. There is no way around that.

Similarly, there are certain milestones or stages that must be achieved in developmental

learning before development can continue to the next stage.

Every major developmental theory either assumes or explicitly states that development

proceeds in stages (Piaget, 1952; Freud, 1965; Bowlby, 1969). These theories, however,

often disagree about what causes the stages and what triggers the transitions between them.

Variations in the timing of these stages have also been observed between the members of the

same species. Therefore, the age limits set by Piaget and others about what developmental

milestone should happen when must be treated as rough guidelines and not as fixed rules.

“Although the stages correspond roughly to age levels (at least in the children studied [by

Piaget]), their significance is not that they offer behavior norms for specific ages but that

the sequence of the stages and the transition from one stage to the next is invariant.”(Wolff,

1960, p. 37)

E.J. Gibson (who was J.J. Gibson’s wife) also expressed some doubts about the useful-

ness of formulating stages in developmental learning: ”I want to look for trends in devel-

opment, but I am very dubious about stages. [...] To repeat, trends do not imply stages in

each of which a radically new process emerges, nor do they imply maturation in which a

new direction exclusive of learning is created.”(Gibson, 1969, p. 450)

It seems that a more fruitful area of research these days is to compare and contrast

the developmental sequences of different organisms. Comparative studies between primates

and humans are useful precisely because they expose the major developmental differences

between different species that follow Piaget’s sequence in their development (Tomasello and

Call, 1997; Power, 2000). Regardless of what causes the stages, one of the most important

lessons that we can draw from these studies is that the final outcome depends not just on
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the stages but on their relative order and duration.

For example, the time during which autonomous locomotion emerges after birth in

primates varies significantly between different species (Tomasello and Call, 1997; Power,

2000). In chimpanzees this is achieved fairly rapidly and then they begin to move about

the environment on their own. In humans, on the other hand, independent locomotion

does not emerge until about a year after birth. An important consequence of this is that

human infants have a much longer developmental period during which they can manually

explore and manipulate objects. They tend to play with objects, rotate them, chew them,

throw them, relate them to one another, and bring them to their eyes to take a closer

look. In contrast, chimpanzees are not as interested in sitting down and manually exploring

objects because they learn to walk at a much younger age. To the extent that object

exploration occurs in chimpanzees, it usually is performed when the objects are on the

ground (Tomasello and Call, 1997; Power, 2000). Chimpanzees rarely pick up an object in

order to bring it to the eyes and explore it (Power, 2000).

Another interesting result from comparative studies is that object exploration (and

exploration in general) seems to be self-guided and does not require external reinforcement.

What is not yet clear, however, is what process initiates exploration and what process

terminates it.

The principle of gradual exploration states that exploration is self-regulated and always

proceeds from the most verifiable to the least verifiable parts of the environment. In other

words, the exploration is guided by an attention mechanism that is continually attracted

to parts of the environment that exhibit medium levels of verifiability. Therefore, the

exploration process can chart a developmental trajectory without external reinforcement

because what is worth exploring next depends on what is being explored now.

The previous section described how temporal contingency can be used for successful

verifiability (i.e., grounding). This section builds upon that example but also takes into

account the level of contingency that is detected. At any point in time the parts of the

environment that are the most interesting, and thus worth exploring, exhibit medium levels

of contingency. To see why this might be the case consider the following insights reached
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by Watson (1985, 1994).

In his experiments Watson studied the attentional mechanisms of infants and how they

change over time. In Watson’s terminology the delay between motor commands (efferent

signals) and observed movements of visual stimuli (afferent signals) is called the perfect

contingency. Furthermore, Watson defines several levels of contingency based on how much

the delay deviates from the delay associated with the perfect contingency. Watson (1985)

observed that the level of contingency that is detected by the infants is very important. For

example he observed that three-month-old infants paid attention only to stimuli that exhibit

the perfect contingency (Watson, 1994) while 16-week-old infants paid attention to stimuli

that exhibit imperfect contingencies (Watson, 1985). In his experiments the infants watched

a TV monitor which showed a woman’s face. The TV image was manipulated such that

the woman’s face would become animated for 2-second intervals after the infant kicked with

his legs (Watson, 1985). The level of this contingency was varied by adjusting the timing

delay between the infants’ kicking movements and the animation. Somewhat surprisingly

the 16-week-old infants in this study paid more attention to faces that did not show the

perfect contingency (i.e., faces that did not move immediately after the infants’ kicking

movements). This result led Watson to conclude that the infant’s attentional mechanisms

may be modulated by an inverted U-shaped function based on the contingency of the

stimulus (Watson, 1985).

An attention function that has these properties seems ideal for an autonomous robot.

If a stimulus exhibits perfect contingency then it is not very interesting as the robot can

already predict everything about that stimulus. On the other hand, if the stimulus exhibits

very low levels of contingency then the robot cannot learn a predictive model of that stimulus

which makes that stimulus uninteresting as well. Therefore, the really interesting stimuli

are those that exhibit medium levels of contingency.

E.J. Gibson reached conclusions similar to those of Watson. She argued that percep-

tual systems are self-organized in such a way that they always try to reduce uncertainty.

Furthermore, this search is self-regulated and does not require external reinforcement:

”The search is directed by the task and by intrinsic cognitive motives. The need
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to get information from the environment is as strong as to get food from it, and
obviously useful for survival. The search is terminated not by externally provided
rewards and punishments, but by internal reduction of uncertainty. The prod-
ucts of the search have the property of reducing the information to be processed.
Perception is thus active, adaptive, and self-regulated.” (Gibson, 1969, p. 144)

Thus, the main message of this section is that roboticists should try to identify attention

functions and intrinsic motivation functions for autonomous robots that have properties

similar to the ones described above. Namely, functions that can guide the robot’s gradual

exploration of the environment from its the most verifiable to its least verifiable parts. This

seems to be a promising area of future research.

3.7 Developmental Sequence for Autonomous Tool Use

This section provides an example that uses the five principles described above in a devel-

opmental sequence. This sequence can be used by autonomous robots to acquire tool using

abilities. Following this sequence, a robot can explore progressively larger chunks of the

initially unknown environment that surrounds it. Gradual exploration is achieved by de-

tecting regularities that can be explained and replicated with the sensorimotor repertoire

of the robot. This exploration proceeds from the most predictable to the least predictable

parts of the environment.

The developmental sequence begins with learning a model of the robot’s body since

the body is the most consistent and predictable part of the environment. Internal models

that reliably identify the sensorimotor contingencies associated with the robot’s body are

learned from self-observation data. For example, the robot can learn the characteristic delay

between its motor actions (efferent stimuli) and the movements of perceptual features in the

environment (afferent stimuli). By selecting the most consistently observed delay the robot

can learn its own efferent-afferent delay. Furthermore, this delay can be used to classify the

perceptual stimuli that the robot can detect into “self” and “other” (see Chapter 5).

Once the perceptual features associated with the robot’s body are identified, the robot

can begin to learn certain patterns exhibited by the body itself. For example, the features

that belong to the body can be clustered into groups based on their movement contingencies.
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These groups can then be used to form frames of reference (or body frames) which in turn

can can be used to both control the movements of the robot as well as to predict the

locations of certain stimuli (see Chapter 6).

During the next stage, the robot uses its body as a well defined reference frame from

which the movements and positions of environmental objects can be observed. In particular,

the robot can learn that certain behaviors (e.g., grasping) can reliably cause an environ-

mental object to move in the same way as some part of the robot’s body (e.g., its wrist)

during subsequent robot behaviors. Thus, the robot can learn that the grasping behavior

is necessary in order to control the position of the object reliably. This knowledge is used

for subsequent tool-using behaviors. One method for learning these first-order (or binding)

affordances is described in (Stoytchev, 2005).

Next the robot can use the previously explored properties of objects and relate them

to other objects. In this way, the robot can learn that certain actions with objects can

affect other objects, i.e., they can be used as tools. Using the principles of verification and

grounding the robot can learn the affordances of tools. The robot can autonomously verify

and correct these affordances if the tool changes or breaks (see Chapter 7).

3.8 Summary

This chapter proposed five basic principles of developmental robotics. These principles were

formulated based on some of the recurring themes in the developmental learning literature

and in the author’s own research. The five principles follow logically from the verification

principle (postulated by Richard Sutton) which is assumed to be self-evident.

The chapter also described an example of how these principles can be applied to au-

tonomous tool use in robots. The chapters that follow describes the individual components

of this sequence in more details.
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CHAPTER IV

EVALUATION PLATFORMS

This chapter describes the evaluation platforms that were chosen for performing the exper-

iments described in the following chapters. The two platforms, a dynamics robot simulator

and a mobile robot manipulator, are described in detail below.

4.1 Dynamics Robot Simulator

The first experimental platform is a physics-based 3D dynamics robot simulator. The

simulator was implemented in C++ and was used as a fast prototyping environment for

verification and testing of the approach to autonomous robotic tool use. The simulator

provides a rich set of routines for modeling, simulating, controlling, and drawing of simulated

worlds, robots, and environmental objects. Figure 4.1 shows screen snapshots from several

microworlds and robots that were used during different stages of this research.

Simulated robots are modeled as a collection of rigid bodies. The shape of each rigid

body is described by one or more primitive geometric shapes. The primitive geometric

shapes supported by the simulator are: parallelopiped, sphere, and capped-cylinder (a

cylinder with two hemispheres at each end). Two rigid bodies can be connected with a joint

which imposes constraints on the relative movements of the bodies. The following joints are

currently supported: hinge, prismatic, ball and socket, and universal. The configuration

of the robots is specified in plain-text configuration files. This feature allows for rapid

prototyping of new robots and making changes to existing robots. The same process is used

to build the objects and tools in the simulated worlds.

The geometric shapes of the rigid bodies are used to calculate the collision points between

them which in turn are used to calculate the corresponding collision forces. The collision

forces and other forces such as gravity, friction, and robot motor torques are included

in the dynamics calculations to produce physically accurate movements of the simulated

objects. To achieve this, the simulator computes the positions, rotations, accelerations, and
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torques for all rigid bodies at regular time intervals. The timestep for these calculations

can be specified as a parameter which allows for more and more accurate simulations at the

expense of computational time.

The dynamics calculations are performed using the Open Dynamics Engine (ODE)

Library (Smith, 2003). ODE provides basic capabilities for dynamically simulating 3D

rigid objects and calculating the collisions between them. However, it does not provide

functionality for building and controlling robots. ODE also includes an OpenGL-based

visualization library which was extended for the purposes of the simulator.

At least three other robot simulators are based on ODE: Gazebo, Webots, and UberSim.

Gazebo is a 3D multiple robots simulator with dynamics developed at USC (the code is

available at http://playerstage.sourceforge.net/gazebo/gazebo.html). It is geared toward

mobile non-articulated robots and thus has limited robot modeling capabilities. Webots

(Michael, 2004) offers robot building capabilities but it is a commercial product and users

are limited by what they can modify without access to the source code. UberSim (Go et al.,

2004) is an open source simulator geared toward robot soccer applications. It was developed

at Carnegie Mellon and is similar to the other two simulators.

Another feature of the simulator used in this research (that is also present in the afore-

mentioned simulators) is that computer vision routines are integrated into the simulator.

The OpenGL rendered simulator window is treated as a camera image on which computer

vision processing can be performed. The simulator supports multiple cameras which can be

static or attached to a robot. The open source color segmentation library CMVision (Bruce

et al., 2000) was used to track the movements of the robots, tools, and objects in the simu-

lated microworlds. The objects and locations of interest were color coded to accommodate

the tracking process.

The combination of physically realistic 3D dynamics simulation and computer vision

routines from simulated images provides for a level of realism that could not be achieved

with the previous generation of autonomous robot simulators (e.g., MissionLab (MacKenzie

et al., 1997), TeamBots (Balch, 1998), Stage (Gerkey et al., 2003)). Despite these advances

in simulation technology, however, a robot simulator is still only a simulator. A common
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problem with all simulators is that they fail to capture some of the complexities of the real

world that they try to simulate. Thus, the simulation environment may provide a false

sense of success. Therefore, it is necessary to validate the simulation results by repeating

some (or all) experiments on a real robot. The next section describes the robot that was

used for this purpose.
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(a)

(b)

(c)

Figure 4.1: Screen snapshots from simulated microworlds and robots used at different
stages of this research. a) A two joint robot with a gripper; b) A Nomad 150 robot; c) The
simulation version of the CRS+ A251 mobile manipulator described in the next section.
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4.2 Mobile Robot Manipulator

The second experimental platform is a CRS+ A251 manipulator arm. The robot has 5

degrees of freedom (waist roll, shoulder pitch, elbow pitch, wrist pitch, wrist roll) plus a

gripper (Figure 4.2). The joint limits of the manipulator are shown in Figure 4.3. In addition

to that, the arm was mounted on a Nomad 150 robot which allows the manipulator to move

sideways (Figure 4.4). The Nomad 150 is a three-wheeled holonomic vehicle with separately

steerable turret and base. In all experiments, however, its movements were restricted to

simple translations parallel to the table on which the tools and attractors were placed. In

other words, the Nomad 150 was used as a linear track for the manipulator.

Figure 4.2: Joint configuration of the CRS+ A251 arm. From (CRSplus, 1990).
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Figure 4.3: Joint limits of the CRS+ A251 manipulator. From (CRSplus, 1990).
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Figure 4.4: The mobile manipulator and five of the tools used in the experiments.

A computer camera was used to track the positions of the tools, objects, and the robot

itself. The CMVision color tracking library that was integrated in the simulator was also

used to track object in the real world. Two different positions were used for the camera

depending on the task. These setups are described in the next chapters.

Both the manipulator and the Nomad 150 robots are controlled through a serial line.

The robot control code and the color tracker were run on a Pentium IV machine (2.6 GHz,

1 GB RAM), running RedHat Linux 9.0.
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CHAPTER V

SELF-DETECTION IN ROBOTS

5.1 Introduction

An important problem that many organisms have to solve early in their developmental

cycles is how to distinguish between themselves and the surrounding environment. In other

words, they must learn how to identify which sensory stimuli are produced by their own

bodies and which are produced by the external world. Solving this problem is critically

important for their normal development. For example, human infants which fail to develop

self-detection abilities suffer from debilitating disorders such as infantile autism and Rett

syndrome (Watson, 1994).

This chapter addresses the problem of autonomous self-detection by a robot. The chap-

ter describes a methodology for autonomous learning of the characteristic delay between

motor commands (efferent signals) and observed movements of visual stimuli (afferent sig-

nals). The robot estimates its own efferent-afferent delay (also called the perfect contin-

gency) from self-observation data gathered by the robot while performing motor babbling.

That is to say, the robot gathers this data while executing random rhythmic movements sim-

ilar to the primary circular reactions described by Piaget. After the efferent-afferent delay

is estimated, the robot imprints on that delay and can later use it to classify visual stimuli

as either “self” or “other”. Results from robot experiments performed in environments with

increasing degrees of difficulty are reported.

5.2 Related Work

This chapter was inspired by John Watson’s 1994 paper entitled “Detection of Self: The

perfect algorithm.” Ever since I first read his paper I wanted to implement some of his

ideas on a robot. At that time, however, this seemed so distant from my dissertation topic

that I kept putting it off. Ironically, as my ideas about autonomous tool use kept evolving I

came to realize that self-detection is an early developmental milestone that must be achieved
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before everything else can fall into place. This section reviews the main findings and theories

about self-detection described in the literature.

5.2.1 Self-Detection in Humans

There are at least two fundamental questions about the self-detection abilities of humans:

1) What is the mechanism that is developed and used for self-detection?; and 2) When is

this mechanism developed? This section summarizes the answers to these questions that

are given in prior research.

Almost every major developmental theory recognizes the fact that normal develop-

ment requires “an initial investment in the task of differentiating the self from the external

world”(Watson, 1994). This is certainly the case for the two most influential theories of

the 20-th century: Freud’s and Piaget’s. These theories, however, disagree about the ways

in which the self-detection process is achieved. Freud and his followers believed that it is

achieved very early in life through the gradual differentiation of the self from the mother

(see Lewis and Brooks-Gunn (1979, p. 8-9)). Piaget, on the other hand, appears to ignore

this question altogether. Nevertheless, he explicitly assumes that self-detection and the

subsequent “self” versus “other” discrimination does occur because it is a necessary com-

ponent of the secondary circular reactions (i.e., exploratory behaviors directed at external

objects). Freud and Piaget, however, agree that the “self” emerges from actual experience

and is not innately predetermined (Watson, 1994).

Modern theories of human development also seem to agree that the self is derived from

actual experience. Furthermore, they identify the types of experience that are required

for that: efferent-afferent loops that are coupled with some sort of probabilistic estimate

of repeatability. The gist of these theories is summarized below with the help of three

examples from Rochat (2003), Lewis and Brooks-Gunn (1979), and Watson (1994).

Rochat (2003) suggests that there are certain events that are self-specifying. These

events can only be experienced by the owner of the body. The self-specifying events are

also multimodal because they involve more than one sensory or motor modality. Because

these events are unique to the owner of the body they are easy to identify and also to
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replicate. Rochat explicitly lists the following self-specifying events:

“When infants experience their own crying, their own touch, or experience the
perfect contingency between seen and felt bodily movements (e.g., the arm cross-
ing the field of view), they perceive something that no one but themselves can
perceive. The transport of the[ir] own hand to the face, very frequent at birth
and even during the last trimester of pregnancy, is a unique tactile experi-
ence, unlike any other tactile experience as it entails a “double touch”: the
hand touches the face and simultaneously the face touching the hand. Same
for the auditory experience of the[ir] own crying or the visual-proprioceptive
experience accompanying self-produced movement. These basic perceptual (i.e.,
multimodal) experiences are indeed self-specifying, unlike any other perception
experienced by the infant from birth and even prior to birth in the confines of
the maternal womb.”(Rochat, 2003, p. 723)

More than two decades earlier Lewis and Brooks-Gunn (1979) proposed a very similar

process through which an infant can detect its own self. According to them the self is defined

through action-outcome pairings (i.e., efferent-afferent loops) coupled with a probabilistic

estimate of their regularity and consistency. Here is how they describe the emergence of

what they call the “existential self”, i.e., the self as a subject distinct from others and from

the world:

“This nonevaluative, existential self is developed from the consistency, regularity,
and contingency of the infant’s action and outcome in the world. The mechanism
of reafferent feedback provides the first contingency information for the child;
therefore, the kinesthetic feedback produced by the infant’s own actions from
the basis for the development of self. For example, each time a certain set
of muscles operates (eyes close), it becomes black (cannot see). [...] These
kinesthetic systems provide immediate and regular action-outcome pairings.”
(Lewis and Brooks-Gunn, 1979, p. 9)

The last example used to illustrate the self-detection abilities of humans comes from

Watson (1994). Watson proposes that the process of self-detection is achieved by detecting

the temporal contingency between efferent and afferent stimuli. The level of contingency

that is detected serves as a filter that determines which stimuli are generated by the body

and which ones are generated by the external world. In other words, the level of contingency

is used as a measure of selfness. In Watson’s own words:

“Another option is that imperfect contingency between efferent and afferent ac-
tivity implies out-of-body sources of stimulation, perfect contingency implies

76



in-body sources, and non-contingent stimuli are ambiguous. In order to specify
this mechanism, it is necessary to first specify what I mean by temporal contin-
gency. What I mean is the temporal pattern between two events that potentially
reflects the causal dependency between them.” (Watson, 1994, p. 134)

All three examples suggest that the self is discovered quite naturally as it is the most

predictable and the most consistent part of the environment. Furthermore, all seem to

confirm that the self is constructed from self-specifying events which are essentially efferent-

afferent loops or action-outcome pairs. There are many other studies that have reached

similar conclusions. However, they are too numerous to be summarized here. For an

extensive overview the reader is referred to: Lewis and Brooks-Gunn (1979) and Parker

et al. (1994).

At least one study has tried to identify the minimum set of perceptual features that are

required for self-detection. Flom and Bahrick (2001) showed that five-month-old infants can

perceive the intermodal proprioceptive-visual relation on the basis of motion alone when all

other information about the infants’ legs was eliminated. In their experiments they fitted the

infants with socks that contained luminescent dots. The camera image was preprocessed

such that only the positions of the markers were projected on the TV monitor. In this

way the infants could only observe a point-light display of their feet on the TV monitor

placed in front of them. The experimental results showed that five-month-olds were able to

differentiate between self-produced (i.e., contingent) leg motion and pre-recorded (i.e., non-

contingent) motion produced by the legs of another infant. These results illustrate that only

movement information alone might be sufficient for self-detection since all other features like

edges and texture were eliminated in these experiments. The robot experiments described

later use a similar experimental design as the robot’s visual system has perceptual filters

that allow the robot to see only the positions and movements of specific color markers placed

on the robot’s body. Similar to the infants in the dotted socks experiments, the robot can

only see a point light display of its movements.

The second fundamental question about the self-detection abilities of humans is: When

are these abilities developed? The developmental literature suggests that in human infants
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this task takes approximately 3 months (Lewis and Brooks-Gunn, 1979; Watson, 1985).

This estimate is derived through experiments in which infants of various ages are tested

for their looking preferences, i.e., for their preferences for stimuli. These experiments test

whether or not infants can discriminate between the perfectly contingent movements of

their own legs and the non-contingent movements of another baby’s legs. The experimental

setup typically consist of two TV monitors which the infant can observe at the same time.

The first monitor shows the leg movements of the infant captured by the camera. The

second monitor shows the leg movements of another infant recorded during a previous trial

(Watson, 1985). The results of these experiments show that the distribution of looking

preferences of 3-month-old infants is bimodal, i.e., half of the infants preferred to see their

own movements and the other half preferred to see the movement of the other child (Watson,

1985, 1994). By the age of 5 months all children showed significant preferential fixation on

the image that was not their contingent self.

Based on the results of these experiments, Watson (1994) has proposed that infants go

through a developmental phase when they are about three-months-old during which they

switch from self seeking to self avoiding. During the first 3 months the child is trying to

estimate the perfect contingency between its own motor commands (efferent signals) and the

resulting sensory perceptions (afferent signals). Once the perfect contingency is estimated

the infant focuses its attention to other parts of the environment that show a less perfect

contingency. Thus, sometime after the third month the attention mechanisms of the infant

are modified to seek and interact with other parts of the environment (i.e., objects and

people) that exhibit imperfect contingency.

Evidence for the existence of a self-seeking period followed by a self-avoidance period

also comes from studies of children with genetic diseases like Rett syndrome (Watson,

1994). Children affected by this disorder appear to develop normally for a period of 6-16

months before they rapidly succumb to a form of severe mental retardation (Watson, 1994).

This transition is very sudden and is accompanied by “increasingly repetitive hand-on-hand

and hand-to-mouth” movements (Watson, 1994). Watson calls these movement patterns

“deviant self seeking.” It seems that this genetic disorder flips a switch which reverses
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the developmental cycle and as a result the infants transition back to the self seeking

patterns which they were performing during the first 3 months of their lives. There is also

some evidence to suggest that the onset of schizophrenia in adult humans is sometimes

accompanied by the loss of their capacity for self-recognition (Gallup, 1977, p. 331).

The notion of “self” has many other manifestations. Most of them are related to the

social aspects of the self or what Lewis and Brooks-Gunn (1979) call the “categorical self.”

Rochat (2003), for example, identified five levels of self-awareness as they unfold from

the moment of birth to approximately 4-5 years of age. These levels are: 1) self-world

differentiation; 2) a sense of how the body is situated in relation to other entities in the

environment; 3) the development of the “Me” concept which children begin to use in order

to distinguish between themselves and other people; 4) the development of the temporally

extended “Me” concept that children can use to recognize themselves in photographs; 5)

the development of theories of mind and representational abilities for others in relation to

the self. With the exception of the first level, however, all of these are beyond the scope of

this dissertation.

5.2.2 Self-Detection in Animals

Many studies have focused on the self-detection abilities of animals. Perhaps the most

influential study was performed by Gallup (1970) who reported for the first time the abilities

of chimpanzees to self-recognize in a mirror. Gallup anesthetized several chimpanzees and

placed odorless color markers on their faces while they were asleep. Once the chimpanzees

woke up from the anesthesia they were allowed to move about their cages. After a brief

adaptation period, a mirror was introduced into their environment. Gallup measured that

there was a sharp increase in the number of self-directed movements toward the spot where

the marker was placed after the mirror was introduced. Furthermore, the chimps directed

their exploratory actions not toward the image in the mirror but toward their own faces.

This shows that they indeed understood the difference between the two. For a more recent

treatment of the mirror test see (Gallup et al., 2002).

Gallup’s discovery was followed by a large number of studies that have attempted to
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test which species of animals can pass the mirror test. Somewhat surprisingly, the number

turned out to be very small: chimpanzees, orangutans, and bonobos (one of the four great

apes, often called the forgotten ape, see (de Waal, 1997)). There is also at least one study

which has documented similar capabilities in bottlenose dolphins (Reiss and Marino, 2001).

However, the dolphins in that study were not anesthetized so the results are not directly

comparable with those of the other mirror experiments. Another recent study reported

that one Asian elephant (out of three that were tested) conclusively passed the mirror

test (Plotnik et al., 2006). Attempts to replicate the mirror test with other primate and

non-primates species have failed.

Unfortunately, the scientific community is still divided as to what the mirror test is a

test of (Povinelli and Cant, 1995; Barth et al., 2004; de Waal et al., 2005). It is unlikely

that the process of natural selection would have favored an ability for self-recognition in

a mirror when this carries no immediate advantages (not to mention that there were no

mirrors in the jungles of pre-historic Africa). Therefore, other explanations are needed.

Some studies have shown that gorillas (which are the only great apes that don’t pass the

mirror test) and rhesus monkeys would show intense interest in exploring markers that are

placed on their wrists and abdomen (i.e., places on their bodies that they can normally see).

However, they will not pay attention to markers on their faces, i.e., markers which cannot be

seen without a mirror (Shillito et al., 1999; Gallup et al., 1980). On the other hand, one of

the first things that chimpanzees do when they are exposed to a mirror is to study parts of

their bodies which they cannot normally see, e.g., their faces, the insides of their mouths and

nostrils (Barth et al., 2004). Several studies have also reported that gorillas learn to control

the image in the mirror by exploiting contingencies between their own movements and the

movements of the mirror image (Parker, 1991). Similarly, juvenile chimpanzees have been

observed to display contingent behaviors toward the mirror image without showing any self-

exploratory behaviors (Eddy et al., 1996). Thus, it is plausible that, from a developmental

perspective, the process of self-recognition goes through a stage of self-detection based on

detecting temporal contingencies. Self-recognition abilities, however, probably require a

much more detailed representation for the body.
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Gallup (1977) has argued that the interspecies differences are probably due to different

degrees of self-awareness. Another reason for these differences “may be due to the absence

of a sufficiently well-integrated self-concept” (Gallup, 1977, p. 334). Yet another reason

according to Gallup (1977) might be that the species that pass the mirror test can direct

their attention both outward (towards the external world) and inwards (towards their own

bodies), i.e., they can become “the subject of [their] own attention.” Humans, of course,

have the most developed self-exploration abilities and have used them to create several

branches of science, e.g., medicine, biology, and genetics.

Another hypothesis is that the ability to detect oneself in the mirror is only one small

manifestation of a much more sophisticated system which is used to represent the body and

its positions in space (Povinelli and Cant, 1995; Barth et al., 2004). The primary function

of this system is to control and plan body movements. Barth et al. (2004) claim that this

would explain why gorillas don’t pass the mirror test but orangutans do. Since gorillas are

more evolutionarily advanced than orangutans one would expect that the opposite would

be true. The answer, according to Barth et al. (2004), is that the ability to represent

body movements at a fine level of detail was first developed in the last common ancestor

of the two species which lived about 15-20 million years ago. Gorillas have since lost this

ability as it was not required for their terrestrial lifestyles. Orangutans, on the other hand,

have inherited that ability and have used it actively to support their arboreal lifestyles.

Because of their large body weight, orangutans must plan their movements very precisely

from branch to branch to avoid falling down from trees (Povinelli and Cant, 1995).

Furthermore, animals with more elaborate representation of their bodies (i.e., with more

elaborate body schemas) are likely to be more proficient tool users (Povinelli et al., 2000,

p. 333). In fact, McGrew (1992) discovered that the factor which best predicts the degree

of tool-using abilities in different primate species is their ability to recognize themselves

in the mirror, i.e., their ability to pass the mirror test. Habitat, food supplies, and other

factors were not as predictive. Westergaard and Suomi (1995) have also concluded that

“the psychological capacities that underlie the use of tools are associated with those that

underlie mirror inspection”(p. 221).
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Since many species of animals have been observed to use tools (see Figure 2.3) but only

three species of primates pass the mirror test it seems that a detailed representation of the

body is not strictly required for tool use. However, as Barth et al. (2004) point out: “the

hypothesis is simply that the more explicitly the distinction between self and object can be

represented, the more rapidly tool-use will emerge” (Barth et al., 2004, p. 33).

Similar conclusions have been reached by Westergaard and Suomi (1995) who made the

following predictions based on their experiments with tufted capuchin monkeys: “We predict

that at the intraspecific level the ability to use tools is positively correlated with mirror

interest and that this relationship occurs independently of a capacity for self-recognition.

We further predict that at the interspecific level the ability to use tools is a necessary, but

not sufficient, condition for the emergence of self-recognition. We believe that mirror-aided

self-recognition reflects a cognitive process that enables animals to fully comprehend the

properties of a specific type of tool”(Westergaard and Suomi, 1995, p. 222).

5.2.3 Self-Detection in Robots

Self-detection experiments with robots are still rare. One of the few published studies on

this subject was conducted by Michel, Gold, and Scassellati (2004). They implemented

an approach to autonomous self-detection similar to the temporal contingency strategy

described by Watson (1994). Their robot was successful in identifying movements that

were generated by its own body. The robot was also able to identify the movements of its

hand reflected in a mirror as self-generated motion because the reflection obeyed the same

temporal contingency as the robot’s body.

One limitation of their study is that the self-detection is performed at the pixel level

and the results are not carried over to high-level visual features of the robot’s body. Thus,

there is no permanent trace of which visual features constitute the robot’s body. Because of

this, the detection can only be performed when the robot is moving. The study presented in

this chapter goes a step further and keeps a probabilistic estimate across the visual features

that the robot can detect as to whether or not they belong to the robot’s body. In this way,

the stimuli can be classified as either “self” or “other” even when the robot is not moving.
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Another limitation of the Michel et al. (2004) study is that the training procedure used to

estimate the efferent-afferent delay can only be performed if the robot is the only moving

object in the environment. The algorithm described in Section 5.8 does not suffer from this

limitation.

Another team of roboticists have attempted to perform self-detection experiments with

robots based on a different self-specifying event: the so-called double touch (Yoshikawa

et al., 2004). The double touch is a self-specifying event because it can only be experienced

by the robot when it touches its own body. This event cannot be experienced if the robot

touches an object or if somebody else touches the robot since both cases would correspond

to a single touch event. From the papers that have been published by this team so far,

however, it is not clear if the results of the self-detection have been used for some other

purpose, e.g., to bootstrap the robot’s learning of the properties of objects. Nevertheless,

the self may be identified more robustly when inputs from double touch events and motor-

visual efferent-afferent loops are combined. This seems a fruitful area for future research.
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5.3 Problem Statement

The related work shows that the processes of self-detection and self-recognition are devel-

oped under different developmental schedules and are influenced by a number of factors.

In humans, this developmental process can be quite complicated and requires many years

of social interactions before all aspects of the self can be fully developed (Rochat, 2003).

The robotics implementation described later in this chapter focuses only on the problem

of autonomous self-detection. In other words, the robot only learns which visual features

belong to its body and which do not. The problems of self-recognition and relating the self

to other social agents in the environment are not addressed here.

For the sake of clarity the problem of autonomous self-detection by a robot will be stated

explicitly using the following notation. Let the robot have a set of joints J = {j1, j2, . . . , jn}

with corresponding joint angles Θ = {q1, q2, . . . , qn}. The joints connect a set of rigid bodies

B = {b1, b2, . . . , bn+1} and impose restrictions on how the bodies can move with respect to

one another. For example, each joint, ji, has lower and upper joint limits, qL
i and qU

i , which

are either available to the robot’s controller or can be inferred by it. Each joint, ji, can be

controlled by a motor command, move(ji, qi, t), which takes a target joint angle, qi, and a

start time, t, and moves the joint to the target joint angle. More than one move command

can be active at any given time.

Also, let there be a set of visual features F = {f1, f2, . . . , fk} that the robot can detect

and track over time. Some of these features belong to the robot’s body, i.e., they are located

on the outer surfaces of the set of rigid bodies, B. Other features belong to the external

environment and the objects in it. The robot can detect the positions of visual features

and detect whether or not they are moving at any given point in time. In other words, the

robot has a set of perceptual functions P = {p1, p2, . . . , pk}, where pi(fi, t)→ {0, 1}. That

is to say, the function pi returns 1 if feature fi is moving at time t, and 0 otherwise.

The goal of the robot is to classify the set of features, F , into either “self” or “other”.

In other words, the robot must split the set of features in two subsets, Fself and Fother,

such that F = Fself ∪ Fother.
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5.4 Methodology

The problem of self-detection by a robot is divided into two separate problems as follows:

Sub-problem 1: How can a robot estimate its own efferent-afferent delay, i.e., the delay

between the robot’s motor actions and their perceived effects?

Sub-problem 2: How can a robot use its efferent-afferent delay to classify the visual

features that it can detect into either “self” or “other”?

The methodology for solving these two sub-problems is illustrated by two figures. Fig-

ure 5.1 shows how the robot can estimate its efferent-afferent delay (sub-problem 1) by

measuring the elapsed time from the start of a motor command to the start of visual move-

ment. The approach relies on detecting the temporal contingency between motor commands

and observed movements of visual features. To get a reliable estimate of the delay the robot

gathers statistical information by executing multiple motor commands over an extended pe-

riod of time. Section 5.8 shows that this approach is reliable even if there are other moving

visual features in the environment as their movements are typically not correlated with the

robot’s motor commands. Once the delay is estimated the robot imprints on its value (i.e.,

remembers it irreversibly) and uses it to solve sub-problem 2.

delay
efferent−afferent

time

command

visual

no movement

movement

issued
movement
detected

end of visual

movement

movement
detected

perceived visual
movement

start of visualmotor

Figure 5.1: The efferent-afferent delay is defined as the time interval between the start of
a motor command (efferent signal) and the detection of visual movement (afferent signal).
The goal of the robot is to learn this characteristic delay (also called the perfect contingency)
from self-observation data.
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Figure 5.2 shows how the estimated efferent-afferent delay can be used to classify visual

features as either “self” or “other” (sub-problem 2). The figure shows three visual features

and their detected movements over time represented by red, green, and blue lines. Out of

these three features only feature 3 (blue) can be classified as “self” as it is the only one

that conforms to the perfect contingency. Feature 1 (red) begins to move too late after the

motor command is issued and feature 2 (green) begins to move too soon after the movement

command is issued.
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delay
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(moves too late) 

classified as "other" 
(moves too soon) 

(moves as expected) 

classified as "other" 

classified as "self" 

motor

Figure 5.2: “Self” versus “Other” discrimination. Once the robot has learned its efferent-
afferent delay it can use its value to classify the visual features that it can detect into “self”
and “other.” In this figure, only feature 3 (blue) can be classified as self as it starts to move
after the expected efferent-afferent delay plus or minus some tolerance (shown as the brown
region). Features 1 and 2 are both classified as “other” since they start to move either too
late (feature 1) or too soon (feature 2) after the motor command is issued.
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So far, the methodology described here is similar to the one described by Michel et al.

(2004). As mentioned in Section 5.2.3, however, their approach performs the detection on

the pixel level and does not generalize the detection results to more high level perceptual

features. The methodology presented here overcomes this problem as described below.

A classification based on a single observation can be unreliable due to sensory noise or a

lucky coincidence in the movements of the features relative to the robot’s motor command.

Therefore, the robot maintains a probabilistic estimate for each feature as to whether or not

it is a part of the robot’s body. The probabilistic estimate is based on the sufficiency and

necessity indices proposed by Watson (1994). The sufficiency index measures the probability

that the stimulus (visual movement) will occur during some specified period of time after the

action (motor command). The necessity index, on the other hand, measures the probability

that the action (motor command) was performed during some specified period of time before

the stimulus (visual movement) was observed. The robot continuously updates these two

indexes for each feature as new evidence becomes available. Features for which both indexes

are above a certain threshold are classified as “self.” All others are classified as “other.”

Section 5.9 provides more details about this procedure.

The remaining sections in this chapter describe the individual components necessary

to solve the two sub-problems of self-detection. Section 5.5 summarizes the method for

detecting visual features. Section 5.6 describes the motor babbling procedure that is used

by the robot to gather self-observation data. Section 5.7 explains the procedure for detecting

the movements of visual features. Section 5.8 describes the method for learning the efferent-

afferent delay of the robot and the experiments that were used to test this method. Finally,

Section 5.9 presents the results of robot experiments for “self” versus “other” discrimination.
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5.5 Detecting Visual Features

All experiments in this chapter were performed using the robot arm described in Section 4.2.

The movements of the robot were restricted to the vertical plane. In other words, only joints

2, 3, and 4 (i.e., shoulder pitch, elbow pitch, and wrist pitch) were allowed to move (see

Figure 4.2). Joints 1 and 5 (i.e., waist roll and wrist roll) were disabled and their joint

angles were set to 0. The mobile base of the robot was also disabled (i.e., there were no

linear translations).

The experimental setup is shown in Figure 5.3. Six color markers (also called body

markers) were placed on the body of the robot as shown in Figure 5.4. The robot’s body

markers were located and tracked using color segmentation (see Figure 5.5). The position

of each marker was determined by the centroid of the largest blob that matched the specific

color. The color segmentation was performed using a computer vision code which performs

histogram matching in HSV color space with the help of the openCV library (an open

source computer vision package). The digital video camera (Sony EVI-D30) was mounted

on a tripod and its field of view was adjusted so that it can see all body markers in all

possible joint configurations of the robot. The image resolution was set to 640x480. For all

experiments described in this chapter the frames were captured at 30 frames per second.

Color tracking is a notoriously difficult problem in computer vision. In the course of this

research a disproportionately large amount of time was spent fine tuning the color tracker

and selecting distinct colors for the experiments. It was established empirically that no

more than 12 colors can be tracked reliably for extended periods of time. The following

colors were selected: dark orange, dark red, dark green, dark blue, yellow, light green, pink,

tan, orange, violet, light blue, and red. The color tracker was fine tuned to look for areas

of the image that have these specific colors. All other areas were filtered out.

It is important to note that it is possible to use other colors than the ones listed above

but it turned out to be impossible to track more than 12 colors at the same time in the

light conditions in the lab. The tracking results depend on the ambient light as well as the

amount of time that the camera has been turned on (most likely related to its operating

temperature). The color limit is slightly higher (17 colors) for the simulator which does
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not suffer from transient lighting effects (the color limit is not much higher because the

simulator supports textures and shading that can significantly change the appearance of

uniform colored surfaces). For comparison, the robots in the Robocup legged league are

limited to 8 colors (yellow, cyan, pink, green, orange, white, red, and blue) which are also

very carefully selected to maximize detectability.

Nevertheless, color tracking is computationally fast and convenient method to use as it

is very easy to place color markers on the robot and on the objects that the robot uses. An

alternative, but more computationally expensive approach, would be to paint the body of

the robot using different textures and track only locations with unique local features.

Figure 5.3: The experimental setup for most of the experiments described in this chapter.
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Figure 5.4: The figure shows the positions and colors of the six body markers. Each
marker is assigned a number which is used to refer to this marker in the text and figures
that follow. From left to right the markers have the following colors: 0) dark orange; 1)
dark red; 2) dark green; 3) dark blue; 4) yellow; 5) light green.

Figure 5.5: Color segmentation results for the frame shown in Figure 5.4.
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5.6 Motor Babbling

All experiments described in this chapter rely on a common motor babbling procedure

which allows the robot to gather self-observation data (both visual and proprioceptive) while

performing random joint movements. This procedure consists of random joint movements

similar to the primary circular reactions described by Piaget (see Section 2.3.1) as they are

not directed at any object in the environment. Algorithm 1 shows the pseudocode for the

motor babbling procedure.

During motor babbling the robot’s controller randomly generates a target joint vector

and then tries to move the robot to achieve this vector. The movements are performed

by adjusting each joint angle in the direction of the target joint angle. If the target joint

vector cannot be achieved within some tolerance (2 degrees per joint was used) then after

some timeout period (8 seconds was used) the attempt is aborted and another random joint

vector is chosen for the next iteration. The procedure is repeated for a specified number of

iterations, i.e., random motor commands. The number of iterations was set to 500 for the

experiments described below.

Algorithm 1 uses several functions which are not defined but are standard for many pro-

gramming environments. RandomInt(min,max) returns an integer number in the interval

[min, max]. For example, RandomInt(0, 1) returns either a 0 or a 1 with 50% probability

for each. Similarly, RandomFloat(min, max) returns a random floating point number in

the interval (min, max). The function ABS(number) returns the absolute value of its pa-

rameter. The function GetTime() returns the system time and the function Sleep(time)

waits for a given amount of time.

In addition to that, the robot’s interface which is represented with the robot object

has several functions (GetNumJoints, GetLowerJointLimit, GetUpperJointLimit,

and MoveToTargetJointVector) that perform the operations implied by their names.

It is worth noting, however, that the last function, MoveToTargetJointVector, is

asynchronous and returns immediately after the move command is issued to the hardware,

instead of waiting for the move to finish. This is necessary due to the fact that some of the

randomly generated joint vectors correspond to invalid joint configurations (e.g., those that
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result in self collisions).

The motor babbling algorithm is not affected by self-collisions because a collision only

prevents the robot from reaching the randomly generated target joint vector. After a

timeout period the algorithm abandons that goal and selects another target joint vector for

the next iteration. Nevertheless, self-collisions can damage the robot and should be avoided

if possible. For the CRS arm, a side effect of self collisions is that the power breaker for

at least one of the joints is triggered. This renders the robot unusable until the power is

restored. Therefore, the motor babbling routine was modified to generate only body poses

that do not result in self-collisions (this change is not shown in Algorithm 1 as it is specific

for this robot in this mounting configuration only). Because the restricted poses represent

only a small fraction of all possible body poses this is an acceptable solution that ensures

the safety of the robot and does not compromise the validity of the experimental results.

Figure 5.6 shows some joint configurations that were randomly selected by the mo-

tor babbling procedure. The corresponding color segmentation results used to track the

positions of the robot’s body markers are shown in Figure 5.7.
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Algorithm 1 Motor Babbling

GetRandomJointVector(robot)

1: nJoints ← robot.GetNumJoints()
2: for j ← 0 to nJoints do
3: moveThisJoint ← RandomInt(0,1)
4: if moveThisJoint = 1 then
5: lowerLimit ← robot.GetLowerJointLimit(j)
6: upperLimit ← robot.GetUpperJointLimit(j)
7: JV [j]← RandomFloat(lowerLimit, upperLimit)
8: else
9: // Keep the the current joint angle for this joint.

10: JV [j]← robot.GetCurrentJointAngle(j)
11: end if
12: end for
13: return JV

IsRobotAtTargetJointVector(robot, targetJV, tolorance)

1: nJoints ← robot.GetNumJoints()
2: for j ← 0 to nJoints do
3: dist ← ABS(targetJV [j] - robot.GetCurrentJointAngle(j))
4: if dist > tolerance then
5: return false
6: end if
7: end for
8: return true

MotorBabbling(robot, nIterations, timeout, tolerance, sleepT ime)

1: for i ← 0 to nIterations do
2: motor[i].targetJV ← GetRandomJointVector(robot)
3: motor[i].timestamp ← GetTime()
4: repeat
5: robot.MoveToTargetJointVector(motor[i].targetJV )
6: Sleep(sleepT ime)
7: if (GetTime() - motor[i].timestamp) > timeout then
8: // Can’t reach that joint vector. Try another one on the next iteration.
9: break

10: end if
11: done ← IsRobotAtTargetJointVector(robot, motor[i].targetJV, tolerance)
12: until done = true
13: end for
14: return motor
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Figure 5.6: Several of the robot poses selected by the motor babbling procedure.

Figure 5.7: Color segmentation results for the robot poses shown in Figure 5.6.
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5.7 Visual Movement Detection

Two methods for detecting the movements of the visual features (color markers) were tried.

The first method compared the centroid position of each marker from one frame to the next.

If the distance between these two positions was more than some empirically established

threshold (1.5 pixels) the marker was declared as moving. In the course of this research,

however, it became clear that this method is not very reliable. The reason for this is that

the body markers move with different speeds depending on their positions on the robot’s

body. Markers that are placed on the robot’s wrist, for example, move faster than markers

that are placed on the robot’s shoulder (see Figure 5.8). Thus, the markers located on

the wrist appear to start moving sooner than the markers located on the shoulder. The

opposite result is observed at the end of a movement: markers placed on the shoulder of

the robot appear to stop moving sooner than markers placed on the wrist. This effect is

observed even though the robot’s movements are executed such that all actively controlled

joints start and stop moving at the same time.

While it seems that this problem can be resolved if the movement threshold is reduced

(e.g., from 1.5 pixels per frame to 0.5 pixels per frame) this actually results in total degrada-

tion of the quality of the tracking results. The reason for this is that the smaller movement

threshold has approximately the same magnitude as the position detection noise for each

marker even when the the robot is not moving and the markers are static (see Figure 5.9).

Thus, if the movement threshold is reduced to less than 1.5 pixels per frame then marker

movements will be detected even though the robot is not moving.

The position detection results shown in Figure 5.9 are quite decent as the marker po-

sitions are detected with sub-pixel accuracy (approximately 0.3 pixels per frame). Never-

theless, the figure also shows why the first movement detection approach is not feasible.

If the movement threshold is reduced too much the position detection noise becomes al-

most as large as the movement threshold. This makes it impossible to distinguish between

a marker movement resulting from a corresponding robot movement and a marker move-

ment resulting from detection noise. Therefore, this first method for movement detection

was abandoned and not used in any of the experiments. Instead, an alternative method

95



described below was used.

The second movement detection method overcomes the noise problems mentioned above

by performing the movement detection over a fixed interval of time which is longer than

the interval between two consecutive frames. Therefore, this method can compensate for

the frame-to-frame tracking noise as it looks for movements over a longer time window. In

this way, the movement threshold can be larger than the tracking noise. Another advantage

of this method is that it is less sensitive to the small variations in the frame rate due to

system load.

In the final implementation, for each image frame a color marker was declared to be mov-

ing if its position changed by more than 1.5 pixels during the 0.1 second interval immediately

preceding the current frame. The timing intervals were calculated from the timestamps of

the frames stored in the standard UNIX format.

The result of this tracking technique is a binary 0/1 signal for each of the currently

visible markers, similar to the graphs shown in Figure 5.2. These signals are still slightly

noisy and therefore they were filtered with a box filter (also called averaging filter) of

width 5 which corresponds to smoothing each tracking signal over 5 consecutive frames.

The filter changes the values of the movement detection signal to the average for the local

neighborhood. For example, if the movement detection signal is 001011100 then the filter

will output 000111100. On the other hand, if the sequence is 001000 or 001100 then the

filter will output 000000.

Algorithm 2 shows the pseudocode for the movement detector and the box filter.
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Figure 5.8: Average marker movement between two consecutive frames when the robot is
moving. The results are in pixels per frame for each of the six body markers.
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Figure 5.9: Average marker movement between two consecutive frames when the robot
is not moving. In other words, the figure shows the position detection noise when the six
body markers are static. The results are in pixels per frame.
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Algorithm 2 Movement Detection

IsMoving(markerID, treshold, imageA, imageB)

1: posA← FindMarkerPosition(markerID, imageA)
2: posB ← FindMarkerPosition(markerID, imageB)
3: ∆x ← posA.x− posB.x
4: ∆y ← posA.y − posB.y
5: dist ←

√

(∆x)2 + (∆y)2

6: if dist > threshold then
7: return 1
8: else
9: return 0

10: end if

BoxFilter(sequence[ ][ ], index, m)

1: sum ← 0
2: for i ← index− 2 to index + 2 do
3: sum ← sum + sequence[i][m]
4: end for
5: if sum ≥ 3 then
6: return 1
7: else
8: return 0
9: end if

MovementDetector(nFrames, ∆t, treshold)

1: // Buffer some frames in advance so the BoxFilter can work OK
2: for i ← 0 to 3 do
3: frame[i].image ← GetNextFrame()
4: frame[i].timestamp ← GetTime()
5: end for
6: for i ← 4 to nFrames do
7: frame[i].image ← GetNextFrame()
8: frame[i].timestamp ← GetTime()
9: // Find the index, k, of the frame captured ∆t seconds ago

10: startTS ← frame[i].timestamp - ∆t
11: k ← index
12: while ((frame[k].timestamp < startTS) and (k > 0)) do
13: k ← k − 1
14: end while
15:

16: // Detect marker movements and filter the data
17: for m ← 0 to nMarkers do
18: MOV E[i][m] ← IsMoving(m, treshold, frame[i].image, frame[k].image)
19: MOV E[i− 2][m] ← BoxFilter(MOV E, i− 2, m)
20: end for
21: end for
22: return MOV E
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5.8 Learning the Efferent-Afferent Delay

This section describes a procedure that can be used by a robot to estimate its efferent-

afferent delay from self-observation data (i.e., a procedure which solves sub-problem 1 de-

scribed in Section 5.4). The methodology for solving this problem was already described in

Section 5.4 and its mathematical formulation was given in Section 5.3. The different experi-

mental conditions used to test the delay estimation procedure and the obtained experimental

results are described in Sections 5.8.1 - 5.8.4. Section 5.9 describes how the results from

this section can be used to solve the problem of “self” versus “other” discrimination (i.e.,

sub-problem 2 described in Section 5.4).

The pseudocode for the procedure for estimating the efferent-afferent delay of a robot is

shown in Algorithm 3. The algorithm uses the results from the motor babbling procedure

described in Section 5.6, i.e., it uses the array of motor commands and their timestamps.

It also uses the results from the movement detection method described in Section 5.7, i.e.,

it uses the number of captured frames and the move array which holds information about

what feature was moving during which frame. The algorithm is presented in batch form

but it is straightforward to rewrite it in incremental form.

The algorithm maintains a histogram of the measured delays over the interval [0, 6)

seconds. Delays longer than 6 seconds are ignored. Each bin of the histogram corresponds

to 1/30−th of a second, which is equal to the time interval between two consecutive frames.

For each frame the algorithm checks which markers, if any, are starting to move during

that frame. This information is already stored in the move array which is returned by the

MovementDetector function in Algorithm 2. If the start of a movement is detected,

the algorithm finds the last motor command that was executed prior to the current frame.

The timestamp of the last motor command is subtracted from the timestamp of the current

frame and the resulting delay is used to update the histogram. Only one histogram update

per frame is allowed, i.e., the bin count for only one bin is incremented by one. This

restriction ensures that if there is a large object with many moving parts in the robot’s

field of view the object’s movements will not bias the histogram and confuse the detection

process. The code for the histogram routines is shown in Algorithm 4 and Algorithm 5.

99



Algorithm 3 Learning the efferent-afferent delay

CalculateEfferentAfferentDelay(nFrames, frame[ ], MOV E[ ][ ], motor[ ])

1: // Skip the frames that were captured prior to the first motor command.
2: start← 1
3: while frame[start].timestamp < motor[0].timestamp do
4: start← start + 1
5: end while
6:

7: // Create a histogram with bin size=1/30−th of a second
8: // for the time interval [0, 6) seconds.
9: hist←InitHistogram(0.0, 6.0, 180)

10:

11: idx← 0 // Index into the array of motor commands
12: for k ← start to nFrames− 1 do
13: // Check if a new motor command has been issued.
14: if frame[k].timestamp > motor[idx + 1].timestamp then
15: idx← idx + 1
16: end if
17:

18: for i ← 0 to nMarkers− 1 do
19: // Is this a 0→ 1 transition, i.e., start of movement?
20: if ((MOV E[k − 1][i] = 0) and (MOV E[k][i] = 1)) then
21: delay ← frame[k].timestamp−motor[idx].timestamp
22: hist.AddValue(delay)
23: break // only one histogram update per frame is allowed
24: end if
25: end for
26: end for
27:

28: // Threshold the histogram at 50% of the peak value.
29: maxCount← hist.GetMaxBinCount()
30: threshold← maxCount/2.0
31: hist.Threshold(threshold)
32:

33: efferent-afferent-delay ← hist.GetMean()
34: return efferent-afferent-delay
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Algorithm 4 Histogram Code

InitHistogram(min, max, nBins)

1: // To simplify the code two additional bins are reserved: bin[0] and bin[nBins+1].
2: // These bins hold values (if any) that are less than min or greater than max.
3: bin ← new int[nBins + 2] // indexes are: 0,1. . . . , nBins, (nBins+1)
4: limit← new double[nBins + 2] // indexes are: 0,1. . . . , nBins, (nBins+1)
5:

6: // Initialize the bin boundaries
7: step← (max−min)/nBins
8: limit[0]← min
9: for i ← 1 to nBins− 1 do

10: limit[i]← limit[i− 1] + step
11: end for
12: limit[nBins]← max
13: limit[nBins + 1]←MAXDOUBLE
14:

15: for i ← 0 to nBins + 1 do
16: bin[i]← 0
17: end for

AddValue(value)

1: for b ← 0 to nBins + 1 do
2: if value < limit[b] then
3: bin[b]← bin[b] + 1
4: break
5: end if
6: end for
7:

GetMinBinCount()

1: min←MAXINT
2: for b ← 1 to nBins do
3: if bin[b] < min then
4: min← bin[b]
5: end if
6: end for
7: return min

GetMaxBinCount()

1: max←MININT
2: for b ← 1 to nBins do
3: if bin[b] > max then
4: max← bin[b]
5: end if
6: end for
7: return max
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Algorithm 5 Histogram Code (continued)

Threshold(threshold)

1: for b ← 0 to nBins + 1 do
2: if bin[b] < threshold then
3: bin[b]← 0
4: else
5: bin[b]← bin[b]− threshold
6: end if
7: end for

GetMean()

1: count← 0
2: sum ← 0
3: for b ← 1 to nBins do
4: count← count + bin[b]
5: sum← sum + bin[b] ∗ (limit[b− 1] + limit[b])/2.0
6: end for
7: return sum/count;

GetVariance()

1: // This function is not used by Algorithm 3.
2: count← 0
3: sum ← 0
4: sum2← 0
5: for b ← 1 to nBins do
6: count← count + bin[b]
7: middle← (limit[b− 1] + limit[b])/2.0
8: sum ← sum + bin[b] ∗middle
9: sum2← sum2 + bin[b] ∗middle ∗middle

10: end for
11:

12: if count ≤ 1 then
13: return 0
14: else
15: return (sum2− (sum ∗ sum)/count)/(count− 1)
16: end if

GetStdev()

1: // This function is not used by Algorithm 3.
2: variance← GetVariance()
3: return

√
variance
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After all delays are measured the algorithm finds the bin with the largest count; this

corresponds to the peak of the histogram. To reduce the effect of noisy histogram updates,

the histogram is thresholded with an empirically derived threshold equal to 50% of the peak

value. For example, if the largest bin count is 200 the threshold will be set to 100. After

the histogram is thresholded, the mean delay is estimated by multiplying the bin count of

each bin with its corresponding delay, then adding all products and dividing the sum by

the total bin count (see the pseudocode for GetMean() in Algorithm 5).

There are two reasons why a histogram-based approach was selected. The first reason is

that by keeping a histogram the algorithm only uses a fixed amount of memory. The alter-

native is to store all measured delays and calculate the mean using the entire data sample.

This alternative approach, however, will not estimate the mean delay very accurately as

the calculations will be biased by the values of outliers created by noisy readings. In order

to eliminate the outliers, some sort of thresholding will be required which, in a way, will be

equivalent to the histogram-based method.

The second reason for using a histogram-based method is related to findings that bio-

logical brains have a large number of neuron-based delay detectors specifically dedicated to

measuring timing delays (Gallistel, 2003; Gibbon et al., 1997). Supposedly, these detectors

are fine tuned to detect only specific timing delays. Thus, one way to think of the bins of

the histogram is as a bank of detectors each of which is responsible for detecting only a

specific timing delay.

The value of the mean delay by itself is not very useful, however, as it is unlikely that

other measured delays will have the exact same value. As mentioned in Section 5.4, in order

to classify the visual features as either “self” or “other” the measured delay for the feature

must be within some tolerance interval around the mean. This interval was shown as the

brown region in Figure 5.2. One way to determine this tolerance interval is to calculate

the standard deviation of the measured delays, σ, and then classify a feature as “self” if its

movement delay, d, lies within one standard deviation of the mean, µ. In other words, the

feature is classified as “self” if µ− σ ≤ d ≤ µ + σ.
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The standard deviation can also be calculated from the histogram (as shows in Algo-

rithm 5). Because the histogram is thresholded, however, this estimate will not be very

reliable as some delays that are not outliers will be eliminated. In this case, the standard

deviation will be too small to be useful. On the other hand, if the histogram is not thresh-

olded the estimate for the standard deviation will be too large to be useful as it will be

calculated over the entire data sample which includes the outliers as well. Thus, the correct

estimation of the standard deviation is not a trivial task. This is especially true when the

robot is not the only moving object in the environment (see Figure 5.19).

Fortunately, the psychophysics literature provides an elegant solution to this problem.

As it turns out, the discrimination abilities for timing delays in both animals and humans

obey the so-called Weber’s law (Triesman, 1963, 1964; Gibbon, 1977). This law is named

after the German physician Ernst Heinrich Weber (1795-1878) who was one of the first

experimental psychologists. Weber observed that the sensory discrimination abilities of

humans depend on the magnitude of the stimulus that they are trying to discriminate

against. The following example, based on hypothetical numbers, will be used to explain

Weber’s law.1 Suppose that your friend asks you to lift a 10-kilogram weight and remember

the effort that is involved. You lift the weight and notice the force with which it pulls down

your hand. At the next trial your friend adds an additional 0.5 kilograms without your

knowledge and asks you to lift the weight again and tell him if you can feel any difference.

You lift the weight again but you can’t feel any difference. On the third trial your friend

adds an additional 0.5 kilograms and asks you to try again. Now you can feel the difference

and you can confidently say that the new weight is heavier. Thus, it takes a weight difference

of 1 kilogram before you can feel the difference. If the same experiment is performed with a

starting weight of 20 kilograms you will find out that the additional weight has to be equal

to 2 kilograms before you can tell the difference. In other words, the magnitude of the just

noticeable difference (JND) is different in each case: 1 kilogram versus 2 kilograms. In both

cases, however, the value of the JND is equal to 10% of the original weight.

1A similar example is given at
http://www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap 3/ch3p1.html
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Using mathematical notation Weber’s law can be stated as:

∣

∣

∣

∣

∆I

I

∣

∣

∣

∣

= c

where I represents the magnitude of some stimulus, ∆I is the value of the just noticeable

difference (JND), and c is a constant that does not depend on the value of I. The fraction

∆I
I

is known as the Weber fraction. The law implies that the difference between two signals

is not detected if that difference is less than the Weber fraction.

Therefore, Weber’s law can also be used to predict if the difference between two stimuli

I and I ′ will be detected. The stimuli will be indistinguishable if the following inequality

holds:

∣

∣

∣

∣

I − I ′

I

∣

∣

∣

∣

< c

where c is a constant that does not depend on the values of I and I ′.

The robot experiments that are described later use a similar discrimination rule:

∣

∣

∣

∣

µ− d

µ

∣

∣

∣

∣

< β

where µ is the mean efferent-afferent delay, d is the currently measured delay between a

motor command and perceived visual movement, and β is a constant that does not depend

on µ.

While the neural mechanisms behind Weber’s law are still unknown there are numerous

experiments that have shown that both animals and humans obey that law. In fact, the law

applies to virtually all sensory discrimination tasks: distinction between colors and bright-

ness (Aguilar and Stiles, 1954), distances, sounds, weights, and time (Triesman, 1963, 1964;

Gibbon, 1977). Furthermore, in timing discrimination tasks the just noticeable difference is

approximately equal to the standard deviation of the underlying timing delay, i.e., σ
µ

= β.

Distributions with this property are know as scalar distributions because the standard devi-

ation is a scalar multiple of the mean (Gibbon, 1977). This result has been used in some of
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the most prominent theories of timing interval learning, e.g., (Gibbon, 1977, 1991; Gibbon

and Church, 1984; Gallistel and Gibbon, 2000).

Thus, the problem of how to reliably estimate the standard deviation of the measured

efferent-afferent delay becomes trivial. The standard deviation is simply equal to a constant

multiplied by the mean efferent-afferent delay, i.e., σ = βµ. The value of the parameter β

can be determined empirically. For timing discrimination tasks in pigeons its value has been

estimated at 30%, i.e., σ
µ

= 0.3 (Catania, 1970, p. 22). Other estimates for different animals

range from 10% to 25% (Triesman, 1964, p. 328). In the robot experiments described below

the value of β was set to 25%.

It is worth mentioning that the robotic implementation of self-detection does not have

to rely on Weber’s law. After all, the robot is controlled by a computer that has an

internal clock with precision to the nanosecond. However, the problem of reliably estimating

the standard deviation of timing delays remains. Therefore, it was decided to use the

implications of Weber’s law in order to solve/eliminate this problem. The solution proposed

here is biologically plausible and also computationally efficient.

The four subsections that follow describe the four different experimental conditions

used to test the procedure for estimating the efferent-afferent delay of a robot from self-

observation data (i.e., Algorithm 3). The four test conditions are summarized in Table 5.1.

Table 5.1: The four experimental conditions described in the next four subsections.

Test Condition Description Section

Single Robot Ideal test conditions. The robot is the only mov-
ing object in the environment and the only ob-
ject that has perceptual features.

Section 5.8.1

Single Robot and Static
Background Features

The robot is still the only moving object in the
environment but there are also static environ-
mental features which the robot can detect.

Section 5.8.2

Two Robots: Uncorre-
lated Movements

The robot is no longer the only moving object.
The movements of the second robot are inde-
pendent of the movements of the first robot.

Section 5.8.3

Two Robots: Mimick-
ing Movements

As before, there are two moving robots in the
environment. The second robot, however, mim-
ics the movements of the first robot.

Section 5.8.4
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5.8.1 Experiments with a Single Robot

Figure 5.10: Frames from a test sequence in which the robot is the only moving object.

The first set of experiments tested the algorithm under ideal conditions when the robot

is the only moving object in the environment (see Figure 5.10). Furthermore, the robot is

the only object in the environment that has detectable visual features, i.e., color markers.

The experimental data consists of two datasets which were collected by running the mo-

tor babbling procedure for 500 iterations. For each dataset the entire sequence of frames

captured by the camera were converted to JPG files and saved to disk. The frames were

recorded at 30 frames per second at a resolution of 640x480 pixels. Each dataset corre-

sponds roughly to 45 minutes of wall clock time. This time limit was selected so that the

data for one dataset can fit on a single DVD with storage capacity of 4.7GB. Each frame

also has a timestamp denoting the time at which the frame was captured (more precisely,

this timestamp indicates the time at which the frame was stored in the computer’s memory

after it was transfered from the capture card). The motor commands (along with their

timestamps) were also saved as a part of the dataset. The results reported in this section

are based on these two datasets.

Before the results are presented it is useful to take a look at the raw data gathered for

each of the two datasets. Figure 5.11 shows a histogram for the measured efferent-afferent

delays in dataset 1. Figure 5.12 shows the same representation for dataset 2. Each bin of

these two histograms corresponds to 1/30−th of a second which is equal to the time between

two consecutive frames. As can be seen from these histograms, the average measured delay

is approximately 1 second. This delay may seem relatively large but seems unavoidable

since it is due to the slowness of the robot’s controller. A robot with a faster controller
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may have a shorter delay. For comparison, the average efferent-afferent delay reported for

a more advanced robot by Michel et al. (2004) was 0.5 seconds.

In Figures 5.11 and 5.12 the sum of the bin values is greater than 500 for both histograms,

i.e., it is greater than the number of motor commands in each dataset. This is possible

because for each motor command Algorithm 3 may increment the bin count for more than

one bin. While the algorithm does not allow multiple bin updates for one and the same

frame it is possible that two body markers may start to move one after another during two

consecutive frames which will result in two histogram updates. In addition to that, there

are a few false positive movements detected due to sensory noise which also contribute to

this effect. Nevertheless, the histograms preserve their shape even if only one histogram

update per motor command is allowed (see Figures 5.13 and 5.14).

The measured delays are also very consistent across different body markers. Figures 5.15

and 5.16 show the average measured delays for each of the six body markers as well as their

corresponding standard deviations. As expected, all markers have similar delays and the

small variations between them are not statistically significant.

Algorithm 3 estimated the following efferent-afferent delays for each of the two datasets:

1.02945 seconds (for dataset 1) and 1.04474 seconds (for dataset 2). The two estimates are

very close to each other. The difference is less than 1/60−th of a second, which is equivalent

to half a frame (see the first column in Table 5.2). For comparison, Table 5.2 also shows

the average efferent-afferent delays calculated using the raw delay data. As can be seen

from the table, the second method slightly overestimates the peak of the histogram because

its calculations are affected by noisy readings. Thus, Algorithm 3 offers a more reliable

estimate of the efferent-afferent delay (see Figures 5.11 and 5.12).

Table 5.2: The mean efferent-afferent delay for dataset 1 and dataset 2 estimated using
two different methods.

Algorithm 3 Raw Data

Mean delay for dataset 1 1.02945 1.12823

Mean delay for dataset 2 1.04474 1.16045
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Figure 5.11: Histogram for the measured efferent-afferent delays in dataset 1.
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Figure 5.12: Histogram for the measured efferent-afferent delays in dataset 2.
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Figure 5.13: Histogram for the measured efferent-afferent delays in dataset 1. Unlike the
histogram shown in Figure 5.11, the bins of this histogram were updated only once per
motor command. Only the earliest detected movement after a motor command was used.
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Figure 5.14: Histogram for the measured efferent-afferent delays in dataset 2. Unlike the
histogram shown in Figure 5.12, the bins of this histogram were updated only once per
motor command. Only the earliest detected movement after a motor command was used.
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Figure 5.15: The average efferent-afferent delay and its corresponding standard deviation
for each of the six body markers calculated using dataset 1.
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Figure 5.16: The average efferent-afferent delay and its corresponding standard deviation
for each of the six body markers calculated using dataset 2.
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5.8.2 Experiments with a Single Robot and Static Background Features

Figure 5.17: Frames form a test sequence with six static background markers.

The second experimental setup tested Algorithm 3 in the presence of static visual fea-

tures placed in the environment. In addition to the robot’s body markers, six other markers

were placed on the background wall (see Figure 5.17). All background markers remained

static during the experiment, but it was possible for them to be occluded temporarily by

the robot’s arm. Once again, the robot was controlled using the motor babbling procedure.

A new dataset with 500 motor commands was collected using the procedure described in

Section 5.8.1.

Figure 5.18 shows the delay histogram for this dataset. This histogram is similar to the

histograms shown in the previous subsection. One noticeable difference, however, is that

almost all bins in this case have some values. This is due to the detection of false positive

movements for the background markers that could not be filtered out by the box filter. This

is one of the main reasons why it is necessary to threshold the histogram. A similar but

even more pronounced effect will be observed in the next section in which the background

markers are allowed to move.

Figure 5.18 shows that, these false positive movements exhibit an almost uniform dis-

tribution over the interval from 0 to 5 seconds. This is to be expected as they are not

correlated with the motor commands of the robot. The drop off after 5 seconds is due to

the fact that the robot executes a new motor command approximately every 5 seconds.

Therefore, any false positive movements of the background markers that are detected after

the 5-second interval will be associated with the next motor command.
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Table 5.3 shows the mean efferent-afferent delay as well as the standard deviation mea-

sured in two different ways. As shown in the table, Algorithm 3 performs better than the

method that uses the raw data which overestimates the value of the delay by 0.8 seconds.

The second method also overestimates the value of the standard deviation, estimating it at

1.33165 seconds. As explained in Section 5.8, Algorithm 3 underestimates the value of the

standard deviation. This is not a problem, however, as the decision curve for “self” versus

“other” discrimination is constructed using Weber’s law which requires only the mean to

be estimated correctly. The discrimination threshold, β, was set to 25% of the mean.

Table 5.3: Two estimates for the mean and the standard deviation of the efferent-afferent
delay in the dataset with background markers.

Algorithm 3 Raw Data

Mean 1.03559 1.86150

Stdev 0.01891 1.33165
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Figure 5.18: Histogram for the measured efferent-afferent delays for six robot and six
static background markers (see Figure 5.17). Each bin corresponds to 1/30−th of a second.
Due to false positive movements detected for the background markers almost all bins of the
histogram have some values. See text for more details.
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5.8.3 Experiments with Two Robots: Uncorrelated Movements

Figure 5.19: Frames from a test sequence with two robots in which the movements of the
robots are uncorrelated. Each robot is controlled by a separate motor babbling routine.
The robot on the left is the one trying to estimate its efferent-afferent delay.

Two sets of experiments were designed to test whether the robot can learn its efferent-

afferent delay in situations in which the robot is not the only moving object in the envi-

ronment. In this case, another moving object was introduced: another robot arm which

was placed in the field of view of the first robot. The two test conditions vary in the de-

gree of correlation between the movements of the two robots as follows: 1) uncorrelated

movements; and 2) mimicking movements. For each of these test conditions a new dataset

with 500 motor commands was generated. Figure 5.19 shows three frames from the dataset

corresponding to the first test condition. The second test condition is described in the next

subsection.

Before the experiments are described, however, a small technical clarification must made.

Because there was only one robot available to perform these sets of experiments the second

robot was generated using a digital video special effect. Each frame in which there are two

robots is a composite of two other frames with only one robot in each (these frames were

taken from the two datasets described in Section 5.8.1). The robot on the left is in the

same position as in the previous datasets. In order to get the robot on the right, the left

part of the second frame was cropped, flipped horizontally, translated and pasted on top of

the right part of the first frame.

Similar experimental designs are quite common in self-detection experiments with infants

(e.g., Watson (1994); Bahrick and Watson (1985)). In these studies the infants are placed

in front of two TV screens. On the first screen the infants can see their own leg movements
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Figure 5.20: Histogram for the measured delays between motor commands and observed
visual movements in the test sequence with two robots whose movements are uncorrelated
(see Figure 5.19).

captured by a camera. On the second screen they can see the movements of another infant

recorded during a previous experiment.

Figure 5.19 shows the first experimental setup with two robots. Under this test condition

the movements of the two robots are uncorrelated. The frames for this test sequence were

generated by combining the frames from dataset 1 and dataset 2 (described in Section 5.8.1).

The motor commands and the robot on the left come from dataset 1; the robot on the right

comes from dataset 2. Because the two motor babbling sequences have different random

seed values the movements of the two robots are uncorrelated. For all frames the robot on

the left is the one that is trying to estimate its efferent-afferent delay.

Figure 5.20 shows a histogram for the measured delays in this sequence. As can be seen

from the figure, the histogram has some values for almost all of its bins. Nevertheless, there

is still a clearly defined peak which has the same shape and position as in the previous

test cases taken under ideal conditions. Algorithm 3 estimated the efferent-afferent delay
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Figure 5.21: Contributions to the bins of the histogram shown in Figure 5.20 by the
movements of the second robot only. This histogram shows that the movements of the
second robot occur at all possible times after a motor command of the first robot. The
drop off after 5 seconds is due to the fact that the first robot performs one motor command
approximately every 5 seconds. Thus, any subsequent movements of the second robot after
the 5-second interval are matched to the next motor command of the first robot.

at 1.02941 after the histogram was thresholded with a threshold equal to 50% of the peak

value. For comparison, Table 5.4 shows that the mean delay estimated from the raw data

is 1.82032, which is significantly overestimated (see Figure 5.20). The table also shows the

value of the standard deviation calculated using the two methods. Once again, Algorithm 3

underestimates its value while the other method overestimates it.

Because the movements of the second robot are uncorrelated with the motor commands

of the first robot the detected movements for the body markers of the second robot are

scattered over all bins of the histogram. Thus, the movements of the second robot could

not confuse the algorithm into picking a wrong value for the mean efferent-afferent delay.

Figure 5.21 presents a closer look at the measured delays between the motor commands of

the first robot and the movements of the body markers of the second robot. The histogram
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Table 5.4: Two estimates for the mean and the standard deviation of the efferent-afferent
delay in the dataset with two robots.

Algorithm 3 Raw Data

Mean 1.02941 1.82032

Stdev 0.01622 1.34058

shows that, these movements exhibit almost an uniform distribution over the interval from 0

to 5 seconds. The drop off after 5 seconds is due to the fact that the the first robot performs

a new movement approximately every 5 seconds. Therefore, any movements performed by

the second robot after the 5-second interval will be associated with the next motor command

of the first robot.

These results, once again, show that even when there are other moving objects in the

environment it is possible for a robot to learn its own efferent-afferent delay. Even though

there are instances in which the body markers of the second robot are detected to move with

the perfect contingency, there are significantly more other instances in which they start to

move either too early or too late. Because of this timing difference, the movements of any

background object are represented as noise in the overall histogram.

To minimize the chance of imprinting on the wrong efferent-afferent delay, however, the

developmental period during which the characteristic delay is learned can be increased. In

fact, according to Watson (1994), this period lasts approximately three months in humans.

For the current set of robot experiments, however, it was shown that 500 motor commands

(or about 45 minutes of real time data) were sufficient to estimate this delay reliably for

the test conditions described in this section.

The next subsection explores what happens if the independence condition between the

two robots is violated and the second robot mimics the first one.
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5.8.4 Experiments with Two Robots: Mimicking Movements

Figure 5.22: Frames from a test sequence with two robots in which the robot on the right
mimics the robot on the left. The mimicking delay is 20 frames (0.66 seconds).

Under this test condition the second robot (the one on the right) is mimicking the first

robot (the one on the left). The mimicking robot starts to move 20 frames (0.66 seconds)

after the first robot. Another dataset of 500 motor commands was constructed using the

frames of dataset 1 (described in Section 5.8.1) and offsetting the left and right parts of the

image by 20 frames.

Because the mimicking delay is always the same, the resulting histogram (see Fig-

ure 5.23) is bimodal. The left peak, centered around 1 second, is produced by the body

markers of the first robot. The right peak, centered around 1.7 seconds, is produced by

the body markers of the second robot. Algorithm 3 cannot deal with situations like this

and therefore it selects a delay which is between the two peaks (see Table 5.5). Calculating

the mean delay from the raw data produces a mean estimate that is between the two peak

values as well.

Table 5.5: Two estimates for the mean and the standard deviation of the efferent-afferent
delay in the mimicking dataset with two robots.

Algorithm 3 Raw Data

Mean 1.36363 1.44883

Stdev 0.334185 0.52535

It is possible to modify Algorithm 3 to avoid this problem by choosing the peak that

corresponds to the shorter delay, for example. Evidence from animal studies, however, shows

that when multiple time delays (associated with food rewards) are reinforced the animals
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learn “the mean of the reinforced distribution, not its lower limit” (Gibbon, 1977, p. 293),

i.e., if the reinforced delays are generated from different underlying distributions the animals

learn the mean associated with the mixture model of these distributions. Therefore, the

algorithm was left unmodified.

Another reason to leave the algorithm intact exists: the mimicking test condition is

a degenerate case which is highly unlikely to occur in any real situation in which the two

robots are independent. Therefore, this negative result should not undermine the usefulness

of Algorithm 3 for learning the efferent-afferent delay. The probability that two independent

robots will perform the same sequence of movements over an extended period of time is

effectively zero. Continuous mimicking for extended periods of time is certainly a situation

which humans and animals never encounter in the real world.

The results of the mimicking robot experiments suggest an interesting study that can

be conducted with monkeys provided that a brain for detecting and interpreting the signals

from the motor neurons of an infant monkey were available. The decoded signals could then

be used to send movement commands to a robot arm which would begin to move shortly

after the monkey’s arm. If there is indeed an imprinting period, as Watson (1994) suggests,

during which the efferent-afferent delay must be learned then the monkey should not be

able to function properly after the imprinting occurs and the implant is removed.
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Figure 5.23: Histogram for the measured delays between motor commands and observed
visual movements in the mimicking test sequence with two robots (see Figure 5.22). The
left peak is produced by the movements of the body markers of the first robot. The right
peak is produced by the movements of the body markers of the second/mimicking robot.
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5.9 “Self” versus “Other” Discrimination

The previous section examined whether it is possible for a robot to learn its efferent-afferent

delay from self-observation data (i.e., sub-problem 1 described in Section 5.4). This section

examines whether the robot can use this delay to label the visual features that it detects as

either “self” (i.e., belonging to the robot’s body) or “other” (i.e., belonging to the external

world). In other words, this section formulates and tests an approach to sub-problem 2

described in Section 5.4. The methodology for solving this problem was already described

in Section 5.4 and its mathematical formulation was given in Section 5.3. The different

experimental conditions used to test this approach and the obtained experimental results

are described in Sections 5.9.1 - 5.9.4.

The basic methodology for performing this discrimination was already shown in Fig-

ure 5.2. In the concrete implementation, the visual field of view of the robot is first seg-

mented into features and then their movements are detected using the method described in

Section 5.7. For each feature the robot maintains two independent probabilistic estimates

which jointly determine how likely it is for the feature to belong to the robot’s own body.

The two probabilistic estimates are the necessity index and the sufficiency index as

described in (Watson, 1985, 1994). The necessity index measures whether the feature moves

consistently after every motor command. The sufficiency index measures whether for every

movement of the feature there is a corresponding motor command that precedes it. The

formulas for these two probabilities are given below.

Necessity index =
Number of temporally contingent movements

Number of motor commands

Sufficiency index =
Number of temporally contingent movements

Number of observed movements for this feature

Figure 5.24 shows an example with three visual features and their calculated necessity

and sufficiency indexes. After two motor commands feature 1 (red) has a necessity index of

0.5 (1 contingent movement/2 motor commands) and a sufficiency index of 0.5 (1 contingent

movement/2 observed movements). Feature 2 (green) has a necessity index of 1.0 (2 con-

tingent movements/2 motor commands) but its sufficiency index is only 0.5 (2 contingent
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Figure 5.24: The figure shows the calculated values of the necessity (Ni) and sufficiency
(Si) indexes for three visual features. After two motor commands, feature 1 is observed to
move twice but only one of these movements is contingent upon the robot’s motor com-
mands. Thus, feature 1 has a necessity N1 = 0.5 and a sufficiency index S1 = 0.5. The
movements of feature 2 are contingent upon both motor commands (thus N2=1.0) but only
two out of four movements are temporally contingent (thus S2=0.5). Finally, feature 3 has
both N3 and S3 equal to 1.0 as all of its movements are contingent upon the robot’s motor
commands.

movements/4 observed movements) as only half of its movements are contingent. Finally,

feature 3 (blue) has a necessity index of 1.0 (2 contingent movements/2 motor commands)

and a sufficiency index of 1.0 (2 contingent movements/2 observed movements). Based

on these results the robot can classify feature 3 as “self” because both its necessity and

sufficiency indexes are equal to 1. Features 1 and 2 can be classified as “other.”

For each feature, fi, the robot maintains a necessity index, Ni, and a sufficiency index,

Si. The values of these indexes at time t are given by Ni(t) and Si(t). Following Figure 5.24,

the values of these indexes can be calculated by maintaining 3 counters: Ci(t), Mi(t), and

Ti(t). Their definitions are as follows: Ci(t) represents the number of motor commands

executed by the robot from some start time t0 up to the current time t. Mi(t) is the

number of observed movements for feature fi from time t0 to time t; and Ti(t) is the

number of temporally contingent movements observed for feature fi up to time t. The

first two counters are trivial to calculate. The third counter, Ti(t), is incremented every

time the feature fi is detected to move (i.e., when Mi(t) = 1 and Mi(t − 1) = 0) and the
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movement delay relative to the last motor command is approximately equal to the mean

efferent-afferent delay plus or minus some tolerance interval. In other words,

Ti(t) =











Ti(t− 1) + 1 : if Mi(t) = 1 and Mi(t− 1) = 0 and
∣

∣

∣

µ− di
µ

∣

∣

∣
< β

Ti(t− 1) : otherwise

where µ is the estimate for the mean efferent-afferent delay; di is the delay between the

currently detected movement of feature fi and the last motor command; and β is a constant.

The value of β is independent from both µ and di and is equal to Weber’s fraction (see

Section 5.8). The inequality in this formula essentially defines the width of the decision

region (see the brown regions in Figure 5.24).

Using this notation the values of the necessity and sufficiency indexes at time t can be

calculated as follows:

Ni(t) =
Ti(t)
Ci(t)

Si(t) =
Ti(t)
Mi(t)

Both of these indexes are updated over time as new evidence becomes available, i.e.,

after a new motor command is issued or after the feature is observed to move. The belief

of the robot that fi is part of its body at time t is given jointly by Ni(t) and Si(t). If the

robot has to classify feature fi it can threshold these values; if both are greater than the

threshold value, α, the feature fi is classified as “self”. In other words,

fi ∈











Fself : if and only if Ni(t) > α and Si(t) > α

Fother : otherwise

Ideally, both Ni(t) and Si(t) should be 1. In practice, however, this is rarely the case

as there is always some sensory noise that cannot be filtered out. Therefore, for all robot

experiments the threshold value, α, was set to an empirically derived value of 0.75.

The subsections that follow test this approach for “self” versus “other” discrimination in

a number of experimental situations. In this set of experiments, however, it is assumed that
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the robot has already estimated its efferent-afferent delay and is only required to classify

the features as either “self” or “other” using this delay.

These test situations are the same as the ones described in the previous section. For

all experiments that follow the value of the mean efferent-afferent delay was set to 1.035.

This value is equal to the average of the four means (1.02945, 1.04474, 1.03559, 1.02941)

calculated for the four datasets described in Sections 5.8.1-5.8.3 (rounded up to three deci-

mal points). The value of β was set to 0.25. Thus, a visual movement will be classified as

temporally contingent to the last motor command if the measured delay is between 0.776

and 1.294 seconds.

The four subsections that follow describe the four different experimental conditions used

to test the procedure for self/other discrimination described above. The four test conditions

are summarized in Table 5.6. These are the same test conditions as the one described in

Section 5.8. In this case, however, the goal of the robot is not to learn its efferent-afferent

delay. Instead, the goal is to classify different visual features as either “self” or “other.”

Table 5.6: The four experimental conditions described in the next four subsections.

Test Condition Description Section

Single Robot Ideal test conditions. The robot is the only mov-
ing object in the environment and the only ob-
ject that has perceptual features.

Section 5.9.1

Single Robot and Static
Background Features

The robot is still the only moving object in the
environment but there are also static environ-
mental features which the robot can detect.

Section 5.9.2

Two Robots: Uncorre-
lated Movements

The robot is no longer the only moving object.
The movements of the second robot are inde-
pendent of the movements of the first robot.

Section 5.9.3

Two Robots: Mimick-
ing Movements

As before, there are two moving robots in the
environment. The second robot, however, mim-
ics the movements of the first robot.

Section 5.9.4
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5.9.1 Experiments with a Single Robot

The test condition here is the same as the one described in Section 5.8.1 and uses the same

two datasets derived from 500 motor babbling commands each. In this case, however, the

robot already has an estimate for its efferent-afferent delay (1.035 seconds) and is only

required to classify the markers as either “self” or “other”. Because the two datasets

don’t contain any background markers the robot should classify all markers as “self.” The

experiments show that this was indeed the case.

Figure 5.25 shows the value of the sufficiency index calculated over time for each of

the six body markers in dataset 1. Figure 5.26 shows the same thing for dataset 2. As

mentioned above, these values can never be equal to 1.0 for a long period of time due to

sensory noise. Figures 5.25 and 5.26 demonstrate that the sufficiency indexes for all six

markers in both datasets are greater than 0.75 (which is the value of the threshold α).

An interesting observation about these plots is that after the initial adaptation period

(approximately 5 minutes) the values for the indexes stabilize and don’t change much (see

Figure 5.25 and Figure 5.26). This suggests that these indexes can be calculated over a

running window instead of over the entire dataset with very similar results. The oscillations

in the first 5 minutes of each trial (not shown) are due to the fact that all counters and

index values initially start from zero. Also, when the values of the counters are relatively

small (e.g., 1 to 10) a single noisy update for any counter results in large changes for the

value of the fraction which is used to calculate a specific index (e.g., the difference between

1/2 and 1/3 is large but the difference between 1/49 and 1/50 is not).

Figure 5.27 shows the value of the necessity index calculated over time for each of the

six markers in dataset 1. Figure 5.28 shows the same thing for dataset 2. The figures show

that the necessity indexes are consistently above the 0.75 threshold only for body markers

4 and 5 (yellow and green). At first this may seem surprising; after all, the six markers

are part of the robot’s body and, therefore, should have similar values for their necessity

indexes. The reason for this result is that the robot has three different joints which can

be affected by the motor babbling routine (see Algorithm 1). Each motor command moves

one of the three joints independently of the other joints. Furthermore, one or more of these
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motor commands can be executed simultaneously.

Thus, the robot has a total of 7 different types of motor commands. Using binary

notation these commands can be labeled as: 001, 010, 011, 100, 101, 110, and 111. In this

notation, 001 corresponds to a motor command that moves only the wrist joint; 010 moves

only the elbow joint; and 111 moves all three joints at the same time. Note that 000 is not

a valid command since it does not move any of the joints. Because markers 4 and 5 are

located on the wrist they move for every motor command. Markers 0 and 1, however, are

located on the shoulder and thus they can be observed to move only for four out of seven

motor commands: 100, 101, 110, and 111. Markers 2 and 3 can be observed to move for 6

out of 7 motor commands (all except 001), i.e., they will have a necessity index close to of

6/7 which is approximately 0.85 (see Figure 5.27).

This example shows that the probability of necessity may not always be computed cor-

rectly as there may be several competing causes. In fact, this observation is well supported

fact in the statistical inference literature (Pearl, 2000, p. 285). “Necessity causation is a

concept tailored to a specific event under consideration (singular causation), whereas suf-

ficient causation is based on the general tendency of certain event types to produce other

event types.”(Pearl, 2000, p. 285). This distinction was not made by Watson (1985, 1994)

as he was only concerned with discrete motor actions (e.g., kicking or no kicking) and it

was tacitly assumed that the infants always kick with both legs simultaneously.

While the probability of necessity may not be identifiable in the general case, it is

possible to calculate it for each of the possible motor commands. To accommodate for

the fact that the necessity indexes, Ni(t), are conditioned upon the motor commands the

notation is augmented with a superscript, m, which stands for one of the possible types

of motor commands. Thus, Nm
i (t) is the necessity index associated with feature fi and

calculated only for the mth motor command at time t. The values of the necessity index

for each feature, fi can now be calculated for each of the m possible motor commands:

Nm
i (t) =

Tm
i (t)

Cm
i (t)

where Cm
i (t) is the total number of motor commands of type m performed up to time t;
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and Tm
i (t) is the number of movements for feature fi that are temporally contingent to

motor commands of type m. The calculation for the sufficiency indexes remains the same

as before.

Using this change of notation, a marker can be classified as “self” at time t if the

sufficiency index Si(t) is greater than α and there exists at least one type of motor command,

m, such that Nm
i (t) > α. In other words,

fi ∈











Fself : if and only if ∃m : Nm
i (t) > α and Si(t) > α

Fother : otherwise

Figure 5.29 shows the values of the necessity index for each of the six body markers

calculated over time using dataset 1 and the new notation. Each graph in this figure shows

7 lines which correspond to one of the seven possible motor commands. As can be seen

from the figure, for each marker there is at least one motor command, m, for which the

necessity index Nm
i (t) is greater than the threshold, α = 0.75. Thus, all six markers are

correctly classified as “self.” Figure 5.30 displays similar results for dataset 2.

It is worth noting that the approach described here relies only on identifying which

joints participate in any given motor command and which markers are observed to start

moving shortly after this motor command. The type of robot movement (e.g., fast, slow,

fixed speed, variable speed) and how long a marker is moving as a result of it does not affect

the results produced by this approach. The following subsections test this approach under

different experimental conditions.
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Figure 5.25: The figure shows the value of the sufficiency index calculated over time for
the six body markers. The index value for all six markers is above the threshold α = 0.75.
The values were calculated using dataset 1.
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Figure 5.26: The figure shows the value of the sufficiency index calculated over time for
the six body markers. The index value for all six markers is above the threshold α = 0.75.
The values were calculated using dataset 2.
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Figure 5.27: The value of the necessity index calculated over time for each of the six body
markers in dataset 1. This calculation does not differentiate between the type of motor
command that was performed. Therefore, not all markers can be classified as self as their
index values are less than the threshold α = 0.75 (e.g., M0 and M1). The solution to this
problem is shown in Figure 5.29 (see text for more details).
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Figure 5.28: The value of the necessity index calculated for over time for each of the
six body markers in dataset 2. This calculation does not differentiate between the type of
motor command that was performed. Therefore, not all markers can be classified as self as
their index values are less than the threshold α = 0.75 (e.g., M0 and M1). The solution to
this problem is shown in Figure 5.30 (see text for more details).
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(d) marker 3
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(f) marker 5

Figure 5.29: The figures shows the values of the necessity index, Nm
i (t), for each of the

six body markers (in dataset 1). Each figure shows 7 lines which correspond to one of
the 7 possible types of motor commands: 001, . . . , 111. To be considered for classification
as “self” each marker must have a necessity index Nm

i (t) > 0.75 for at least one motor
command, m, at the end of the trial. All markers are classified as self in this dataset.
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(b) marker 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45

Ne
ce

ss
ity

 In
de

x

Time (in minutes)

001
010
011
100
101
110
111

(c) marker 2
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(d) marker 3
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(f) marker 5

Figure 5.30: The figure shows the values of the necessity index, Nm
i (t), for each of the

six body markers (in dataset 2). Each figure shows 7 lines which correspond to one of
the 7 possible types of motor commands: 001, . . . , 111. To be considered for classification
as “self” each marker must have a necessity index Nm

i (t) > 0.75 for at least one motor
command, m, at the end of the trial. All markers are classified as self in this dataset.
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5.9.2 Experiments with a Single Robot and Static Background Features

This test condition is the same as the one described in Section 5.8.2. In addition to the

robot’s body markers six additional markers were placed on the background wall (see Fig-

ure 5.17). Again, the robot performed motor babbling for 500 motor commands. The

dataset recorded for the purposes of Section 5.8.2 was used here as well.

Table 5.7 shows the classification results at the end of the test. The results demonstrate

that there is a clear distinction between the two sets of markers: markers M0-M5 are

classified correctly as “self.” All background markers, M6-M11, are classified correctly as

“other.” The background markers are labeled clockwise starting from the upper left marker

(red) in Figure 5.17. Their colors are: red (M6), violet (M7), pink (M8), tan (M9), orange

(M10), light blue (M11).

Table 5.7: Values of the necessity and sufficiency indexes at the end of the trial. The
classification for each marker is shown in the last column.

Marker max
m

(Nm
i (t)) Si(t) Threshold α Classification Actual

M0 0.977 0.887 0.75 “self” “self”

M1 1.000 0.943 0.75 “self” “self”

M2 1.000 0.998 0.75 “self” “self”

M3 1.000 0.995 0.75 “self” “self”

M4 1.000 0.840 0.75 “self” “self”

M5 1.000 0.996 0.75 “self” “self”

M6 0.000 0.000 0.75 “other” “other”

M7 0.068 0.140 0.75 “other” “other”

M8 0.017 0.100 0.75 “other” “other”

M9 0.057 0.184 0.75 “other” “other”

M10 0.147 0.112 0.75 “other” “other”

M11 0.185 0.126 0.75 “other” “other”

The values for the sufficiency indexes calculated over time are shown in Figure 5.31 (body

markers) and Figure 5.32 (background markers). The necessity indexes for each of the seven

motor commands are shown in Figure 5.33 and Figure 5.34. All background markers (except

marker 8) can be temporarily occluded by the robot’s arm which increases their position

tracking noise. This results in the detection of occasional false positive movements for

these markers. Therefore, their necessity indexes are not all equal to zero (as it is the case

with marker 8). Nevertheless, by the end of the trial the maximum necessity index for all

background markers is less than 0.75 and, thus, they are correctly classified as “other.”
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Figure 5.31: Sufficiency index for each of the six body markers. For all of these markers
the index value is above the threshold α = 0.75. The same is true for the necessity indexes
as shown in Figure 5.33. Thus, all six body markers are classified as “self.”
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Figure 5.32: Sufficiency index for the six static background markers. For all of these
markers the index value is below the threshold α = 0.75. The same is true for the necessity
indexes as shown in Figure 5.34. Thus, all six background markers are classified as “other.”
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Figure 5.33: The necessity index, Nm
i (t), for each of the six body markers. Each fig-

ure shows 7 lines which correspond to one of the 7 possible types of motor commands:
001, . . . , 111. To be considered for classification as “self” each marker must have a necessity
index Nm

i (t) > 0.75 for at least one motor command, m, at the end of the trial. This is
true for all body markers shown in this figure. Thus, they are correctly classified as “self.”
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Figure 5.34: The necessity index, Nm
i (t), for each of the six background markers. Each

figure shows 7 lines which correspond to one of the 7 possible motor commands: 001, . . . , 111.
To be considered for classification as “self” each marker must have a necessity index N m

i (t) >
0.75 for at least one motor command, m, at the end of the trial. This is not true for the
background markers shown in this figure. Thus, they are all correctly classified as “other.”
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5.9.3 Experiments with Two Robots: Uncorrelated Movements

This experimental condition is the same as the one described in Section 5.8.3. The dataset

recorded for the purposes of Section 5.8.3 was used here as well. If the self-detection

algorithm works as expected only 6 of the 12 markers should be classified as “self” (markers

M0-M5). The other six markers (M6-M11) should be classified as “other.” Table 5.8 shows

that the algorithm performs satisfactorily.

Figure 5.35 shows the sufficiency indexes for the six body markers of the first robot (i.e.,

the one trying to perform the self versus other discrimination – left robot in Figure 5.8.3).

As expected, the index values are very close to 1. Figure 5.36 shows the sufficiency indexes

for the body markers of the second robot. Since the movements of the second robot are not

correlated with the motor commands of the first robot these values are close to zero.

Figure 5.37 shows the necessity indexes for each of the 6 body markers of the first robot

for each of the seven motor commands. As expected, these indexes are greater than 0.75

for at least one motor command. Figure 5.38 shows the same for the markers of the second

robot. In this case, the necessity indexes are close to zero. Thus, these markers are correctly

classified as “other.”

Table 5.8: Values of the necessity and sufficiency indexes at the end of the trial. All
markers are classified correctly as “self” or “other.”

Marker max
m

(Nm
i (t)) Si(t) Threshold α Classification Actual

M0 0.941 0.905 0.75 “self” “self”

M1 1.000 0.925 0.75 “self” “self”

M2 1.000 0.912 0.75 “self” “self”

M3 1.000 0.995 0.75 “self” “self”

M4 1.000 0.988 0.75 “self” “self”

M5 1.000 0.994 0.75 “self” “self”

M6 0.066 0.102 0.75 “other” “other”

M7 0.094 0.100 0.75 “other” “other”

M8 0.158 0.110 0.75 “other” “other”

M9 0.151 0.107 0.75 “other” “other”

M10 0.189 0.119 0.75 “other” “other”

M11 0.226 0.124 0.75 “other” “other”
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Figure 5.35: The figure shows the sufficiency indexes for each of the six body markers
of the first robot (left robot in Figure 5.8.3). As expected these values are close to 1, and
thus, above the threshold α = 0.75. The same is true for the necessity indexes as shown in
Figure 5.37. Thus, all markers of the first robot are classified as “self.”
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Figure 5.36: The figure shows the sufficiency indexes for each of the six body markers of
the second robot (right robot in Figure 5.8.3). As expected these values are close to 0, and
thus, below the threshold α = 0.75. The same is true for the necessity indexes as shown in
Figure 5.38. Thus, the markers of the second robot are classified as “other.”
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Figure 5.37: The necessity index, Nm
i (t), for each of the six body markers of the first

robot. Each figure shows 7 lines which correspond to one of the 7 possible types of motor
commands: 001, . . . , 111. To be considered for classification as “self” each marker must
have a necessity index Nm

i (t) > 0.75 for at least one motor command, m, at the end of
the trial. This is true for all body markers shown in this figure. Thus, they are correctly
classified as “self” in this case.
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Figure 5.38: The necessity index, Nm
i (t), for each of the six body markers of the second

robot. Each figure shows 7 lines which correspond to one of the 7 possible types of motor
commands: 001, . . . , 111. To be considered for classification as “self” each marker must
have a necessity index Nm

i (t) > 0.75 for at least one motor command, m, at the end of the
trial. This is not true for the body markers of the second robot shown in this figure. Thus,
they are correctly classified as “other” in this case.
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5.9.4 Experiments with Two Robots: Mimicking Movements

This test condition is the same as the one described in Section 5.8.4. The mean efferent-

afferent delay for this experiment was also set to 1.035 seconds. Note that this value

is different from the wrong value (1.36363 seconds) estimated for this degenerate case in

Section 5.8.4.

Table 5.9 shows the values for the necessity and sufficiency indexes at the end of the

45 minute interval. As expected, the sufficiency indexes for all body markers of the first

robot are close to 1 (see Figure 5.39). Similarly, the necessity indexes are close to 1 for at

least one motor command (see Figure 5.41). For the body markers of the second robot the

situation is just the opposite. Figure 5.40 shows their sufficiency indexes calculated over

time. Figure 5.42 shows their sufficiency indexes calculated for each of the seven possible

motor commands.

Somewhat surprisingly, the mimicking test condition turned out to be the easiest one

to classify. Because the second robot always start to move a fixed interval of time after the

first robot, almost no temporally contingent movements are detected for its body markers.

Thus, both the necessity and sufficiency indexes for most markers of the second robot are

equal to zero. Marker 8 is an exception because it is the counterpart to marker 2 which has

the noisiest position detection (see Figure 5.9).

Table 5.9: Values of the necessity and sufficiency indexes at the end of the trial. All
markers are classified correctly as “self” or “other” in this case.

Marker max
m

(Nm
i (t)) Si(t) Threshold α Classification Actual

M0 0.941 0.905 0.75 “self” “self”

M1 1.000 0.925 0.75 “self” “self”

M2 1.000 0.918 0.75 “self” “self”

M3 1.000 0.995 0.75 “self” “self”

M4 1.000 0.988 0.75 “self” “self”

M5 1.000 0.994 0.75 “self” “self”

M6 0.000 0.000 0.75 “other” “other”

M7 0.022 0.007 0.75 “other” “other”

M8 0.059 0.011 0.75 “other” “other”

M9 0.000 0.000 0.75 “other” “other”

M10 0.000 0.000 0.75 “other” “other”

M11 0.000 0.000 0.75 “other” “other”

140



 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45

Su
ffi

cie
nc

y 
In

de
x

Time (in minutes)

M0
M1
M2
M3
M4
M5

Figure 5.39: The figure shows the sufficiency indexes calculated over time for the six body
markers of the first robot in the mimicking dataset. As expected these values are close to
1, and thus, above the threshold α = 0.75. The same is true for the necessity indexes as
shown in Figure 5.41. Thus, all markers of the first robot are classified as “self.”
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Figure 5.40: The figure shows the sufficiency indexes calculated over time for the six body
markers of the second robot in the mimicking dataset. As expected these values are close
to 0, and thus, below the threshold α = 0.75. The same is true for the necessity indexes as
shown in Figure 5.42. Thus, all markers of the first robot are classified as “other.”
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Figure 5.41: The necessity index, Nm
i (t), for each of the six body markers. Each fig-

ure shows 7 lines which correspond to one of the 7 possible types of motor commands:
001, . . . , 111. To be considered for classification as “self” each marker must have a necessity
index Nm

i (t) > 0.75 for at least one motor command, m, at the end of the trial. This is
true for all body markers shown in this figure. Thus, they are correctly classified as “self.”
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Figure 5.42: The necessity index, Nm
i (t), for each of the six body markers. Each fig-

ure shows 7 lines which correspond to one of the 7 possible types of motor commands:
001, . . . , 111. To be considered for classification as “self” each marker must have a necessity
index Nm

i (t) > 0.75 for at least one motor command, m, at the end of the trial. This is not
true for the body markers of the second robot shown in this figure. Thus, they are correctly
classified as “other” in this case.
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5.10 Self-Detection in a TV monitor

Figure 5.43: Frames from the TV sequence. The TV image shows in real time the
movements of the robot captured from a camera which is different from the robot’s camera.

This section describes and experiment which tests whether a robot can use its estimated

efferent-afferent delay and the methodology described in Section 5.9 to detect that an image

shown in a TV monitor is an image of its own body. This experiment was inspired by similar

setups used by Watson (1994) in his self-detection experiments with infants.

The experiment described in this section adds a TV monitor to the existing setup as

shown in Figure 5.43. The TV image displays the movements of the robot in real time

as they are captured by a camera different from the robot’s camera. A more detailed

description of this experimental setup is given in Section 6.6 which uses the self-detection

results described here to achieve video-guided robot behaviors.

A new data set of 500 movement commands was gathered for this experiment. Similarly

to previous experiments, the robot was under the control of the motor babbling procedure.

The dataset was analyzed in the same way as described in the previous sections. The

only difference is that the position detection for the TV markers is slightly more noisy

than in previous datasets. Therefore, the raw marker position data was averaged over

three consecutive frames (the smallest number required for proper averaging). Also, marker

movements shorter than six frames in duration were ignored.

The results for the sufficiency and necessity indexes for the robot’s six body markers

are similar to those described in the previous sections and thus will not be discussed any

further. This section will only describe the results for the images of the six body markers

in the TV monitor which will be refereed to as TV markers (or TV0, TV1, . . . ,TV5).
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Figure 5.44: Frames from the TV sequence in which some body markers are not visible
in the TV image due to the limited size of the TV screen.

Figure 5.45 shows the sufficiency indices calculated for the six TV markers. Somewhat

surprisingly, the sufficiency indexes for half of the markers do not exceed the threshold value

of 0.75 even though these markers belong to the robot’s body and they are projected in

real time on the TV monitor. The reason for this, however, is simple and it has to do with

the size of the TV image. Unlike the real body markers which can be seen by the robot’s

camera for all body poses, the projections of the body markers in the TV image can only

be seen when the robot is in specific body poses. For some body poses the robot’s arm is

either too high or too low and thus the markers cannot be observed in the TV monitor.

Figure 5.44 shows several frames from the TV sequence to demonstrate this more clearly.

The actual visibility values for the six TV markers are as follows: 99.9% for TV0, 99.9%

for TV1, 86.6% for TV2, 72.1% for TV3, 68.5% for TV4, and 61.7% for TV5. In contrast,

the robot’s markers (M0-M5) are visible 99.9% of the time.

This result prompted a modification of the formulas for calculating the necessity and

sufficiency indexes. In addition to taking into account the specific motor command, the self-

detection algorithm must also take into account the visibility of the markers. In all previous

test cases all body markers were visible for all body configurations (subject to the occasional

transient sensory noise). Because of that, visibility was never considered even though it was

implicitly included in the detection of marker movements. For more complicated robots

(e.g., humanoids) the visibility of the markers should be taken into account as well. These

robots have many body poses for which they may not be able to see some of their body

parts (e.g., hand behind the back).

To address the visibility issue the following changes were made to the way the necessity
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and sufficiency indexes are calculated. For each marker a new variable Vi(t) is introduced,

which has a value of 1 if the i-th marker is visible at time t and 0 otherwise. The robot checks

the visibility of each marker in the time interval immediately following a motor command.

Let the k-th motor command be issued at time Tk and the (k+1)-st command be issued at

time Tk+1. Let T̂k ∈ [Tk, Tk+1) be the time at which the k-th motor command is no longer

considered contingent upon any visual movements. In other words, T̂k = Tk +µ+βµ, where

µ is the average efferent-afferent delay and βµ is the estimate for the standard deviation

calculated using Weber’s law (see Section 5.8). If the i-th marker was visible for less than

80% of the time in the interval
[

Tk, T̂k

)

(i.e., if

T̂k
∑

t=Tk

Vi(t)/(Tk+1 − Tk) ≤ 0.80) then the

movements of this marker (if any) are ignored for the time interval [Tk, Tk+1) between the

two motor commands. In other words, none of the three counters (Ti(t), Ci(t), and Mi(t))

associated with this marker and used to calculate its necessity and sufficiency indexes are

updated until the next motor command.

After the visibility correction, the sufficiency indexes for the images of the six TV

markers are all above the 0.75 threshold as shown in Figure 5.46. The only exception is the

yellow marker (TV4) which has a sufficiency index of 0.64 even after correcting for visibility.

The reason for this is the marker’s color, which appears very similar to the background wall

in the TV image. As a result, its position tracking is noisier than before.

Figure 5.47 shows the values of the necessity indexes for the six TV markers before the

visibility correction. Their values after the visibility correction are shown in Figure 5.48.

As in the previous sections, the necessity values do not exceed the threshold of 0.75 because

the robot must also correct for the type of motor command that is being issued. This is

necessary because some markers (e.g., those on the shoulder) are not affected by all motor

commands and remain static. They move only under specific motor commands (e.g., those

that move the shoulder joint). Figure 5.49 shows the necessity indexes calculated for each

type of motor command for each TV marker (after taking the visibility of the markers into

account).

As can be seen from Figure 5.46 and Figure 5.49 five out of six TV markers are correctly

classified as self because at the end of the trial they all have a sufficiency index greater than
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0.75 and a necessity index greater than 0.75 for at least one motor command. The only

marker that was not classified as self was the yellow marker for reasons explained above.

The results of this section offer at least one insight that can be used in future studies

of self-detection with both animals and humans: visibility of features must be taken into

account when calculating the probabilities of necessity and sufficiency. Previous studies

with infants (e.g., Watson (1994); Bahrick and Watson (1985)) have tacitly assumed that

the required features are visible at all times.

The results of this section demonstrate, to the best of my knowledge, the first-ever

experiment of self-detection by a robot in a TV monitor. Section 6.6 builds upon the

results from this section and shows how they can be used to achieve video-guided robot

behaviors (another first).
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Figure 5.45: The sufficiency indexes calculated over time for the six TV markers. These
results are calculated before taking the visibility of the markers into account.
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Figure 5.46: The sufficiency indexes calculated over time for the six TV markers. These
results are calculated after taking the visibility of the markers into account.
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Figure 5.47: The necessity indexes calculated over time for the six TV markers. These
results are calculated before taking the visibility of the markers into account.
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Figure 5.48: The necessity indexes calculated over time for the six TV markers. These
results are calculated after taking the visibility of the markers into account.
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(c) marker TV2
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Figure 5.49: Values of the necessity index, Nm
i (t), for each of the six TV markers. Each

figure shows 7 lines which correspond to one of the 7 possible types of motor commands:
001, . . . , 111. To be considered for classification as “self” each marker must have at the end
of the trial a necessity index, Nm

i (t) > 0.75 for at least one motor command, m. These
graphs are calculated after taking the visibility of the TV markers into account.
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5.11 Chapter Summary

This chapter described a methodology for autonomous self-detection by a robot. The

methodology is based on the detection of the temporal contingency between motor com-

mands (efferent signals) and visual movements (afferent signals) to estimate the efferent-

afferent delay of the robot. It was shown how the robot can estimate its own efferent-afferent

delay from self-observation data that can be gathered while the robot performs motor bab-

bling, i.e., random joint movements similar to the primary circular reactions described by

Piaget. It was shown that the self-detection algorithm performs well for the experimental

conditions described in this chapter.

This chapter also introduced a method for feature-level self-detection based on the ideas

described by Watson (1994). The method maintains a probabilistic estimate across all fea-

tures as to whether or not they belong to the robot’s body. The probabilities are estimated

based on probabilistic estimates of necessity and sufficiency. The method was successfully

used by the robot to detect its self-image in a TV monitor.

The results of this section show that Watson’s ideas are suitable for application on

robots. However, there are some implementation details which Watson did not foresee (or

maybe they were not applicable to his experimental setups with infants). For example,

the size of the TV image imposes a restriction on which body markers can be seen and

for which body poses. Without correcting for visibility the values of the necessity and

sufficiency indexes can exhibit at most medium levels of contingency. Another factor that

is not mentioned by Watson is that the self-detection algorithm must take into account

the types of motor commands that are issued as not all body markers are moved by a

given motor command. Without this correction the necessity indexes cannot reach the

near perfect values (greater than 0.75 in the robot experiments) required for successful self-

detection. Both of these modifications were implemented and tested successfully on the

robot.

The experimental results described in this chapter show that a robot can successfully

distinguish between its own body and the external environment. These results directly

support the first research question stated in Section 1.2. The robot was able to correctly
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classify different visual stimuli as either “self” or “other.”

The next chapter builds upon the self-detection work presented here and uses the self-

detection results to construct a sensorimotor model of the robot’s body. This model includes

only the sensations (color markers) that were classified as “self.”
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CHAPTER VI

EXTENDABLE ROBOT BODY SCHEMA

6.1 Introduction

The sense of body is probably one of the most important senses and yet it is one of the least

well studied. It is a complex sense, which combines information coming from proprioceptory,

somatosensory, and visual sensors to build a model of the body called the body schema. It

has been shown that the brain keeps and constantly updates such a model in order to

register the location of sensations on the body and to control body movements (Head and

Holmes, 1911; Berlucchi and Aglioti, 1997; Berthoz, 2000; Graziano et al., 2002).

Recent studies in neuroscience have shown that this model of the body is not static but

can be extended by noncorporeal objects attached to the body such as clothes, ornaments,

and tools (Aglioti et al., 1997; Iriki et al., 1996, 2001). Thus, it may be the case that as far as

the brain is concerned the boundary of the body does not have to coincide with anatomical

boundaries (Iriki et al., 1996, 2001; Tiemersma, 1989; Ramachandran and Blakeslee, 1998).

This chapter describes a computational model for a robot body schema which has prop-

erties similar to its biological analog. The robot learns its body schema representation

by combining visual and proprioceptive information. The resulting representation can be

scaled, rotated, and translated. The morphing properties of the body schema be used to

accommodate attached tools. They can also be used to achieve video-guided behaviors as

described later in this chapter.

6.2 Related Work

6.2.1 Related Work in Neuroscience

The notion of body schema was first suggested by Head and Holmes (1911) who studied

the perceptual mechanisms that humans use to perceive their own bodies. They define the
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body schema1 as a postural model of the body and a model of the surface of the body. It

is a perceptual model of the body formed by combining information from proprioceptory,

somatosensory, and visual sensors. They suggested that the brain uses such a model in

order to register the location of sensations on the body and to control body movements.

Indirect evidence supporting the existence of a body schema comes from numerous

clinical patients who experience disorders in perceiving parts of their bodies often lacking

sensations or feeling sensations in the wrong place (Frederiks, 1969; Head and Holmes,

1911). One such phenomenon called phantom limb is often reported by amputees who feel

sensations and even pain as if it was coming from their amputated limb (Melzack, 1992;

Ramachandran and Rogers-Ramachandran, 1996).

Direct evidence for the existence of a body schema is provided by recent studies which

have used brain imaging techniques to identify the specialized regions of the primate (and

human) brain responsible for encoding it (Berlucchi and Aglioti, 1997; Iriki et al., 1996,

2001; Graziano et al., 2000). Other studies have shown that body movements are encoded

in terms of the body schema (Berthoz, 2000; Graziano et al., 2002). This seems to be the

case even for reflex behaviors (Berthoz, 2000).

Perhaps the most interesting property of the body schema is that it is not static but

can be modified and extended dynamically in short periods of time. Such extensions can

be triggered by the use of non-corporeal objects such as clothes, ornaments, and tools. For

example, Head and Holmes (1911, p. 188) suggest that the feather on a woman’s hat affects

her ability to move and localize in the environment. Thus, the body schema is not tied to

anatomical boundaries. Instead the actual boundaries depend on the intended use of the

body parts and the external objects attached to the body (Tiemersma, 1989).

The inclusion of inanimate objects into the body schema is a temporary phenomenon

which is contingent upon the actual use of the objects. For example, when people drive a

car they get the feeling that the boundary of the car is part of their own body (Graziano

et al., 2000; Schultz, 2001). However, when they get out of the car their body schema goes

1The exact term that they use is “postural scheme”. The term body schema was first used by Pick
(1922) and was later made popular by Schilder (1923) who published a monograph in German entitled “Das
Körperschema”.
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back to normal. In some cases, however, it is possible that a more permanent modification

of the body schema can be established by objects such as wedding rings that are worn for

extended periods of time (Aglioti et al., 1997).

It has been suggested that the pliability of the body schema plays a role in the acquisition

of tool behaviors (Head and Holmes, 1911; Paillard, 1993). Recent studies conducted with

primates seem to support this hypothesis (Iriki et al., 1996; Berlucchi and Aglioti, 1997;

Berti and Frassinetti, 2000). Iriki et al. (1996) trained a macaque monkey to retrieve

distant objects using a rake and recorded the brain activity of the monkey before, during,

and after tool use. They discovered a large number of bimodal neurons (sensitive to visual

and somatosensory stimuli) that appear to code the schema of the hand (Iriki et al., 1996).

Before tool use the receptive fields (RF) of these neurons were centered around the hand.

During tool use, however, the somatosensory RF stayed the same but the visual RF was

altered to include the entire length of the rake or to cover the expanded accessible space

(Iriki et al., 1996).

This modification of the visual receptive field is limited to the time of tool usage and is

conditional upon the intention to use the tool. When the monkey stopped using the tool, or

even continued to hold the tool without using it, the visual RF contracted back to normal

(Iriki et al., 1996). In a follow-up study the monkey was prevented from directly observing

its actions and instead was given feedback only through a camera image projected on a

video monitor. In this case the visual RF of the bimodal neurons was projected onto the

video screen (Iriki et al., 2001).

These studies suggest that the encoding of the body schema in the brain is extremely

pliable and tools can easily be incorporated into it. Studies conducted with humans have

reached similar conclusions (Berti and Frassinetti, 2000; Farné and Ládavas, 2000). In

addition to tools, the body schema can also be modified by prosthetic limbs in amputee

patients. These patients can incorporate the prosthetic limb into their body schema in such

a way that they can perform the same or similar tasks as if with their real limb (Tsukamoto,

2000).

155



Unfortunately, little is known about the neural organization of the body schema in pri-

mate brains. One recent study, however, has made some quite striking and unexpected

discoveries which seem to reject previous theories of the organization of the map of the

body and how it is used to control body movements. Graziano et al. (2002) microstim-

ulated the primary motor and premotor cortex of monkeys at behaviorally relevant time

scales (500 ms). Previous studies have already established that stimulation in these areas

produces muscle twitches but the stimulation times have always been quite short. The

longer stimulation times allowed the true purpose of these areas to be revealed:

“Stimulation on a behaviorally relevant time scale evoked coordinated, complex
postures that involved many joints. For example, stimulation of one site caused
the mouth to open and also caused the hand to shape into a grip posture and move
to the mouth. Stimulation of this site always drove the joints toward this final
posture, regardless of the direction of movement required to reach the posture.
Stimulation of other cortical sites evoked different postures.” (Graziano et al.,
2002)

Similar results were obtained for facial expressions as well: stimulation of a particular

site always produced the same final facial expression regardless of the initial facial expres-

sion. Similar results were also obtained even when one of the monkeys was anesthetized

but the accuracy of the final postures in this case was less precise. Another interesting

observation was that obstacles were completely ignored during arm movements induced by

microstimulation. If there was an obstacle along the trajectory from the starting posture

to the final posture the hand will try to go straight through as if the obstacle did not exist.

These results have led Graziano et al. (2002) to conclude that these sites in the primate

brain form a coherent map of the workspace around the body. What is even more important,

however, is the realization that this map plays an active part in the formation and execution

of all kinds of movements. Achieving complex postures involving multiple joints may not

be a highly complex task but a consequence of the encoding of this map. Interpolation

between different building blocks of this map (i.e., final postures) can be used to produce

highly coordinated movements across multiple joints.

Section 6.3 describes a computational model of a Self-Organizing Body-Schema (SO-

BoS) developed by Morasso and Sanguineti (1995) which is adopted and extended in this

chapter. This model displays similar properties to the observations made by Graziano et al.
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(2002). The equivalent of final postures in Graziano et al.’s paper are called body icons in

the model of Morasso and Sanguineti (1995). When a body icon is stimulated it acts as an

attractor causing the joint configuration of the robot to converge on the one described by

the body icon. Extension of SO-BoS model, motivated by the findings of (Iriki et al., 1996),

will be introduced in Section 6.5 to model the extensibility of the Robot Body Schema.

6.2.2 Related Work in Robotics

The robotics work on body schemas is still in its infancy as only a few papers have attempted

to tackle this subject. Yoshikawa et al. (2002) formulated a fully connected neural network

model that identified the common firing patterns between tactile, visual, and propriocep-

tive sensors. Their model was capable of making the right associations between sensory

modalities but lacked extensibility properties.

Nabeshima, Lungarella, and Kuniyoshi (2005) describe a method for changing the prop-

erties of the robot’s controller (which is based on inverse kinematics) to accommodate

attached tools. The extension is triggered by the coincidence in the firing of tactile sensors

(at the hand which is grasping the tool) and the diminishing visual distance between the

free end of the tool and some visual landmark. Their extension method requires direct

physical contact with the object.

This chapter builds upon our previous work (Stoytchev, 2003) which introduced a com-

putational model for an extendable robot body schema (RBS). The model uses visual and

proprioceptive information to build a representation of the robot’s body. The visual com-

ponents of this representation are allowed to extend beyond the boundaries of the robot’s

body. The proprioceptive representation, however, remains fixed at all times and thus the

robot can perform visually-guided tool movements using its extended body.

In our previous study the extension of the RBS was triggered by tactile sensations

generated by objects that are attached to the robot’s body, e.g., tools. The novel extension

mechanism described here is triggered by the temporal contingency between the actions of

the robot and the observed movements of an attached object or the self-movements in a

video image (see Section 6.6), i.e., direct physical contact is no longer required.
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6.3 The Self-Organizing Body Schema (SO-BoS) Model

The computational model chosen for the implementation of the robot body schema is based

on the Self-Organizing Body-Schema (SO-BoS) model introduced in (Morasso and San-

guineti, 1995). This section provides a brief summary of the SO-BoS model and interprets

it in terms of existing robotics research. The sections that follow modify and extend the

SO-BoS model such that it can have extensibility properties as well.

The SO-BoS model is introduced with the help of the following notation. Let the robot

have m joints which are controlled with a kinematic configuration vector θ = {q1, q2, . . . , qm},

where each qi represents a target joint angle. Furthermore, let there be a set of n distinct

visual features, F ={f1, f2, . . ., fn}, on the surface of the robot’s body that can be uniquely

identified by the robot’s vision system. Let the position of feature fi in camera-centric co-

ordinates be denoted with vi and let the set of all such vectors for all body markers be

denoted with V = {v1, v2, . . . , vn}.

The configuration space, C, of the robot is a subset of the Cartesian product of the joint

angles:
C ⊆ q1 × q2 × . . .× qm ⊆ <m

The sensor space S of all sensory stimuli coming from the robot’s body is a subset of

the Cartesian product of all perceptual vectors:

S ⊆ v1 × v2 × . . .× vn ⊆ <n

The main idea behind the RBS representation is to link the configuration space and the

sensor space of the robot into one CS-space ( CS-space = C × S). This space can be used

to identify the current robot configuration as well as to plan robot movements. Previous

approaches described in the robotics literature have noted the usefulness of this space for

planning and specifying robot movements (Hervé et al., 1991; Sharma et al., 1992; Sharma

and Sutanto, 1996). However, they have used algebraic techniques to express this space

as an (m+n)-dimensional manifold which is hard to use even for simple robots (Sharma

and Sutanto, 1996). The current approach uses non-parametric statistical techniques to

approximate the CS-space as described below.

The robot body schema model is built around the concept of a body icon. A body icon

158



is a tuple (θ̃i, Ṽi) representing the kinematic and sensory components of a specific joint

configuration (or pose) of the robot (variables with ˜ represent fixed estimates). A large

number of empirically learned body icons, {(θ̃i, Ṽi), i = 1, . . . , I}, is used to represent the

robot’s body schema (Table 6.1). It is believed that the brain uses a similar representation

encoded as a cortical map (Morasso and Sanguineti, 1995; Graziano et al., 2002).

Table 6.1: Body icons table. Each row of the table represents one body icon which consists
of the fixed estimates for the kinematic and sensory vectors which are associated with a
specific body pose.

# Kinematic Sensory

components components

1 θ̃1 = {q̃1
1, q̃

1
2, . . . , q̃

1
m} Ṽ1 = {ṽ1

1, ṽ
1
2, . . . , ṽ

1
n}

2 θ̃2 = {q̃2
1, q̃

2
2, . . . , q̃

2
m} Ṽ2 = {ṽ2

1, ṽ
2
2, . . . , ṽ

2
n}

. . . . . . . . .

I θ̃I = {q̃I1 , q̃I2 , . . . , q̃Im} ṼI = {ṽI1 , ṽI2 , . . . , ṽIn}

As an example, consider the planar robot with two rigid limbs and two rotational joints

shown in Figure 6.1.a. The limbs have lengths l1 = 0.5 and l2 = 0.35. Both joints can

rotate only 180 degrees, i.e., 0 ≤ q1, q2 ≤ π. The robot has two body markers: M1, M2.

Marker M1 (red marker) is placed on the elbow of the robot. Marker M2 (green marker) is

placed at the free end of the second limb. The positions of the two body markers are given

by the vectors v1, v2. Both v1 and v2 lie in a two-dimensional space defined by the camera

image. The sensory vector is given by V = {v1, v2} (see Figure 6.1.b). The kinematic or

joint angle vector is given by θ = {q1, q2} (see Figure 6.1.c).

Table 6.2 shows the sensory and kinematic components of three body icons which are

associated with three sample body poses of the two-joint robot.

As the robot performs different movements, the positions of these markers in camera

coordinates keep changing. Over time, the robot can learn which marker positions corre-

spond to which joint angles, i.e., it can learn new body icons. As the number of body icons

is increased, the body icons table begins to approximate the working envelope of the robot.

Figure 6.2.a shows the ṽi
1 elements of the observed sensory vectors Ṽi for 400 body icons
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Figure 6.1: (a) The two-joint robot used in the example. The robot has two body markers
M1 and M2 and two joint angles q1 and q2. (b) The coordinates of the two body body
markers in visual space are given by the two vectors v1 and v2. (c) The motor vector, θ, for
the robot configuration shown in a).

Table 6.2: Sample body icons table for the robot shown in Figure 6.1.a. Each row of the
table represents the kinematic and visual vectors of a specific robot pose. The visual vectors
are expressed in a coordinate system centered at the first rotational joint of the robot.

Body Kinematic Sensory

Pose components θ̃i components Ṽi

q̃i
1 q̃i

2 ṽi
1(x, y) ṽi

2(x, y)

q

q

0◦ 90◦ 0.50, 0.00 0.50, 0.35

��
qq

45◦ 135◦ 0.35, 0.35 0.00, 0.35

��
q

q

30◦ 60◦ 0.43, 0.25 0.43, 0.60

(i.e., i = 1 . . . I). These points represent a subset of all possible positions of the red (elbow)

marker. Similarly, Figure 6.2.b shows the positions of the ṽi
2 elements of 400 visual vectors

Ṽi. These points represent a subset of all possible positions of the green (wrist) marker. The

joint angle vectors are points lying inside a 2D square given by 0 ≤ q1, q2 ≤ π (Figure 6.3).
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Figure 6.2: The sensory vectors ṽi
1 and ṽi

2 for 400 body poses of the robot shown in
Figure 6.1. (a) ṽi

1 - all observed positions of the red body marker, M1; (b) ṽi
2 - all observed

positions of the green body marker, M2.
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Figure 6.3: The figure shows the 400 joint vectors that correspond to the sensory vectors
shown in Figure 6.2. Each point represents one of the θ̃i = {q̃i

1, q̃
i
2} joint vectors.

161



The second example used to demonstrate the body schema representation uses the CRS+

robot manipulator described in Section 4.2. To learn its body representation the robot

performs the motor babbling procedure described in Section 5.6. Figure 6.4 shows some of

the body poses picked by the motor babbling procedure. As in the previous experiments,

the robot has six color markers placed on its body. The positions of these markers are

tracked with a computer vision code based on color histogram matching (see Section 5.5).

Figure 6.5 shows the observed positions of all body markers in 500 body poses. As can

be seen from the six plots, there is quite a bit of variation in the positions of the markers.

For example, markers 0 and 1 are attached to the shoulder of the robot and thus their

observed positions form an arc in camera coordinates. On the other hand, the light green

marker (M5) which is located on the wrist can be observed in a large area of the camera

image (see Figure 6.5.f).

As the number of body icons increases, the density with which their sensory components

cover the working envelope of the robot also increases. Because the body representation is

based on approximation between different body poses, however, the density does not have

to be too high. Empirically it was established that 500 body icons are sufficient for the

CRS robot. Nevertheless, the number of body icons required for smooth robot movements

grows exponentially with the number of degrees of freedom. To overcome this limitation

Section 6.4.4 considers the problem of learning nested representations.

Figure 6.4: Several of the robot poses selected by the motor babbling procedure.
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Figure 6.5: The six plots show the sensory components of 500 body icons learned during
a single run of the motor babbling procedure. Each plot shows all 500 observed positions
for a single body marker. The x and y coordinates of each point in the plots represent the
observed centroid of the largest blob with a given color. The size of the camera image is
640x480.
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6.3.1 Properties of the Representation

The representation of the robot body schema in terms of body icons has several properties

which are described below.

The main building blocks of the SO-BoS model are processing elements (PEs) which

have an activation function Ui and a preferred body icon (θ̃i, Ṽi). The activation function

of each PE is determined by the normalized gaussian or softmax function described by

Morasso and Sanguineti (1995),

Ui(θ) =
G(‖θ − θ̃i‖)

∑

j G(‖θ − θ̃j‖)
(6.1)

where G is a Gaussian with variance σ2 and zero mean, θ is the current joint vector, and

θ̃i is the stored joint vector of the i−th body icon. If the variance of G is small then a body

icon will be activated only if its joint vector θ̃i is close to the current joint vector θ. If σ2

is large then more body icons will be activated for any specific query vector.

The learning algorithm described in (Morasso and Sanguineti, 1995) guarantees that

each processing element has a neighborhood of other processing elements whose body icons

are similar to its own. This similarity is both in terms of their θ and V vectors as well as

their activation levels for a fixed joint vector (Morasso and Sanguineti, 1995). This locality

property can be exploited to implement a gradient ascent strategy for moving the robot

from one configuration to another as described in the next sub-section.

The mapping from joint vectors to sensory vectors (or forward kinematics) is explicit

for joint vectors θ which are the same as one of the θ̃i prototypes of the learned body

icons, i.e., V is equal to Ṽi (assuming zero sensory noise). For an arbitrary joint vector θ

(θ 6= θ̃i, i = 1, . . . , I), however, V is unknown. Nevertheless, it is possible to approximate

the sensory vector with the following formula (Morasso and Sanguineti, 1995),

V approx(θ) ≈
∑

i

ṼiUi(θ) (6.2)

where Ui is the activation value of the i−th body icon due to proprioceptive information.

The activation value is determined by the normalized Gaussian function.
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Formula 6.2 can be interpreted as a two step approximation algorithm using look up and

interpolation, similar to the memory-based learning approach (Atkeson and Schaal, 1995;

Atkeson et al., 1997). The first step looks up the body icons that have joint vectors θ̃i

similar to the query joint vector θ. The second step sums the sensory vectors Ṽi of these

body icons (scaled by their activation value Ui) to approximate V (θ).

For individual components vk of the sensory vector V , Formula 6.2 can be rewritten as:

vapprox
k (θ) ≈

∑

i

ṽi
kUi(θ) (6.3)

A flow chart diagram of Formula 6.3 is shown in Figure 6.6.

The approximation errors of Formula 6.3 can be estimated by comparing the approxi-

mated sensory vectors with their real values. Figure 6.7 shows the magnitude and direction

of these errors as arrows. The base of each arrow represents the true value of the sensory

vector calculated using forward kinematics. The tip of the arrow represents the approxi-

mated value using Formula 6.3. The gray points represent the ṽ2 sensory components of

the body icons (same as in Figure 6.2.b). As Figure 6.7 shows, the approximation errors

are very small except at the end of the reachability space. This is due to the fact that the

number of body icons that cover this area is twice smaller than that for other locations (i.e.,

there are no body icons that cover the unreachable space).
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Figure 6.6: Flow chart diagram for approximating the sensory vector vk given a joint
vector θ using Formula 6.3. Notation: all θ̃ and ṽ variables represent the stored kinematic
and sensory components of the body icons; NG is the normalized Gaussian function (given
by Formula 6.1) which is used to compute the activation value Ui(θ) of the i−th body icon;
∑

and
∏

stand for summation and multiplication respectively.
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Figure 6.7: The figure shows the magnitude and direction of the approximation errors
for v2 sensor vectors obtained using Formula 6.3. The gray points represent the ṽ2 sensory
components of the body icons (same as in Figure 6.2.b). The errors are represented as
arrows. The base of each arrow indicates the true position of the sensory vector v2 for
a given query joint vector θ (calculated using forward kinematics). The tip of the arrow
represents the approximated position calculated using Formula 6.3.
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6.3.2 Achieving Goal Directed Movements

The representation of the robot body schema in terms of body icons can be used for control

of goal-directed movements. Robot movements can be specified in Cartesian space and

carried out in joint space without the need for inverse kinematics because the mapping

between the two spaces is implicit in the way body icons are constructed.

One possible control strategy for moving the robot from one configuration to another is

to use gradient ascent (or gradient descent) in a potential field (Morasso and Sanguineti,

1995). The gradient ascent is carried out in a potential field ξ in which the location of the

target has a maximum value and all other points are assigned values in proportion to their

distance from the target. The potential field is imposed on the θ̃i components of all body

icons but is computed based on the ṽi components and their distance to the goal in sensor

space. The calculation of the potential field is similar to the motor schema approach to

robot control (Arkin, 1998; Cameron et al., 1993). In this case, however, the potential field

is discretized across all body icons. Each body icon is assigned a value ξ̃i which is a sample

of the magnitude of the potential field. The global potential field can be approximated

using the following equation:

ξ(θ) ≈
∑

i

ξ̃iUi(θ) (6.4)

The desired direction of movement for any point in the potential field is given by the

corresponding gradient vector field, g, defined as

g(θ) = −∇ξ(θ) (6.5)

where ∇ is the gradient operator. Thus, a gradient ascent strategy in the potential field

can be performed by integrating the following equation:

θ̇ = γ∇ξ(θ) (6.6)

where γ determines the step size.
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Taking advantage of the body icons representation and the form of the softmax activation

function, the gradient ascent strategy can be achieved using the following formula derived

by Morasso and Sanguineti (1995):

θ̇ = γ
∑

i

(θ̃i − θ)ξ̃iUi(θ) (6.7)

If more than one constraint is present the potential field can be represented as a com-

bination of several individual fields scaled by appropriate coefficients. In other words,

ξ(θ) = k1ξ1(θ) + k2ξ2(θ) + . . . (6.8)

where ki are scalars that determine the relative weights of each field.

As an example, consider the task of moving the two-joint robot shown in Figure 6.8

such that the tip of its second limb is positioned over the goal region. In this example, the

potential field (ξgoal) is specified as an inverse function of the squared Euclidean distance

between ṽ2 and vgoal for all body icons, i.e.,

ξgoal(θ) =
1

‖vgoal − v2(θ)‖2
(6.9)

The magnitude of each point in the potential field is computed in S-space, but using the

body icon representation the field is imposed on C-space. Figure 6.9 shows this process.

The final potential field for the configuration in Figure 6.9 is shown in Figure 6.10.a. Its

corresponding gradient vector field computed using formula 6.7 is shown in Figure 6.10.b.

q 1

q 2

2l

1l

Robot

Goal

Camera

M

M

1

2

Figure 6.8: The two-joint robot used in the example. The goal is to move the tip of the
second limb (body marker M2) over the goal region.
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Figure 6.9: Calculation of the potential field. (a) For all body icons calculate the distance,
d, between vgoal and ṽ2. (b) To each body icon assign a scalar value ξ̃i which is inversely
proportional to the squared distance d. In C-space this point is indexed by θ̃i. The final
potential field is shown on Figure 6.10.a.
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Figure 6.10: (a) The resulting potential field for the goal configuration shown on Figure
6.9.a. The surface shows a log plot the approximated field; the dots show the true positions
of the discrete samples ξ̃i. (b) The corresponding gradient vector field is approximated
with Formula 6.7 (vector magnitudes are not to scale; the arrows have been rescaled to
have uniform length in order to show the direction of the entire vector field).
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6.4 Identifying Body Frames

Certain tasks can be expressed more naturally in relative frames of reference. For example,

a grasping task might be easier to perform if it is expressed in a coordinate frame relative

to the wrist than relative to the shoulder. Furthermore, some tasks such as handwriting

are performed more easily if the joints of the arm are constrained (e.g., by putting one’s

arm on the surface of the desk). There is evidence that biological brains maintain and use

multiple body frames in order to coordinate body movements (Newcombe and Huttenlocher,

2000; Gallistel, 1999). Gallistel (1999), for example, suggests that intelligent behavior is

about learning to coordinate these frames. It is still a mystery, however, how behaviors are

expressed and coordinated using multiple body frames.

This section builds upon the self-detection results described in Chapter 5 and shows how

coordinate frames that are attached to different body parts of the robot can be identified

and constructed automatically. The visual features that were classified as “self” are now

clustered into groups based on their co-movement patterns. These clusters of body markers

correspond to the rigid bodies that form the body of the robot. Each cluster is used to

construct a coordinate frame (also called body frame). These body frames can help simplify

the specification of robot behaviors by expressing the positions of body markers in body

frames that are more natural for the given task.

6.4.1 Problem Statement

For the sake of clarity the problem of autonomously identifying body frames by a robot

will be stated explicitly using the following notation. Let there be a set of visual features

Fself = {f1, f2, . . . , fm} that the robot can detect and track over time. These features have

been autonomously identified by the robot as features belonging to the robot’s body (using

the method described in Chapter 5 or some other means). The body of the robot consists of

a set of rigid bodies B = {b1, b2, . . . , bn+1} connected by a set of joints J = {j1, j2, . . . , jn}.

The robot can detect the positions of visual features and detect whether or not they

are moving at any given point in time. In other words, the robot has a set of perceptual

functions P = {p1, p2, . . . , pm}, where pi(fi, t) → {0, 1}. That is to say, the function pi
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returns 1 if feature fi is moving at time t, and 0 otherwise.

The goal of the robot is to cluster the set of features into several subsets, F1, F2, . . ., Fk

such that Fself = F1∪F2∪ . . .∪Fk. Furthermore, the clustering must be such that features

which belong to the same subset Fj must all lie on the same rigid body. In other words,

the features must be clustered according to the rigid bodies on which they lie.

6.4.2 Methodology

The methodology for identifying body frames is similar to the methodology for self-detection.

In this case, however, the goal is to detect the temporal coincidences (i.e., events which oc-

cur at the same time) in the movements of different visual features and not the temporal

contingency between motor commands and visual movements. Figure 6.11 gives an example

with three visual features (red, green, and blue) and their movement patterns. Feature 1

(red) and feature 2 (green) start moving together within a small interval of time. This

movement coincidence is shown as the shaded region in Figure 6.11. Feature 3 (blue) can

also be observed to move but the start of its movement is not correlated with the start of

the movement of the other two features.
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Figure 6.11: The methodology for identifying body frames is based on detecting temporal
coincidences in the movements of different features. This figure shows an example with the
observed movement patterns of three visual features. Feature 1 (red) and feature 2 (green)
start to move within a short interval of time indicated by the shaded region. The start of
movement of the third feature (blue) is not correlated with the start of movement of the
other two features.
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If similar movement coincidences are observed multiple times it is reasonable to conclude

that feature 1 and feature 2 lie on the same rigid body because they always start to move

together. Furthermore, if the features are also frequently observed to stop moving together

(as it is the case in Figure 6.11) the evidence in favor of them lying on the same rigid body

would be even stronger.

For every pair of features, fi and fj , it is possible to keep a temporal coincidence (or

movement coincidence) counter, Ci,j , which indicates how many times the two features have

been observed to start moving together within a short time interval ∆t from each other.

In the special case when i = j, the counter Ci,i measures how many times feature fi was

observed to move. The movement coincidence counters can be organized in a 2D matrix as

shown in Table 6.3. The matrix is symmetric about the main diagonal because Ci,j = Cj,i.

Table 6.3: Sample movement coincidence matrix. Each entry, Ci,j , represents a counter
indicating how many times feature fi and feature fj have been observed to start moving
together within a ∆t time interval from each other. This matrix is symmetric.

f1 f2 f3 . . . fm

f1 C1,1 C1,2 C1,3 . . . C1,m

f2 C1,2 C2,2 C2,3 . . . C2,m

f3 C1,3 C2,3 C3,3 . . . C3,m

...
...

...
...

. . .
...

fm C1,m C2,m C3,m . . . Cm,m

Based on the values of these counters it is possible to calculate two probabilities, Pi,j and

Qi,j , that are similar to the necessity and sufficiency indexes used in the previous chapter.

These probabilities are given by the following formulas:

Pi,j =
Ci,j

Ci,i
Qi,j =

Ci,j

Cj,j

The two probabilities can be calculated from the movement coincidence matrix if the

elements in each row are divided by the main diagonal entry in that row. If this operation

is performed in place, the resulting matrix will have 1’s along the main diagonal, P ’s above

the main diagonal, and Q’s below the main diagonal as shown in Table 6.4.

Features fi and fj can be clustered together as lying on the same rigid body if both
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Table 6.4: This matrix is derived from the matrix shown in Table 6.3 after dividing each
entry by the value stored in the diagonal entry in the same row. The P and Q values are
described in the text. This matrix is no longer symmetric.

f1 f2 f3 . . . fm

f1 1.0 P1,2 P1,3 . . . P1,m

f2 Q1,2 1.0 P2,3 . . . P2,m

f3 Q1,3 Q2,3 1.0 . . . P3,m

...
...

...
...

. . .
...

fm Q1,m Q2,m Q3,m . . . 1.0

Pi,j > T and Qi,j > T , where T is a threshold value. The threshold value is not arbitrary

but is set automatically to 1− 1
N

, where N is the number of independent motor commands

(for the CRS robot N = 7).

The same calculations can be performed by focusing on the movement coincidences at

the end instead of the beginning of visual movements. In this case another matrix similar

to the one shown in Table 6.4 can be calculated. The results from the two different types

of coincidences can be combined to improve the final results.

The next subsection shows experimental results when this methodology was tested on

the robot. The experimental results are presented in the same form as in Table 6.4.

6.4.3 Experimental Results

The methodology described above was tested with the datasets described in Section 5.8.

The datasets were color processed in the same way as described in the previous chapter.

Because the timing coincidence calculations are more sensitive to sensory noise, however,

the positions of the color markers were averaged over three consecutive frames and marker

movements shorter than six frames (1/5-th of a second) were ignored. The body frames

that were identified are shown in Figure 6.12. The clustering results used to form these

frames are shown in Table 6.5 and Table 6.6 and are described below.

Table 6.5 shows results for the first dataset in which the robot is the only moving

object in the environment (see Section 5.8.1). The results are presented in the form shown

in Table 6.4. Based on these results three pairs of markers emerge as shown with the
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Figure 6.12: The figure shows three different body frames: shoulder frame (Xs,Ys) formed
by markers M0 and M1; arm frame (Xa, Ya) formed by markers M2 and M3; and wrist
frame (Xw, Yw) formed by markers M4 and M5. The three frames are constructed from the
robot’s body markers after the markers have been clustered based on their co-movement
patterns. Table 6.5 and Table 6.6 show the clustering results used to form these frames.

highlights: {M0, M1}, {M2, M3}, and {M4, M5}. For these pairs of markers both Pi,j and

Qi,j are greater than the threshold T , which was set to 0.857 (i.e., 1 − 1
7 , where 7 is the

number of different motor commands). The time interval ∆t was set to 0.5 seconds.

Similarly, Table 6.6 displays the results for the same dataset when movement coinci-

dences at the end of visual movements were considered. The same pairs of markers emerge

in this case as well: {M0, M1}, {M2, M3}, and {M4, M5}.

Similar results were obtained for all other datasets described in Section 5.8. For all five

datasets the algorithm clustered correctly the six body markers into three groups of two:

{M0, M1}, {M2, M3}, and {M4, M5}.

Based on these results three body frames can be formed by the three pairs of body

markers as shown in Figure 6.12. In 2D a coordinate frame can be specified with just two

different points. The first point serves as the origin of the frame. The X axis of the frame

is determined by the vector from the first point to the second point. The Y axis is given
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Table 6.5: The highlights show three pairs of markers grouped based on their start of
movement coincidences. They correspond to the rigid bodies of the robot’s shoulder, arm,
and wrist.

M0 M1 M2 M3 M4 M5

M0 1.000 0.996 0.996 0.996 0.996 0.996

M1 0.889 1.000 0.989 0.992 0.989 0.989

M2 0.518 0.576 1.000 0.911 0.911 0.911

M3 0.550 0.614 0.967 1.000 0.998 0.995

M4 0.468 0.520 0.823 0.849 1.000 0.992

M5 0.467 0.519 0.821 0.845 0.990 1.000

Table 6.6: The highlights show three pairs of markers grouped based on their end of
movement coincidences. They correspond to the rigid bodies of the robot’s shoulder, arm,
and wrist.

M0 M1 M2 M3 M4 M5

M0 1.000 0.996 0.991 0.996 0.996 0.996

M1 0.889 1.000 0.981 0.992 0.992 0.992

M2 0.516 0.571 1.000 0.913 0.913 0.915

M3 0.550 0.614 0.969 1.000 1.000 0.995

M4 0.468 0.522 0.825 0.851 1.000 0.992

M5 0.467 0.521 0.825 0.845 0.990 1.000

by a vector perpendicular to the X vector and oriented in the positive (counterclockwise)

direction. The next two subsections show how body frames can be used to learn nested

RBS representations and to encode robot behaviors.

It is interesting to point out that the method described here is capable of segmenting

the structure of rigid and articulated objects even if they don’t belong to the robot’s body.

For example, Table 6.7 provides results for the dataset with two robots with uncorrelated

movements described in Section 5.8.3. In this case six pairs of markers were identified.

They correspond to the rigid bodies of the first and the second robot. Similar results are

obtained when the end of movement coincidences are considered (see Table 6.8).

These results suggest a way to segment a visual scene into individual objects. In com-

puter vision it can be difficult to identify which visual features constitute an object. How-

ever, if an object is defined as a set of visual features that always start and stop moving

together then the method described above may be used for object segmentation, especially if

the robot is allowed to push and move the objects. Future work should test this hypothesis.
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Table 6.7: Six pairs of markers identified based on their start of movement coincidences
for two robots with uncorrelated movements (see Section 5.8.3). The six pairs of markers
correspond to the rigid bodies of the two robots.

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

M0 1.000 0.996 0.991 0.996 0.996 0.996 0.112 0.124 0.215 0.202 0.240 0.236

M1 0.889 1.000 0.985 0.992 0.989 0.989 0.092 0.103 0.207 0.211 0.249 0.249

M2 0.516 0.574 1.000 0.911 0.911 0.911 0.094 0.103 0.205 0.203 0.234 0.232

M3 0.550 0.614 0.967 1.000 0.998 0.995 0.090 0.097 0.206 0.209 0.239 0.237

M4 0.468 0.520 0.823 0.849 1.000 0.992 0.087 0.095 0.198 0.194 0.228 0.224

M5 0.467 0.519 0.821 0.845 0.990 1.000 0.089 0.095 0.195 0.193 0.227 0.223

M6 0.115 0.106 0.186 0.168 0.190 0.195 1.000 0.996 0.987 0.991 0.991 0.996

M7 0.116 0.108 0.183 0.163 0.187 0.187 0.896 1.000 0.980 0.980 0.988 0.984

M8 0.113 0.122 0.208 0.196 0.221 0.219 0.503 0.555 1.000 0.948 0.948 0.950

M9 0.109 0.127 0.211 0.204 0.222 0.222 0.519 0.569 0.972 1.000 1.000 0.998

M10 0.108 0.126 0.203 0.195 0.219 0.219 0.433 0.480 0.812 0.836 1.000 0.996

M11 0.105 0.124 0.198 0.191 0.212 0.212 0.429 0.471 0.803 0.823 0.983 1.000

Table 6.8: Six pairs of markers identified based on their end of movement coincidences
for two robots with uncorrelated movements (see Section 5.8.3). The six pairs of markers
correspond to the rigid bodies of the two robots.

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

M0 1.000 0.996 0.987 0.996 0.996 0.996 0.103 0.107 0.219 0.227 0.240 0.249

M1 0.889 1.000 0.977 0.992 0.992 0.992 0.088 0.096 0.188 0.192 0.230 0.238

M2 0.513 0.569 1.000 0.911 0.911 0.913 0.076 0.089 0.174 0.167 0.212 0.217

M3 0.550 0.614 0.967 1.000 1.000 0.995 0.081 0.095 0.185 0.185 0.227 0.235

M4 0.468 0.522 0.823 0.851 1.000 0.992 0.085 0.091 0.173 0.173 0.220 0.224

M5 0.467 0.521 0.823 0.845 0.990 1.000 0.087 0.097 0.173 0.173 0.219 0.219

M6 0.106 0.102 0.150 0.150 0.186 0.190 1.000 0.991 0.982 0.987 0.987 0.991

M7 0.100 0.100 0.159 0.159 0.179 0.191 0.892 1.000 0.972 0.976 0.984 0.984

M8 0.115 0.111 0.176 0.176 0.194 0.194 0.501 0.551 1.000 0.950 0.950 0.950

M9 0.123 0.116 0.174 0.181 0.199 0.199 0.516 0.567 0.975 1.000 1.000 0.998

M10 0.108 0.116 0.184 0.186 0.211 0.211 0.431 0.478 0.814 0.836 1.000 0.996

M11 0.111 0.118 0.185 0.189 0.212 0.208 0.427 0.471 0.803 0.823 0.983 1.000
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6.4.4 Nested RBS Representation

Once the body frames are identified, the positions of the body markers can be expressed in

different body frames and not only in a camera-centric frame.

For example, Figure 6.13 shows 500 observed positions of the light green marker (M5)

relative to the arm frame (Xa, Ya). These data points are the same data points shown in

Figure 6.5.f but their coordinates are expressed in the arm frame and not in the camera-

centric frame. This new view of the data clearly shows the possible positions of the wrist

marker relative to the arm. The locations of the dark green (M2) and dark blue (M3)

markers, which determine the coordinate frame, are shown as large circles.

Xa

Ya

Figure 6.13: The figure shows 500 observed positions of the green body marker (M5) when
its coordinates are expressed in the arm body frame (Xa, Ya) and not in the camera-centric
frame as shown in Figure 6.5.f. The circular pattern clearly shows the possible positions of
the wrist relative to the arm.

It is possible to take this approach one step further and to define a nested RBS repre-

sentation. For example, a separate body icons table can be learned only for the two wrist

markers (M4 and M5). The joint vectors of these body icons will contain only joint angles
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of the wrist joint. The sensory vectors, on the other hand, will contain only the positions of

the wrist markers. An important detail in this case, however, is that the visual coordinates

of the two wrist markers must be expressed in arm frame coordinates and not in camera

centric coordinates. In other words, the body icons table will have the following format:

Table 6.9: Body icons table for the wrist only. Each row of the table represents the
observed joint and sensory vectors for a specific wrist pose and the observed positions of
the two wrist markers, M4 and M5, calculated in arm frame coordinates.

# Kinematic Sensory

components components

1 θ̃1 = {q̃1
w} Ṽ1 = {ṽ1

4, ṽ
1
5}

2 θ̃2 = {q̃2
w} Ṽ2 = {ṽ2

4, ṽ
2
5}

. . . . . . . . .

I θ̃I = {q̃Iw} ṼI = {ṽI4 , ṽI5 }

The nested RBS representation has several advantages. First, it reduces the dimensions

of the sensory and joint vectors and thus requires less memory to store all body icons.

Second, because of the reduced dimensionality a smaller number of body icons must be

learned before a certain level of approximation accuracy can be reached. Finally, the nested

representation can be used to specify different control laws or behaviors for different joint

groups of the robot.

The next subsection shows an example in which the wrist and the arm are controlled

independently.
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6.4.5 Behavioral Specification Using a Nested RBS

The body markers and the body frames provide a convenient way for specification, moni-

toring, and execution of robot behaviors. This section demonstrates how robot behaviors

can be encoded using a nested RBS.

The RBS model provides a blueprint of the possible configurations of the robot’s body.

This blueprint can be used to localize individual body parts in space. It can also be used for

control and planning of body movements. These movements can be specified as the desired

final positions of specific body markers relative to other visual features.

Because the robot has access to the sensorimotor stimuli that are produced by its own

body its behaviors can be expressed in terms of desired final positions for some of these

stimuli. This approach is consistent with the ideas of Berthoz (2000) who argues that even

the reflex behaviors of living organisms are encoded in terms of their body schemas.

Complex behaviors can be constructed by combining multiple primitive behaviors. Typ-

ically the primitive behaviors are sequenced or fused together. As an example, consider the

grasping behavior composed of six steps shown in Figure 6.14. The behavior is specified

with a finite state automaton (FSA). The six states of the FSA are linked by perceptual

triggers (Arkin, 1998) that determine when the robot should switch to the next state.

Immediate Above Grasp
Point

Complete
Orientation

Sensations

Touch

Start

End

Reach

At Grasp
Point

Pre− Orient
Wrist

Gripper
Close

Arm
Lower

Figure 6.14: A finite state automaton (FSA) describing a grasping behavior. The six
states of the FSA are linked by perceptual triggers that determine when the robot should
switch to the next state.

Figures 6.15, 6.16, and 6.17 show the sequence of movements as the simulated robot

attempts to grasp a stick object. During the pre-reach phase the position of the yellow
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body marker is controlled in such a way as to position the marker above the target grasp

point (Figure 6.15). During the orient wrist phase only the wrist is moved relative to the

arm frame (Figure 6.16). The green spheres in Figure 6.16 show the sensory components

of the body icons for the light green wrist marker relative to the arm frame. The red

spheres show the most highly activated body icons that are closest to the grasp point.

Next, the arm is lowered by controlling both the position of the yellow marker and the

light green marker so that the wrist remains perpendicular to the table (Figure 6.17). In

other words, the positions of two different body markers are controlled in two different body

frames simultaneously. Finally, the gripper is closed until the simulated tactile sensors are

triggered. This completes the grasping behavior.

A similarly encoded grasping behavior is used in Section 6.6 with the real robot. The

behavior is hand-coded and not learned. Learning of behaviors using the RBS representation

is a good topic for future work.

Figure 6.15: Example of the pre-reach behavior in progress. The purple spheres represent
the sensory components of the yellow marker for all body icons. The most highly activated
components are colored in cyan and are clustered above the target grasp point on the stick.
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Figure 6.16: Example of the orient-wrist behavior in progress. Once the arm is positioned
above the grasp point the wrist of the robot is moved relative to the arm frame. The green
spheres show the possible positions of the light green marker relative to the arm frame. The
red spheres correspond to the wrist positions of the most highly activated body icons.

Figure 6.17: Example of the lower-arm behavior in progress. The behavior controls the
positions of both the yellow marker and the light green marker. As a result, the arm is
lowered toward the grasp point while the wrist is rotated so that it remains perpendicular to
the table. The positions of two body markers are controlled simultaneously in two different
body frames using two separate sets of body icons.
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6.5 Extending the Robot Body Schema

The body schema model described so far is not pliable, i.e., it cannot be extended in order

to assimilate an external object into the robot’s body representation. This section modifies

that model to have extensibility properties similar to those of the biological body schema.

Iriki et al. (1996) trained monkeys to use rake-shaped tools to extend their reach. They

reported that during tool use the bimodal neurons which encode the monkey’s body schema

change their visual receptive fields such that they begin to fire in the expanded area reach-

able by the tool. There are two main criteria that must be met before the extension of

the body representation can take place. First, the movements of the tool must be tempo-

rally correlated with the movements of the monkey’s arm. Even a small variation or an

unpredictable time delay can disrupt this process (Iriki, 2003). Second, there must be an

intention to use the object as a tool; just holding the object is not sufficient to trigger an

extension of the body (Iriki et al., 1996, 2001).

The model described here was inspired by the work of Iriki et al. (1996, 2001). Their

experiments with monkeys, however, serve only as an inspiration to the robotics work.

While the robot was capable of replicating some of their experiments, the robotics work

does not attempt to model how the monkey’s brain works. Instead, the goal of this work is

to test, at the functional level, some of the building blocks that form the complex system

for representing the body of a robot and how the body representation can be extended and

remapped depending on task demands.

The basic idea behind the extension method is to morph the body representation of

the robot so it is better suited for a task that requires the use of an external object. For

example, if the robot has to control the position of the tip of a stick object it might be more

convenient to perform this operation if the stick is treated as an extension of the robot’s

wrist. The alternative approach would be to treat the stick as different from the body and

to reconcile two different control strategies.

The extension or morphing mechanism is triggered by near-perfect temporal coincidence

between self movements and external object movements. The robot needs to detect whether

the movements of the stick coincide with the movements of the robot’s wrist. If the answer
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is yes, then the markers of the stick should move with the same efferent-afferent delay of

the robot. Because of that, the stick can be assimilated into the robot’s body schema for

the duration of its usage. If there are any unpredictable or variable time delays then the

external object will not be assimilated into the robot’s body representation. Thus, tools

that are not solid, e.g., ropes and rubber hoses will not trigger an extension of the body.

This is a limitation of the current approach as it only applies to rigid bodies. However,

Japanese monkeys have similar limitations as reported by Iriki (2003).

After the extension mechanism is triggered it is necessary to calculate the parameters

of the body transformation. This transformation may involve rotation, translation, and

scaling. These parameters are calculated based on the observed spatial relation between

the external object and a corresponding body part. If such observation data is not available

from prior experience it can be gathered after a few motor babbling commands (10 were used

in the robot experiments reported below). These observations produce two sets of points

and the corresponding one-to-one mapping between them. In other words, for each of the

10 observed body poses there is a corresponding pose of the object targeted for assimilation.

Based on this information the robot calculates the parameters of the transformation between

the two. Once the transformation parameters are calculated the transformation is applied

to all body icons in the affected body schema (there could be more than one body schema

involved as they could be nested).

The RBS model represents the positions of the robot’s body markers in various body

poses as a point cloud formed by the visual components of the body icons. The main idea

behind the extension method is to morph the positions of the visual components of the body

icons but to keep the kinematic components the same. Because the visual components are

represented with a point cloud, applying the transformation is equivalent to transforming

each of these points individually. After the transformation is completed, the transformed

point cloud can be used to control robot movements in the same way as before.

The following two subsections show two examples of body extensions triggered by a tool

and a TV image. The next section explains how the extended body representation can be

used to achieve video-guided behaviors.
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6.5.1 Example 1: Extension Triggered by a Tool

This example demonstrates how the robot can establish a temporary equivalence between

some of its own body markers (frames) and the markers of an external object. This equiva-

lence is based on the movement coincidences between the two sets of markers. The mapping

between the two is temporary and can only last for as long as the robot is grasping the

tool. If the tool is dropped the movement coincidence will stop and this will violate the

first condition for extension identified by Iriki et al. (1996). Given that the movement co-

incidence is present, the mapping is used next to morph the body representation to include

the attached tool. The experimental procedure is described next.

Figure 6.18 shows six frames from a short sequence (3500 frames or less than 2 minutes)

in which the robot waves a stick. Each frame shows an intermediary body pose at which

the robot stops for a short period of time before performing the next movement. The robot

performed the movements shown in Figure 6.18 four times. This resulted in a total of 20

wrist movements and 8 arm movements (4 up and 4 down).

The stick object has two color markers which will be referred to as S0 and S1. Their

colors are: red (S0) and orange (S1). The two markers are placed at the tip of the stick and

at its mid-point, respectively. As in the previous chapter, the robot can see a point-light

display of the movements of different color markers.

The color segmentation results for the frames shown in Figure 6.18 are presented in

Figure 6.19. Table 6.10 shows the start of movement coincidence results between the robot’s

body markers and the markers of the stick. The cells highlighted in green indicate that the

stick markers, S0 and S1, move in the same way as the wrist markers, M4 and M5. The

cells highlighted in cyan correspond to the arm frame. Because the shoulder of the robot

does not move much in this short sequence the two shoulder markers, M0 and M1, are not

grouped together (this was not the case for the longer sequences described in the previous

section). Similarly, Table 6.11 shows the results for the end of movement coincidences.

Once again, the markers of the stick have the same movement patterns as the markers of

the wrist.

These results indicate that even after a few body movements it is possible to identify
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whether an external object can be reliably controlled by the robot. Furthermore, it is

possible to identify the body frame to which the object is attached (in this case the wrist

frame).

Once the mapping is established the next step is to perform the actual extension where

the position of one or more of the robot’s body markers are temporarily transformed to

coincide with the positions of the new stick markers. Section 6.6 describes how the trans-

formation parameters can be calculated.

Table 6.10: Start of movement coincidence results for a short sequence in which the robot
waves a stick tool (see Figure 6.18). The entries highlighted in green show that the two
stick markers, S0 and S1, start to move at the same time as the two wrist markers, M4 and
M5. The shoulder of the robot does not move much in this short sequence and therefore
markers M0 and M1 are not grouped together. The two arm markers, M2 and M3, are
grouped together after only 8 movements.

M0 M1 M2 M3 M4 M5 S0 S1

M0 1.000 1.000 1.000 1.000 0.000 1.000 0.000 1.000

M1 0.091 1.000 0.455 0.182 0.182 0.182 0.091 0.273

M2 0.125 0.625 1.000 1.000 1.000 1.000 0.875 1.000

M3 0.125 0.250 1.000 1.000 1.000 1.000 0.875 1.000

M4 0.000 0.100 0.400 0.400 1.000 0.950 0.950 0.950

M5 0.050 0.100 0.400 0.400 0.950 1.000 0.950 1.000

S0 0.000 0.050 0.350 0.350 0.950 0.950 1.000 0.950

S1 0.050 0.150 0.400 0.400 0.950 1.000 0.950 1.000

Table 6.11: End of movement coincidence results for the short sequence in which the robot
waves a stick tool (see Figure 6.18). The results are similar to the ones shown in Table 6.10.

M0 M1 M2 M3 M4 M5 S0 S1

M0 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

M1 0.091 1.000 0.182 0.091 0.091 0.091 0.091 0.091

M2 0.000 0.250 1.000 1.000 1.000 1.000 1.000 1.000

M3 0.000 0.125 1.000 1.000 1.000 1.000 1.000 1.000

M4 0.000 0.050 0.400 0.400 1.000 0.950 0.950 0.950

M5 0.000 0.050 0.400 0.400 0.950 1.000 1.000 1.000

S0 0.000 0.050 0.400 0.400 0.950 1.000 1.000 1.000

S1 0.000 0.050 0.400 0.400 0.950 1.000 1.000 1.000
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Figure 6.18: Frames from a short sequence (less than 2 minutes) in which the robot waves
a stick tool. The stick object has two color markers which can be detected by the robot.

Figure 6.19: Color segmentation results for the robot poses shown in Figure 6.18.
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6.5.2 Example 2: Extension Triggered by a Video Image

This section shows that the movement coincidences between two sets of markers can be used

successfully to establish marker correspondence. Once the correspondence is established it

can be used to remap the positions of the robot’s body icons onto the TV monitor. The

TV sequence described in Section 5.10 is used for this example.

Chapter 5 showed how the robot can detect that the TV markers must be associated

with its own body. The methodology described in that chapter, however, did not address

the problem of mapping between the TV markers and the robot’s markers. In other words,

it did not address the issue whether the wrist marker in the TV image really corresponds

to the robot’s own wrist marker. Solving this problem is important because the colors of

the markers in the TV may be slightly different from their real-world counterparts (which

was indeed the case in the TV experiments).

In the previous example (Section 6.5.1) the robot was in direct physical contact with

the external object before the body extension could be triggered. In the second example

described here physical contact is neither possible nor required (see Figure 6.20). This is

not an obstacle since the extension of the body is triggered by a movement coincidence

detector instead of physical contact detector.

Table 6.12 shows the start of movement coincidence results for the TV sequence. Fig-

ure 6.20 shows an alternative way to visualize these results. The results indicate that the

body frames of the robot in the TV image were mapped correctly to the body frames of

the real robot. The only exception is the yellow marker as its position detection is very

noisy because its color is very similar to the color of the background wall in the TV image.

This omission is not critical for the rest of the TV experiments because the yellow marker is

not used to encode any of the robot behaviors (e.g., grasping). Some matching ambiguities

remain because the timing coincidences method establishes correspondences between body

frames and not individual body markers (see Figure 6.20). These are resolved by matching

to the nearest marker in feature space (in this case HSV color space). Similar results were

obtained for two other TV sequences. The next section builds on these results and describes

the remaining details of the extension process.
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Table 6.12: Mapping between body frames and TV frames based on start of movement
coincidence results for the TV sequence. The highlighted areas show the body markers and
the TV markers that were grouped together. Only the yellow TV marker could not be
matched with any of the real markers because of position detection noise. The results are
corrected for marker visibility. Similar results were obtained for two other TV sequences.

M0 M1 M2 M3 M4 M5 TV0 TV1 TV2 TV3 TV4 TV5

M0 1.000 0.996 1.000 0.987 0.987 0.982 0.987 0.991 0.899 0.933 0.855 0.921

M1 0.886 1.000 0.980 0.980 0.980 0.976 0.922 0.984 0.885 0.924 0.866 0.899

M2 0.563 0.620 1.000 0.995 0.993 0.988 0.566 0.618 0.880 0.929 0.902 0.893

M3 0.553 0.617 0.990 1.000 0.998 0.990 0.560 0.607 0.883 0.929 0.906 0.897

M4 0.456 0.509 0.813 0.821 1.000 0.992 0.462 0.499 0.714 0.768 0.895 0.871

M5 0.452 0.505 0.807 0.813 0.988 1.000 0.458 0.495 0.710 0.760 0.891 0.873

TV0 0.941 0.987 0.958 0.954 0.954 0.945 1.000 0.983 0.877 0.882 0.824 0.905

TV1 0.872 0.973 0.965 0.957 0.953 0.946 0.907 1.000 0.877 0.905 0.841 0.901

TV2 0.496 0.552 0.857 0.862 0.854 0.846 0.512 0.549 1.000 0.886 0.838 0.815

TV3 0.550 0.615 0.982 0.989 0.989 0.982 0.565 0.615 0.975 1.000 0.930 0.925

TV4 0.298 0.338 0.544 0.548 0.660 0.655 0.305 0.334 0.534 0.520 1.000 0.587

TV5 0.446 0.495 0.784 0.791 0.937 0.934 0.467 0.509 0.772 0.771 0.919 1.000

Figure 6.20: Visual representation of the matching markers based on start of movement
coincidence results from Table 6.12.
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6.6 Achieving Video-Guided Behaviors

Humans are capable of performing many behaviors in which they receive visual feedback

about their own actions only through indirect means, e.g., through a mirror reflection or

a real-time video image. Some examples include: getting dressed in front of the mirror,

driving a car in reverse using the rear view mirrors, playing a video game using a joystick to

control a virtual character, and using a mouse to position the mouse pointer on a computer

monitor. Behaviors like these are so common that we perform many of them on a daily

basis without even thinking about their complexity.

Some primates are also capable of performing similar behaviors. For example, consider

the task shown in Figure 6.21 which is described by Iriki et al. (2001). The hands of the

monkey and the incentive object (a piece of apple) are placed under an opaque panel such

that they cannot be observed directly by the monkey. In order to reach and grasp the

incentive object the monkey must use the real-time video feedback of its own movements

captured by a camera and projected on a TV monitor.

Figure 6.21: The figure shows the experimental setup that was used by Iriki et al. (2001).
The setup consists of a TV monitor that displays real-time images captured by the camera.
An opaque panel prevents the monkey from observing the movements of its hands directly.
Instead, it must use the TV image to guide its reaching behaviors in order to grasp the food
item. During the initial training phase a transparent window located close to the eye level
of the monkey was left open so that it can observe the movements of its hands directly as
well as in the TV monitor. From Iriki et al. (2001).
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To solve this problem the monkey must solve at least three sub-problems. First, it must

realize that the TV monitor displays a real-time video of its own hands and not, say, a

recording of the movements of another monkey. Second, the monkey must figure out the

similarity transformation (translation, rotation, and scaling) between the position of its

real arm (estimated from proprioceptive informations as it cannot be seen directly) and the

image of the arm in the TV monitor. Finally, the monkey must use the video image to

guide its hand toward the incentive object.

This section describes a computational framework that was used successfully by a robot

to solve the task described above. The robot solves the first sub-problem by detecting the

temporal contingency between its own motor commands and the observed self movements

in the video image. As the video image is projected in real time the visual self-movements

detected in it occur after the expected proprioceptive-to-visual efferent-afferent delay of

the robot (see Chapter 5). The second sub-problem is solved by estimating the similarity

transformation (translation, rotation, and scaling) between two sets of points. The first set

consists of the positions of specific body locations which are estimated from proprioceptive

information as they cannot be observed directly. The second set consists of the observed

positions of the same body locations in the video. Once the similarity transformation is

calculated the robot can extend its body schema and use it to perform the grasping move-

ment without direct visual feedback of its own body. The setup for the robot experiments

is described in Section 6.6.2, after the related work with animals is presented.

6.6.1 Similar Experiments with Animals

Menzel et al. (1985) reported for the first time the abilities of chimpanzees to perform

video-guided reaching behaviors. Their experimental setup is shown in Figure 6.22. The

chimpanzees in their study were also capable of detecting which of two TV monitors shows

their self image and which shows a recording from a previous trial. They succeeded even

when the TV image was rotated by 180◦.

Experiments in which the visual feedback comes from a mirror instead of a video image

have also been performed. Itakura (1987) reported that Japanese monkeys can reach for
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Figure 6.22: The experimental setup used by Menzel et al. (1985).

targets that can only be observed in the mirror image. Epstein et al. (1981) were able

to train pigeons to peak a spot on their body that could be seen only in a mirror. After

Gallup’s discovery that chimpanzees can self-recognize in the mirror (Gallup, 1970) there

has been a flood of studies that have used mirrors in primate experiments. These studies

are far too numerous to be summarized here. See (Barth et al., 2004) for a comprehensive

summary.

More recently, Iriki et al. (2001) have performed reaching experiments with Japanese

monkeys (see Figure 6.21) while simultaneously recording the firing patterns of neurons

located in the intraparietal sculus that are believed to encode the body schema of these

monkeys. Their results show that these neurons, which fire when the monkey observes its

hand directly, can be trained to fire when the hand is observed in the TV image as well.

Furthermore, they showed that the visual receptive fields of these neurons shift, expand,

and contract depending on the position and magnification of the TV image. In order to

learn these skills, however, the “monkey’s hand-movement had to be displayed on the video

monitor without any time delay [...] the coincidence of the movement of the real hand and

the video-image of the hand seemed to be essential” (Iriki et al., 2001, p. 166).
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This section was inspired by the work of Iriki et al. (2001) which describes some in-

genuous experiments with Japanese monkeys that have learned to solve the task shown in

Figure 6.21. Their study, however, serves only as an inspiration to the robotics work. While

our robot was capable of replicating some of the experiments reported in (Iriki et al., 2001)

this section does not attempt to model how the brain works. Instead, the goal of this section

is to study, at the functional level, the building blocks that form the complex system for

representing the body of a robot and how the body representation can be extended and

remapped depending on the current task.

6.6.2 Experimental Setup

The experimental setup for the robot experiments (which are described below) is shown

in Figure 6.23. All experiments were performed using the CRS+ A251 manipulator arm

described in Chapter 4. The robot has 5 degrees of freedom (waist roll, shoulder pitch, elbow

pitch, wrist pitch, wrist roll) plus a gripper. For the purposes of the current experiments,

however, the two roll joints were not allowed to move away from their 0◦ positions. In other

words, the movements of the robot were restricted to the vertical plane. The mobile base

of the robot was disabled and remained fixed during these experiments.

The experimental setup uses 2 cameras. The first camera (Sony EVI-D30) is the only

camera through which the robot receives its visual input. The image resolution was set to

640x480. The second camera (Sony Handycam DCR-HC40) was placed between the robot

and the first camera such that it can capture approximately 1
3 of the working envelope of

the robot. The frames captured by the second camera were displayed in real-time on a TV

monitor (Samsung LTN-406W 40-inch LCD Flat Panel TV).

As in the previous experiments, six color markers were placed on the robot’s body. The

positions of the markers were tracked with a computer vision code which performs histogram

matching in HSV color space using the openCV library (an open source computer vision

package). The position of each marker was determined by the centroid of the largest blob

that matched the specific color. The same procedure was applied to track the positions of

the color markers in the TV. The robot control code and the color tracker were run on a
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Figure 6.23: Experimental setup for the robot experiments described in this section.

Pentium IV machine (2.6 GHz, 1 GB RAM), running Linux (Fedora Core 4).

The colors of the body markers on the real robot arm and the colors of the body markers

in the TV image looked slightly different when viewed through the Sony EVI-D30 camera

(right camera in Figure 6.23). The color calibration and contrast settings of the TV were

adjusted to make this difference as small as possible. Despite these efforts, however, the

appearance of the two sets of colors was never the same. To overcome this problem while

still using color tracking as the primary sensing modality two sets of color histograms were

used: one for the real body markers and one for their image in the TV monitor.

In this configuration the robot can observe both its real arm as well as the image of

its arm in the TV monitor (see Figure 6.24.a). The original experimental design called for

an opaque panel similar to the one shown in Figure 6.21. The introduction of such a large

object into the frame, however, changed the auto color calibration of the camera (which
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(a) (b)

Figure 6.24: (a) Field of view of the robot’s camera (Sony EVI-D30) in the setup shown
in Figure 6.23; (b) What the robot sees during the testing experiments described below.

could not be turned off). Because this negatively impacted the quality of the color tracking

results it was decided to use a digital version of an opaque panel instead. In other words,

the left half of each frame captured by camera 1 was erased (zeroed) before it was processed

(see Figure 6.24.b).

Figure 6.25 shows 500 observed positions for the blue wrist marker. These positions

were recorded from real robot data while the robot was performing motor babbling. The

next sub-section shows how these positions can be extended to map onto the TV image.

0 640

480

0

Figure 6.25: The figure shows the visual components, ṽi, corresponding to the blue body
marker (see Figure 6.23) in 500 body icons.
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6.6.3 Calculating the Similarity Transformation

This sub-section describes the method for calculating the similarity transformation (trans-

lation, rotation, and scaling) between the position of the real robot arm and the image of

the arm in the TV monitor. The parameters of this transformation are used to extend the

visual components of the body icons in the RBS model. After the extension the TV image

can be used for video-guided behaviors.

The method calculates the similarity transformation using two sets of points. The first

set consists of ten different positions of a specific body marker (the blue wrist marker was

used). These positions are estimated from proprioceptive information using Formula 6.2 as

the body marker cannot be observed directly (see Figure 6.24.b). The second set consists of

the ten corresponding positions of the same body marker but observed in the video image.

The robot gathers the two sets while performing motor babbling. If the wrist marker cannot

be detected for some joint configuration (e.g., because it is out of the TV frame or because

of sensory noise which reduces the visible size of the marker below the detection threshold

of 35 pixels) the robot picks a new random joint vector and continues the motor babbling.

After the two sets of data points are gathered the similarity transformation parameters

are calculated using the method described by Umeyama (1991). The method calculates

the translation, rotation, and scaling between one set of points and another which is a

common problem in computer vision. For the sake of completeness, Umeyama’s results are

summarized below without their proofs.

The problem and its solution can be stated as follows. Given two sets of points X = {xi}

and Y = {yi} (i = 1, 2, . . . , n) in m-dimensional space (typically m=2 or 3) find a similarity

transformation with parameters (R: rotation, t: translation, and c: scaling) that minimizes

the mean squared error, e2(R, t, c), between the two sets of points. Where the error is given

by:

e2(R, t, c) =
1

n

n
∑

i=1

‖yi − (cRxi + t)‖2

Umeyama (1991) showed that the optimum transformation parameters can be deter-

mined uniquely as follows:
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R = USV T

t = µx − cRµx

c =
1

σ2
x

tr(DS)

where

µx =
1

n

n
∑

i=1

xi

µy =
1

n

n
∑

i=1

yi

σ2
x =

1

n

n
∑

i=1

‖xi − µx‖2

σ2
y =

1

n

n
∑

i=1

‖yi − µy‖2

Σxy =
1

n

n
∑

i=1

(yi − µy)(xi − µx)T

In the above formulas, µx and µy are the mean vectors of X and Y ; σ2
x and σ2

y are the

variances around the mean vectors of X and Y ; and Σxy is the covariance matrix of X and

Y . The matrix D = diag(di), d1 ≥ d2 ≥ · · · ≥ dm ≥ 0 is determined from the the singular

value decomposition of Σxy which is given by UV DT . The matrix S is given by

S =











I if det(Σxy) ≥ 0

diag(1, 1, · · · , 1,−1) if det(Σxy) < 0

when rank (Σxy) = m and by

S =











I if det(U) det(V ) = 1

diag(1, 1, · · · , 1,−1) if det(U) det(V ) = −1

when rank (Σxy) = m− 1.

For all experiments described in this section the singular value decompositions were

performed using the code given in Numerical Recipes in C (Press et al., 1992) (pp. 67-70).
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6.6.4 Experimental Results

Three experimental conditions (shown in Figure 6.26) were used to test the applicability of

the RBS extension method for video guided-behaviors. Similar test conditions were used by

Iriki et al. (2001) in their experiments with Japanese monkeys. The test conditions differ

by the rotation and zoom of the second camera which affects the orientation and the size

of the TV image. In the first test condition the TV image is approximately equal to the

image of the real robot (see Figure 6.26.a). In the second test condition camera 2 is rotated

and thus the TV image is also rotated (see Figure 6.26.b). The rotation angle is 50◦ (of the

camera) or −50◦ (of the TV image). In the third test condition the camera is horizontal

but its image is zoomed in (see Figure 6.26.c). The zoom factor is 1.6. This value was

calculated from the image in Figure 6.26.c by averaging the horizontal (1.85) and vertical

(1.35) zoom ratios since the Sony Handycam does not provide those to the user and the TV

introduces some image scaling as well.

(a) (b) (c)

Figure 6.26: The figure shows three views from the robot’s camera, one for each of the
three experimental conditions. The image of the robot in the TV is: a) approximately the
same size as the real robot; b) rotated by negative 50◦; and c) scaled (zoomed in) by a
factor of 1.6. During the actual experiments, however, the robot cannot see its own body
as show in Figure 6.27.
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(a) (b) (c)

Figure 6.27: The figure shows what the robot sees during the experiments in each of the
three test conditions. The left half of each frame (see Figure 6.26) was digitally erased (ze-
roed) before it was processed. The three images also show the incentive object (pink square)
which the robot was required to grasp without observing its position directly. Instead, the
robot had to use the TV image to guide its grasping behaviors.

0 640

480

0

(a)
0 640

480

0

(b)
0 640

480

0

(c)

Figure 6.28: The figure shows the extended positions of the body icons (visual compo-
nents for the blue wrist marker only) after the extension of the RBS in each of the three
test conditions. By comparing this figure with Figure 6.25 it is obvious that the visual com-
ponents of the body icons are: (a) translated; (b) rotated and translated; and (c) scaled,
rotated and translated relative to their original configuration. Furthermore, the new po-
sitions coincide with the positions in which the blue marker can be observed in the TV.
Because the extended positions are no longer tied to the camera coordinates some of them
may fall outside the 640×480 camera image.
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Tables 6.13, 6.14, and 6.15 show the estimated transformation parameters for each of

the 3 test conditions in ten separate trials. Because stereo vision was not used there are

only 2 meaningful translation parameters (tx and ty) and only one rotation parameter (θz).

The scale factor was also estimated using Umeyama’s method. As with any real robot data

the results are slightly noisy. Nevertheless, the transformation parameters were estimated

correctly in all trials as indicated by their small standard deviations.

Table 6.13: Transformation parameters (normal test case).

Trial # tx ty θz Scale

Trial 1 339.1 245.0 −1.20◦ 0.908
Trial 2 366.6 230.7 +4.87◦ 0.868
Trial 3 303.6 216.1 −0.57◦ 1.070
Trial 4 339.2 262.0 −3.04◦ 0.846
Trial 5 334.2 231.5 −0.74◦ 0.950
Trial 6 345.0 236.0 +1.55◦ 0.903
Trial 7 322.6 200.0 +3.44◦ 1.055
Trial 8 344.1 237.5 +0.92◦ 0.906
Trial 9 317.2 244.4 −3.38◦ 0.954
Trial 10 356.0 246.1 +0.46◦ 0.864

Mean 336.8 234.9 +0.23◦ 0.932

Stdev 18.5 17.2 2.61◦ 0.077

For each of the three condition the robot was tested with the task of grasping an incentive

object (pink object in Figure 6.26 and Figure 6.27). During the experiments the object could

only be seen in the TV image (see Figure 6.27). For each of the three test conditions the

grasping experiment was performed five times. The robot successfully grasped the incentive

object in 5 out of 5 trials for condition 1; 4 out of 5 trials for condition 2; and 0 out of 5

trials for condition 3.

One possible reason why the robot failed completely in the zoom condition is due to

the poor quality of the color tracking results at this high level of magnification. This result

is counter-intuitive as one would expect just the opposite to be true. However, when the

image of the robot’s arm is really large the auto color calibration of the Sony Handycam

(which could not be turned off) is affected even by the smallest movements of the robot.

Shadows and other transient light effects are also magnified. Thus, it proved difficult to
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Table 6.14: Transformation parameters (rotation test case).

Trial # tx ty θz Scale

Trial 1 287.7 420.5 −49.4◦ 0.893
Trial 2 244.5 430.9 −50.8◦ 1.035
Trial 3 278.8 426.5 −50.2◦ 0.931
Trial 4 234.2 427.6 −49.5◦ 1.065
Trial 5 246.1 437.1 −52.8◦ 1.019
Trial 6 278.9 421.4 −49.6◦ 0.918
Trial 7 250.4 399.0 −44.0◦ 1.014
Trial 8 260.5 441.7 −53.8◦ 0.971
Trial 9 250.7 425.7 −50.1◦ 1.007
Trial 10 257.3 419.1 −48.2◦ 0.995

Mean 258.9 425.0 -49.84◦ 0.985

Stdev 17.5 11.6 2.64◦ 0.055

Table 6.15: Transformation parameters (zoomed in test case).
Trial # tx ty θz Scale

Trial 1 187.1 67.7 −1.78◦ 1.677
Trial 2 201.0 94.3 −2.64◦ 1.584
Trial 3 190.6 80.5 −2.46◦ 1.653
Trial 4 188.9 62.7 −0.92◦ 1.697
Trial 5 236.1 55.2 +3.33◦ 1.594
Trial 6 217.2 63.8 +2.12◦ 1.621
Trial 7 198.9 95.2 −3.38◦ 1.588
Trial 8 206.2 126.6 −5.57◦ 1.498
Trial 9 222.7 105.8 −2.01◦ 1.512
Trial 10 219.6 53.4 +1.72◦ 1.635

Mean 206.8 80.5 -1.16◦ 1.606

Stdev 16.5 24.3 2.76◦ 0.065

track the body markers in the zoomed in test condition using the current tracking method.

The transformation parameters for this test case were estimated correctly (see Table 6.15)

because the ten data points needed for the calculation are collected only when the wrist

marker can be observed in the TV(which was possible for some body configurations but not

others).

The failure in the rotation test case was also due to poor color tracking results.
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6.7 Chapter Summary

This chapter introduced the notion of extended robot body schema and described a compu-

tational model that implements this notion.

The RBS model is learned from self-observation data (visual and proprioceptive) gath-

ered during a motor babbling phase. The RBS provides the robot with a sensorimotor

model of its own body that can also be used to control robot movements. Through the

process of extension the RBS can accommodate changes in the configuration of the robot

triggered by attached objects. The extension is triggered by the near perfect correlation

between self-movements and movements of external object.

This chapter also described how the extension of the robot body schema can be triggered

by the temporal contingency between the actions of the robot and observed self-movements

in the video image. It reported an experiment in which the robot was able to detect its

self-image in a TV monitor and use that real-time video image to guide its own actions in

order to reach an object observable only through the TV image. The extension of the RBS

allows the robot to use the TV image to guide its arm movements as if it were observing it

directly. This constitutes the first-ever reported instance of a video-guided behavior by a

robot.

Future work can build upon the principles described in this chapter and extend the

domains in which robots can use video-guided behaviors. For example, using a mouse to

position a cursor on a computer monitor or using a rear view camera (or mirror) to back

up a car are just two possible applications.

The results described in this chapter demonstrate that a robot can learn a sensorimotor

model of its own body from self-observation data, in answer to the second research question

stated in Section 1.2. The results also show that this pliable body model can be used to

facilitate goal-oriented tasks such as video-guided behaviors.
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CHAPTER VII

LEARNING THE AFFORDANCES OF TOOLS

7.1 Introduction

A simple object like a stick can be used in numerous tasks that are quite different from one

another. For example, a stick can be used to strike, poke, prop, scratch, pry, dig, etc. It is

still a mystery how animals and humans learn these affordances (Gibson, 1979) and what

are the cognitive structures used to represent them.

This chapter introduces a novel approach to representing and learning tool affordances

by a robot. The tool representation described here uses a behavior-based approach to

ground the tool affordances in the behavioral repertoire of the robot. The representation is

learned during a behavioral babbling stage in which the robot randomly chooses different

exploratory behaviors, applies them to the tool, and observes their effects on environmental

objects. The chapter shows how the autonomously learned affordance representation can be

used to solve tool-using tasks by dynamically sequencing the exploratory behaviors based on

their expected outcomes. The quality of the learned representation is tested on extension-

of-reach tool-using tasks.

7.2 Affordances and Exploratory Behaviors

James Gibson defined affordances as “perceptual invariants” that are directly perceived by

an organism and enable it to perform tasks (Gibson, 1979) (also see Section 2.3.2). Gibson

is not specific about the way in which affordances are learned but he suggests that some

affordances are learned in infancy when the child experiments with external objects.

The related work on animal object exploration presented in Section 2.1.1 indicates that

animals use stereotyped exploratory behaviors when faced with a new object (Power, 2000;

Lorenz, 1996). This set of behaviors is species specific and may be genetically predetermined.

In fact, Glickman and Sroges (1966) observed that the exploratory behaviors frequently

overlap with the consumatory behaviors for the species. For some species of animals these
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tests include almost their entire behavioral repertoire: “A young corvide bird, confronted

with an object it has never seen, runs through practically all of its behavioral patterns,

except social and sexual ones.” (Lorenz, 1996, p. 44).

Recent studies with human subjects also suggest that the internal representation for a

new tool used by the brain might be encoded in terms of specific past experiences (Mah

and Mussa-Ivaldi, 2003). Furthermore, these past experiences consist of brief feedforward

movement segments used in the initial exploration of the tool (Mah and Mussa-Ivaldi, 2003).

A tool task is later learned by dynamically combining these sequences.

Thus, the properties of a tool that an animal is likely to learn are directly related to

the behavioral and perceptual repertoire of the animal. Furthermore, the learning of these

properties should be relatively easy since the only requirement is to perform a (small) set of

exploratory behaviors and observe their effects. Based on the results of these “experiments”

the animal builds an internal representation for the tool and the actions that it affords.

Solving tool tasks in the future is based on dynamically combining the exploratory behaviors

based on their expected results.

The next section formulates a behavior-grounded computational model of tool affor-

dances based on these principles.

7.3 Behavior-Grounded Tool Representation

7.3.1 Robots, Tools, and Tasks

The notion of robotic tool use brings to mind four things: 1) a robot; 2) an environmental

object which is labeled a tool; 3) another environmental object to which the tool is applied

(labeled an attractor); and 4) a tool task. For tool use to occur all four components need

to be present. In fact, it is meaningless to talk about one without taking into account the

other three. What might be a tool for one robot may not be a tool for another because

of differences in the robots’ capabilities. Alternatively, a tool might be suitable for one

task (and/or object) but completely useless for another. And finally, some tasks may not

be within the range of capabilities of a robot even if the robot is otherwise capable of

using tools. Thus, the four components of tool use must always be taken into consideration
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together.

This is compatible with Gibson’s claim that objects afford different things to people

with different body sizes. For example, an object might be graspable for an adult but may

not be graspable for a child. Therefore, Gibson suggests that a child learns “his scale of

sizes as commensurate with his body, not with a measuring stick” (Gibson, 1979, p. 235).

Section 3.4 gives some additional examples and relates them to the subjectivity principle.

Because of these arguments, any tool representation should take into account the robot

that is using the tool. In other words, the representation should be grounded in the behav-

ioral and perceptual repertoire of the robot. The main advantage of this approach is that

the tool’s affordances are expressed in concrete terms (i.e., behaviors) that are available to

the robot’s controller. Note that this is in sharp contrast with other theories of intelligent

systems reasoning about objects in the physical world (Hayes (1985); Stark and Bowyer

(1996)). They make the assumption that object properties can be expressed in abstract

form (by a human) without taking into account the specific robot that will be using them.

Another advantage of the behavior-grounded approach is that it can handle changes in

the tool’s properties over time. For example, if a familiar tool becomes deformed (or a piece

of it breaks off) it is no longer the same tool. However, the robot can directly test the

accuracy of its representation by executing the same set of exploratory behaviors that was

used in the past. If any inconsistencies are detected in the resulting observations they can

be used to update the tool’s representation. Thus, the accuracy of the representation can

be directly tested by the robot as mandated by the verification principle (see Section 3.2).

7.3.2 Theoretical Formulation

The previous section presented a justification for using exploratory behaviors to learn the

affordances of tools. This section describes a theoretical formulation of these ideas. The tool

representation introduced here uses a behavior-based approach (Arkin, 1998) to ground the

tool affordances in the existing behavioral repertoire of the robot. The behavior-grounded

approach is formulated using the following notation.

Let βe1
, βe2

, . . . , βek
be the set of exploratory behaviors available to the robot. Each
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behavior, has one or more parameters that modify its outcome. Let the parameters for

behavior βei
be given as a parameter vector Ei = [ei

1, e
i
2, . . . e

i
p(i)], where p(i) is the number

of parameters for this behavior. The behaviors, and their parameters, could be learned by

imitation, programmed manually, or learned autonomously by the robot. For the purposes

of this chapter, however, the issue of how these behaviors are selected and/or learned will

be ignored.

In a similar fashion, let βb1 , βb2 , . . . , βbm
be the set of binding behaviors available to the

robot. These behaviors allow the robot to attach tools to its body. The most common

binding behavior is grasping. However, there are many examples in which a tool can be

controlled even if it is not grasped (e.g., by holding it between one’s teeth). Therefore, the

term binding will be used. The parameters for binding behavior βbi
are given as a parameter

vector Bi = [bi
1, b

i
2, . . . b

i
q(i)].

Furthermore, let the robot’s perceptual routines provide a stream of observations in the

form of an observation vector O = [o1, o2, . . . , on]. It is assumed that the set of observations

is rich enough to capture the essential features of the tasks to which the tool will be applied.

A change detection function, T (O(t′), O(t′′)) → {0, 1}, that takes two observation vec-

tors as parameters is also defined. This function determines if an “interesting” observation

was detected in the time interval [t′, t′′]. In the current set of experiments T = 1 if the

attractor was moving during the execution of the last exploratory behavior. The function

T is defined as binary because movement is either detected or it is not. Furthermore,

movement detection falls in the general category of events that can grab one’s attention.

O’Regan and Noë (2001) refer collectively to events like these as the grabbiness property of

the environment.

With this notation in mind, the functionality of a tool can be represented with an

Affordance Table of the form:

Binding Binding Exploratory Exploratory Ostart Oend
Times Times

Behavior Params Behavior Params Used Succ

In each row of the table, the first two entries represent the binding behavior that was

used. The second two entries represent the exploratory behavior and its parameters. The
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next two entries store the observation vector at the start and at the end of the exploratory

behavior. The last two entries are integer counters used to estimate the probability of

success of this sequence of behaviors.

The meanings of these entries are best explained with an example. Consider the following

sample row

Binding Binding Exploratory Exploratory Ostart Oend
Times Times

Behavior Params Behavior Params Used Succ

βb1 b̃1
1 βe3

ẽ3
1, ẽ

3
2 Õ(t′) Õ(t′′) 4 3

in which the binding behavior βb1 which has one parameter, was performed to grasp the

tool. The specific value of the parameter for this behavior was b̃1
1 (a ˜ sign is used to

represent a specific fixed value). Next, the exploratory behavior βe3
was performed with

specific values ẽ3
1 and ẽ3

2 for its two parameters. The value of the observation vector prior

to the start of βe3
was Õ(t′) and its value after βe3

has completed was Õ(t′′). This sequence

of behaviors was performed four times. In three of these trials, the observed movement

direction of the attractor was similar to the stored movement direction in the table row.

Two attractor movements are considered to be similar if their angular movement directions

are within 40◦ of each other (also see Section 7.5.2). Therefore, the replication probability

of this affordance is 75%. Section 7.6 and Figure 7.8 provide more information about the

organization of the affordance table.

Initially the affordance table is blank. When the robot is presented with a tool it

performs a behavioral babbling routine, which picks binding and exploratory behaviors at

random, applies them to the tools and objects, observes their effects, and updates the

table. New rows are added to the table only if T was one while the exploratory behavior

was performed. The integer counters are not updated during learning trials. Prior to testing

trials the two counters of all rows are initialized to 1 and are later updated based on actual

experience.
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Figure 7.1: The robot and the five tools used in the experiments.

7.4 Experimental Setup

All experiments were performed using the mobile manipulator described in Section 4.2.

Five tools were used in the experiments: stick, L-stick, L-hook, T-stick, and T-hook (Fig-

ure 7.1). The tools were built from pine wood and painted with spray paint. The choice

of tools was motivated by the similar tools that Köhler’s used in his experiments with

chimpanzees(Köhler, 1931). An orange hockey puck was used as an attractor object.

A Sony EVI-D30 camera was mounted on a tripod overlooking the robot’s working area

(Figure 7.2). The robot’s wrist, the tools, and the attractor were color coded so that their

positions can be uniquely identified and tracked using computer vision (see Figures 7.3 and

7.4). The computer vision code was run at 15Hz in 640x480 resolution mode.

To ensure consistent tracking results between multiple robot experiments the camera was

calibrated every time it was powered up. The calibration was performed using Roger Tsai’s

method (Tsai, 1986, 1987) and the code given in (Willson, 1995). A 6 × 6 calibration

pattern was used (Figure 7.5). The pattern consists of small color markers placed on a

cardboard, 5 inches apart, so that they form a square pattern. The pixel coordinates of

the 36 uniformly colored markers were identified automatically using color segmentation
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(Figure 7.6). The pixel coordinates of the markers and their world coordinates (measured

in a coordinate system attached to the table) are passed to the camera calibration procedure

which calculates the intrinsic and extrinsic parameters of the camera. These parameters

can then be used in a mapping function which assigns to each (x,y) in camera coordinates

a (X,Y,Z) location in world coordinates, where Z is a parameter supplied by the user (e.g.,

Z=0 is the height of the table).

Figure 7.2: Experimental setup.
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Figure 7.3: Color tracking: raw camera image.

Figure 7.4: Color tracking: segmentation results.
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Figure 7.5: The 6×6 pattern used for camera calibration.

Figure 7.6: Results of color segmentation applied to the calibration pattern.
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7.5 Exploratory Behaviors

All behaviors used here were encoded manually from a library of motor schemas and per-

ceptual schemas (Arkin, 1998) developed for this specific robot. The behaviors result in

different arm movement patterns as described below.

Exploratory Behaviors Parameters

Extend arm offset distance
Contract arm offset distance
Slide arm left offset distance
Slide arm right offset distance
Position wrist x,y

The first four behaviors move the arm in the indicated direction while keeping the wrist

perpendicular to the table on which the tool slides. These behaviors have a single parameter

which determines how far the arm will travel relative to its current position. Two different

values for this parameter were used (2 and 5 inches). The position wrist behavior moves the

manipulator such that the centroid of the attractor is at offset (x, y) relative to the wrist.

7.5.1 Grasping Behavior

There are multiple ways in which a tool can be grasped. These represent a set of affordances

which we will call binding affordances, i.e., the different ways in which the robot can attach

the tool to its body. These affordances are different from the output affordances of the tool,

i.e., the different ways in which the tool can act on other objects. This chapter focuses only

on output affordances, so the binding affordances were specified with only one grasping

behavior. The behavior takes as a parameter the location of a single grasp point located at

the lower part of the tool’s handle.

7.5.2 Observation Vector

The observation vector has 12 real-value components. In groups of three, they represent

the position of the attractor object in camera-centric coordinates, the position of the object

relative to the wrist of the robot, the color of the object, and the color of the tool.
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Observation Meaning

o1, o2, o3 X,Y,Z positions of the object (camera-centric)
o4, o5, o6 X,Y,Z positions of the object (wrist-centric)
o7, o8, o9 R,G,B color components of the object
o10, o11, o12 R,G,B color components of the tool

The change detection function T was defined with the first three components, o1, o2, o3.

To determine if the attractor is moving, T calculates the Euclidean distance and thresholds

it with an empirically determined value (0.5 inches). The times-successful counter is incre-

mented if the observed attractor movement is within 40 degrees of the expected movement

stored in the affordance table.

7.6 Learning Trials

The third research question stated in Section 1.2 asked whether a robot can use exploratory

behaviors to both learn and represent the functional properties or affordances of tools. This

section describes one procedure which meets these criteria and was successfully used by

the CRS+ robot to learn the affordances of the five tools shown in Figure 7.1. A flowchart

diagram for this procedure (which was used during the learning trails) is shown in Figure 7.7.

The procedure used during the testing trials is described in the next section.

During the learning trials the robot was allowed to freely explore the properties of the

five stick tools shown in Figure 7.1. The exploration of each tool consists of trying different

exploratory behaviors, observing their results, and filling up the affordance table for the

tool. A new entry is added to the affordance table only if the attractor object is observed

to move while the exploratory behavior is being performed. If the object is not affected

by the exploratory behavior then the affordance table remains unchanged. Thus, object

movement acts both as an attention grabbing mechanism which triggers an update of the

affordance representation and also as an indicator of the effect of the tool on the object (see

Section 7.3.2). The initial positions of the attractor object and the tool were random. If the

attractor was pushed out of tool reach by the robot then the learning trial was temporarily

suspended while the attractor was manually placed in a new random position. The learning

trials were limited to one hour of run time for every tool.
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Figure 7.7: Flowchart diagram for the exploration procedure used by the robot to learn
the affordances of a specific tool when the tool is applied to an attractor object.
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7.6.1 What Is Learned

Figure 7.8 illustrates what the robot can learn about the properties of the T-hook tool based

on a single exploratory behavior. In this example, the exploratory behavior is “Contract

Arm” and its parameter is “5 inches.” The two observation vectors are stylized for the

purposes of this example. The information that the robot retains is not the images of

the tool and the puck but only the coordinates of their positions as explained above. If a

different exploratory behavior was selected by the robot it is possible that no movement of

the puck will be detected. In this case the robot will not store any information (row) in the

affordance table.

Figure 7.8: Contents of a sample row of the affordance table for the T-hook tool.

When the robot performs multiple exploratory behaviors a more compact way to rep-

resent this information is required. A good way to visualize what the robot learns is with

graphs like the ones shown in Figure 7.9. The figures show the observed outcomes of the

exploratory behaviors when the T-hook tool was applied to the hockey puck while the

robot was performing behavioral babbling. Each of the eight graphs shows the observed

movements of the attractor object when a specific exploratory behavior was performed. The

movements of the attractor object are shown as arrows. The start of each arrow corresponds

to the initial position of the attractor relative to the wrist of the robot (and thus relative to
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the grasp point) just prior to the start of the exploratory behavior. The arrow represents

the observed distance and direction of movement of the attractor in camera coordinates at

the end of the exploratory behavior. In other words, each of the arrows shown in Figure 7.9

represents one observed movement of the puck similar to the “detected movement” arrow

show in Figure 7.8. The arrows in Figure 7.9 are superimposed on the initial configuration

of the tool and not on its final configuration as in Figure 7.8.

This affordance representation can also be interpreted as a predictive model of the results

of the exploratory behaviors. In other words, the affordances are represented as the expected

outcomes of specific behaviors. This interpretation of affordances is consistent with the idea

that biological brains are organized as predictive machines that anticipate the consequences

of actions – their own and those of others (Berthoz, 2000, p. 1). It is also consistent with

some recent findings about the internal representation of the functional properties of novel

objects and tools in humans. As Mah and Mussa-Ivaldi (2003) note, “if the brain can predict

the effect of pushing or pulling an object this is effectively an internal model of the object

that can be used during manipulation”. A recent result in the theoretical AI literature

also shows that the state of a dynamic system can be represented by the outcomes of a set

of tests (Singh et al., 2002; Littman et al., 2002). The tests consist of action-observation

sequences. It was shown that the state of the system is fully specified if the outcomes of a

basis set of test called core tests are known in advance (Littman et al., 2002).
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Extend Arm
(2 inches)

Extend Arm
(5 inches)

Slide Left
(2 inches)

Slide Left
(5 inches)

Slide Right
(2 inches)

Slide Right
(5 inches)

Contract Arm
(2 inches)

Contract Arm
(5 inches)

Figure 7.9: Visualizing the affordance table for the T-hook tool. Each of the eight graphs
show the observed movements of the attractor object after a specific exploratory behavior
was performed multiple times. The start of each arrow corresponds to the position of the
attractor in wrist-centered coordinates (i.e., relative to the tool’s grasp point) just prior to
the start of the exploratory behavior. The arrow represents the total distance and direction
of movement of the attractor in camera coordinates at the end of the exploratory behavior.

7.6.2 Querying the Affordance Table

After the affordance table is populated with values it can be queried to dynamically create

behavioral sequences that solve a specific tool task. The behaviors in these sequences are

the same behaviors that were used to fill the table. Section 7.7 and Figure 7.10 describe the

test procedure employed by the robot during tool-using tasks. This subsection describes

only the search heuristic used to select the best affordance for the current task configuration

which is required by the procedure shown in Figure 7.10.

During testing trials, the best affordance for a specific step in a tool task was selected

using a greedy heuristic search. The query method that was adopted uses empirically de-

rived heuristics to perform multiple nested linear searches through the affordance table as

described below. Each successive search is performed only on the rows that were not elim-

inated by the previous searches. Thus, at each level the search for the best tool affordance

that is applicable to the current situation is focused only on the affordances that have al-

ready met the previous search criteria. Four nested searches were performed in the order

shown below:
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1) Select all rows that have observation vectors consistent with the colors of the current

tool and object.

2) From the remaining rows select those with probability of success greater than 50%,

i.e., select only those rows that have a replication probability (times successful/times used)

greater than 1
2 (the reasons for choosing this threshold value are described below).

3) Sort the remaining rows (in increasing order) based on the expected distance between

the attractor object and the goal region if the behavior associated with this row were to be

performed.

4) From the top 20% of the sorted rows choose one row which minimizes the re-positioning

of the tool relative to its current location (the repositioning rule is described in Section 7.7).

As it was mentioned above the greedy one-step-lookahead heuristic was derived em-

pirically. The performance of the heuristic was fine tuned for speed of adaptation in the

presence of uncertainty which is important when multiple robot trials have to be performed.

For example, the threshold value of 50% used in step 2 above was chosen in order to speed

up the elimination of outdated affordances when the geometry of the tool suddenly changes

(see the experiment described in Section 7.7.2). With this threshold value it takes only

one unsuccessful behavioral execution in order to eliminate an affordance from further con-

sideration. Future work should attempt to formulate a more principled approach to this

affordance-space planning problem, preferably using performance data derived from tool-

using experiments with animals and humans (e.g., Mah and Mussa-Ivaldi (2003)).
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7.7 Testing Trials

This section shows how the affordance representation described in the previous section can

be used to solve tool-using tasks. In other words, this section answers affirmatively the

second part of research question #3 stated in Section 1.2.

Figure 7.10 shows the flowchart diagram for the procedure used by the robot during the

testing trials. The experiments described in the following subsections require the robot to

move the attractor object over a color-coded goal region. Thus, the testing procedure starts

with identifying the position of the goal region. The current tool and attractor object are

also identified by their unique colors. Each testing trial ends when the attractor object is

placed over the goal region or after a timeout interval has expired.

The procedure shown in Figure 7.10 uses the affordance representation for the currently

available tool which is represented with the help of an affordance table (e.g., see Figure 7.9).

At each step the robot selects the best tool affordance applicable in the current situation

using the greedy heuristic described in Section 7.6.2. Based on the observation vector Ostart

associated with the selected affordance the robot decides whether it needs to reposition the

tool or not. The tool is repositioned if the current position of the attractor object relative

to the tool (i.e., relative to the green wrist marker shown in Figure 7.3) is more than 4

inches away from the attractor position stored in Ostart for the best affordance.

Next the robot performs the exploratory behavior associated with the best affordance

and compares its outcome with the outcome stored in the affordance table. If the observed

object movement matches the movement stored in the affordance table then both counters,

times used and times successful, for this affordance are incremented (see Figure 7.8). If the

behavior has no effect on the attractor object (i.e., the object is not observed to move) then

the replication probability for this affordance is reduced (i.e., only the times used counter is

incremented which effectively reduces the value of the fraction times successful/times used).

Similarly, if the effect of the behavior on the object is different from the expected effect based

on previous experience (i.e., if the direction of movement of the attractor is not within

40 degrees of the expected movement direction – see Section 7.5.2) then the replication

probability of the affordance is also reduced.
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Figure 7.10: Flowchart diagram for the procedure used by the robot to solve tool-using
tasks with the help of the behavior-grounded affordance representation.
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Two following two subsections describe two types of experiments that were performed.

They measured the quality of the learned representation and its adaptation abilities when

the tool is deformed, respectively.

7.7.1 Extension of Reach

In this experiment the robot was required to pull the attractor over a color coded goal

region. Four different goal positions were defined. The first goal is shown in Figure 7.1

(the dark square in front of the robot). The second goal was located farther away from

the robot (see Figure 7.2). To achieve it the robot had to push the attractor away from its

body. Goals 3 and 4 were placed along the mid-line of the table as shown in Figure 7.11.

Figure 7.11: The figure shows the positions of the four goal regions (G1, G2, G3, and G4)
and the four initial attractor positions used in the extension of reach experiments. The two
dashed lines indicate the boundaries of the robot’s sphere of reach when it is not holding
any tool.

In addition to that there were 4 initial attractor positions per goal. The initial positions

are located along the mid-line of the table, 6 inches apart (Figure 7.11). The tool was always

placed in the center of the table. A total of 80 trials were performed (4 goals × 4 attractor
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positions × 5 tools). The table below summarizes the results per goal, per tool. Each table

entry represents the number of successful trials with a given tool and goal configuration. A

trial is considered a success if the puck is placed over the goal region . Four is the possible

maximum value as there are four initial position for the puck for each goal configuration.

Tool Goal 1 Goal 2 Goal 3 Goal 4

Stick 0 2 4 4
L-stick 4 2 4 4
L-hook 4 3 4 4
T-stick 3 3 4 4
T-hook 4 4 4 4

As can be seen from the table, the robot was able to solve this task in the majority of the

test cases. The most common failure condition was due to pushing the attractor out of tool’s

reach. This failure was caused by the greedy one-step-lookahead heuristic used for selecting

the next tool movement. If the robot plans the possible movements of the puck for 2 or 3

moves ahead these failures will be eliminated. A notable exception is the Stick tool, which

could not be used to pull the object back to the near goal. The robot lacks the required

exploratory behavior (turn-the-wrist-at-an-angle-and-then-pull) that is required to detect

this affordance of the stick. Adding the capability of learning new exploratory behaviors

can resolve this problem.

The results of this experiment show that the behavior-grounded tool representation can

indeed be used to solve tool-using tasks (second part of research question #3).

7.7.2 Adaptation After a Tool Breaks

The second experiment was designed to test the flexibility of the representation in the

presence of uncertainties. The uncertainly in this case was a tool that can break. For

example, Figure 7.12 shows the tool transformation which occurs when a T-hook tool loses

one of its hooks. The result is a L-hook tool. This section describes the results of an

experiment in which the robot was exposed to such tool transformation after it had already

learned the affordances of the T-hook tool.

To simulate a broken tool, the robot was presented with a tool that has the same color
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Figure 7.12: A T-hook missing its right hook is equivalent to an L-hook.

ID as another tool with a different shape. More specifically, the learning was performed

with a T-hook which was then replaced with an L-hook. Because color is the only feature

used to recognize tools the robot believes that it is still using the old tool.

The two tools differ in their upper right sections. Whenever the robot tried to use

affordances associated with the missing parts of the tool they did not produce the expected

attractor movements. Figure 7.13 shows frames from a sequence in which the robot tried in

vain to use the upper right part of the tool to move the attractor towards the goal. After

several trials the replication probability of the affordances associated with that part of the

tool was reduced and they were excluded from further consideration. Figure 7.14 shows the

rest of this sequence in which the robot was able to complete the task with the intact left

hook of the tool.

A total of 16 trials similar to the one shown in Figure 7.13 were performed (i.e., 4 goal

regions × 4 initial attractor positions). In each of these experiments the robot started the

testing trial with the original representation for the T-hook tool and modified it based on

actual experience. The robot was successful in all 16 experiments, i.e., the robot was able to

place the attractor over the target goal region with the “broken” tool in all 16 experiments.

The results of this experiment show that the behavior-grounded tool representation can

be autonomously, tested, verified, and corrected by the robot as mandated by the verification

principle. This is an important contribution of this dissertation.
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Figure 7.13: Using a broken tool (Part I: Adaptation) - Initially the robot tries to
move the attractor towards the goal using the missing right hook. Because the puck fails to
move as expected the robot reduces the replication probability of the affordances associated
with this part of the tool.

Figure 7.14: Using a broken tool (Part II: Solving the task) - After adapting to
the modified affordances of the tool, the robot completes the task with the intact left hook.
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7.8 Discussion: Behavioral Outcomes Instead of Geometric Shapes of
Tools

It is important to emphasize that in the behavior-grounded approach taken here the repre-

sentation of the tool is encoded entirely in terms exploratory behaviors. It is also important

to note that the robot lacks information about the geometric shape of the tool. The shape

of the tool is neither extracted nor used by the robot. The only perceptual feature that the

robot detects about a given tool is its color, which serves as an unique ID for the tool.

The affordance table for the tool contains information only about the possible movements

of the attractor object given a certain exploratory behavior (i.e., it contains only the arrows

in Figure 7.9). The shape of the tool is shown in Figure 7.9 only for visualization purposes

and in order to make the results more human readable. Thus, a more accurate visualization

of the affordance table is the one shown in Figure 7.15. In the previous figure the boundary

of the tool was presented only to help the human observer.

Extend Arm
(2 inches)

Extend Arm
(5 inches)

Slide Left
(2 inches)

Slide Left
(5 inches)

Slide Right
(2 inches)

Slide Right
(5 inches)

Contract Arm
(2 inches)

Contract Arm
(5 inches)

Figure 7.15: An alternative way to visualize the affordance table for the T-hook tool. The
eight graphs show the same information as Figure 7.9. In this case, however, the shape of
the tool (which is not detected by the robot) is not shown. The black square shows the
position of the robot’s wrist which is also the position of the grasp point (i.e., the square
is the green body marker in Figure 7.3). This view of the affordance table is less human
readable but shows better the representation of the tool from the point of view of the robot.
Here the tool is represented only in terms of exploratory behaviors without extracting the
shape of the tool.

225



To make this point even more obvious two other tools were designed – the V-stick and

the Y-stick – as shown in Figure 7.16 and Figure 7.17. The two new tools are made of the

same pine wood as the other five tools. Their top parts, however, are made of thin metal.

While, their shapes are distinct to a human observer, to the robot they are indistinguishable.

The reason for this is that the metal parts of the two tools are too thin to be detected by the

robot’s color tracking algorithm. Thus, the metal parts of the tools are indistinguishable

from the background tracking noise. The color tracking results for the two tools are shown

in Figure 7.18 and Figure 7.19.

The robot learned the affordances of both tools in the same way as it did for the other

five tools. In other words, it was allowed to “play” with each tool for one hour. If the

attractor object was pushed out of tool reach during that period the learning trial was

suspended for a short time and the attractor was placed back on the table in a new random

location.

The learned affordance representations for both tools are shown in Figure 7.20 and

Figure 7.21. As can be seen from these figures, even though the robot cannot observe the

top parts of the tools it nevertheless learned that they act in different ways as indicated by

the movements of the attractor object. Furthermore, the robot was able to successfully use

these invisible parts of the tools. This example shows once again that the behavior-grounded

approach relies only coupling of robot behaviors and their observable outcomes.

For example, Figure 7.22 shows several frames from a sequence in which the robot was

able to use the V-Stick successfully to push the attractor to the distant goal (goal G2 in

Figure 7.11). This task was not always solvable with a straight stick as it was explained

above. The affordances of the V-Stick, however, make this task solvable. The robot performs

several pushing movements with the V-Stick alternating the right and left contact surface

between the tool and the puck. As a result the puck takes a zig-zag path to the goal.
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Figure 7.16: The robot holding the V-Stick tool.

Figure 7.17: The robot holding the Y-stick tool.
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Figure 7.18: Color segmentation results for the V-stick tool.

Figure 7.19: Color segmentation results for the Y-stick tool.
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Figure 7.20: The learned affordance representation for the V-Stick tool.
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Figure 7.21: The learned affordance representation for the Y-Stick tool.
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Figure 7.22: Frames from a sequence in which the robot uses the V-Stick to push the puck
towards the away goal. The robot performs several pushing movements with the V-Stick
alternating the right and left contact surface between the tool and the puck. As a result
the puck takes a zig-zag path to the goal.

7.9 Chapter Summary

This chapter introduced a novel approach to representing and learning tool affordances

by a robot. The affordance representation is grounded in the behavioral and perceptual

repertoire of the robot. More specifically, the affordances of different tools are represented

in terms of a set of exploratory behaviors and their resulting effects. It was shown how this

representation can be used to solve tool-using tasks by dynamically sequencing exploratory

behaviors based on their expected outcomes. The results described in this chapter answer

affirmatively the third research question stated in Section 1.2 which asked whether a robot

can use exploratory behaviors to both learn and represent the functional properties or

affordances of tools.

The behavior-grounded approach represents the tools’ affordances in concrete terms (i.e.,

behaviors) that are available to the robot’s controller. Therefore, the robot can directly test

the accuracy of its tool representation by executing the same set of exploratory behaviors
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that was used in the past. If any inconsistencies are detected in the resulting observations

they can be used to update the tool’s representation. Thus, the accuracy of the repre-

sentation can be directly tested and verified by the robot as mandated by the verification

principle (see Section 3.2). It was demonstrated how the robot can use this approach to

adapt to changes in the tool’s properties over time, e.g., tools that can break.

A shortcoming of the behavior-grounded approach is that there are tool affordances

that are unlikely to be discovered since the required exploratory behavior is not available

to the robot. This problem has also been observed in animals, e.g., macaque monkeys have

significant difficulties learning to push an object with a tool away from their bodies because

this movement is never performed in their normal daily routines Ishibashi et al. (2000).

This problem can be resolved, however, if the ability to learn new exploratory behaviors is

added.

There are some obvious extensions to this work that are left for future work. First, the

current implementation starts the exploration of a new tool from scratch even though it may

be similar to an already explored tool. Adding the ability to rapidly infer the affordances

of a new tool from its shape similarity to previous tools would be a nice extension.

Second, the current implementation uses a purely random behavioral babbling explo-

ration procedure. Different strategies that become less random and more focused as infor-

mation is structured by the robot during the exploration could be used to speed up the

learning process.

Third, the behavior-grounded approach should be compared experimentally with plan-

ners for pushing objects (e.g.,Mason (2001)). It is expected that the behavior-grounded

method would approach asymptotically the accuracy of these planners as the number and

diversity of the exploratory behaviors is increased. It is also expected, however, that the

behavior-grounded approach would excel in situations that cannot be predicted by the

planners, e.g., tools that can break or objects whose center of mass can shift between trials.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

This dissertation makes several important contributions to the field of robotics. The main

contributions of the dissertation can be broadly summarized as follows:

• It demonstrates a method for autonomous self-detection in robots (Chapter 5).

• It demonstrates a model for extendable robot body schema which can be used to

achieve video-guided behaviors (Chapter 6).

• It demonstrates a behavior-grounded method for learning the affordances of tools

which can also be used to solve tool-using tasks (Chapter 7).

These contributions are described and analyzed in more detail below.

8.1 Self-Detection in Robots

Chapter 5 described a method for autonomous self-detection by a robot. The method detects

the temporal contingency between motor commands (efferent signals) and visual movements

(afferent signals) to estimate the efferent-afferent delay of the robot. In compliance with

the verification principle and the subjectivity principle, Chapter 5 showed how the robot

can estimate its own efferent-afferent delay from self-observation data. It was shown how

the robot can estimate this delay while performing random joint movements similar to the

primary circular reactions described by Piaget (1952).

Using the value of this delay a robot can learn which features belong to its own body and

which to the environment, which is an important contribution of this research. It was shown

that the self-detection algorithm is robust under a variety of test conditions. For example,

the algorithm is not affected by the presence of other moving objects in the environment;

the algorithm performed well even when a second independently moving robot was present
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in the environment. Using this approach, the robot was also able to detect its self-image in

a TV monitor, which is another important contribution of this research.

The experimental results described in Chapter 5 show that a robot can successfully

distinguish between its own body and the external environment. These results directly

support the first research question stated in Section 1.2. The robot was able to correctly

classify different visual stimuli as either “self” or “other.”

Another contribution of this dissertation was applying the concept of temporal contin-

gency from the Psychology literature (e.g., the work of Watson (1985, 1994)) to the robotics

field and implementing a computational model which uses this concept on a real robot. The

results described in Chapter 5 demonstrate that Watson’s general framework is appropri-

ate for application on robots. The results also showed, however, that his model has some

shortcomings which were reported here for the first time and resolved successfully. Future

studies can use this modification for self-detection experiments with either robots or infants.

One limitation of the current implementation is that it makes the assumption that

visually distinct features (color markers) exist on the surface of the robot’s body which

can be reliably identified and tracked. The color markers were chosen in order to solve the

tracking and correspondence problems in a computationally efficient way. In retrospect, this

decision was probably not the most optimal one. Reliable color tracking for extended periods

of time remains a challenging problem. The number of distinct colors that can be tracked

reliably for long periods of time also turned out to be quite small, which constrained the

experimental designs. Future work should focus on either eliminating the need for distinct

perceptual features or adding the ability to learn these features from actual experience.

8.2 Extendable Body Schema Model for Robots

Chapter 6 described an extendable body schema model for robots. The basic model is

based on the Self-Organizing Body Schema model described by Morasso and Sanguineti

(1995). Chapter 6 modified their model such that the body schema model has extensibility

properties similar to its biological analog.

In this chapter, the extension mechanism is triggered by the movement coincidence
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between perceptual features associated with the robot’s body and perceptual features asso-

ciated with an external object. The external object can even be an image of the robot in a

TV monitor. Thus, no physical contact is required to trigger the extension mechanism.

This chapter also described an experiment involving a reaching task. The robot, how-

ever, was not allowed to observe its own movements directly. Instead, it was only able to

observe its own movements through a real-time TV image. The robot was able to detect

the temporal contingency between its own motor actions and the movements of the visual

features in the TV monitor. Based on this information, the robot was able to extend its

body schema and use the video image as feedback in order to execute the reaching behavior.

The robot was able to reach for the object even when the TV image was rotated by 50 de-

grees. This experiment constitutes the first-ever demonstration of a video-guided behavior

by a robot. This experiment also showed the usefulness of the body schema for control of

robot behaviors when the robot can receive feedback about its own actions only through

indirect means (e.g., through a TV monitor).

One shortcoming of the current implementation is that it relies on the existence of unique

visual features that are placed on the robot’s body. Color tracking was also unreliable under

large magnifications of the TV image. Future work should focus on modifying the body

schema model to work with features that are not based on color and which are not necessarily

unique.

Another shortcoming of the current implementation is that it does not take into account

the dynamics of the robot and the attached tool. For example, a long stick may have the

potential to extend the reach of the robot but if the stick is too heavy this extension may

not be achievable for some or all joint configurations of the robot.

The results described in Chapter 6 demonstrate that a robot can learn a sensorimotor

model of its own body from self-observation data, which answers affirmatively the second

research question stated in Section 1.2. The results described in this chapter also show that

the pliable body representation can be used to facilitate the execution of goal-oriented tasks

such as video-guided behaviors, which is an important contribution of this dissertation.
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Future work can build upon the principles described in Chapter 6 to achieve video-

guided robot behaviors for other tasks. For example, one task with many potential practical

applications is using a mouse to position a mouse cursor on a computer monitor. Another

task with numerous practical applications to use a rear view camera (or mirror) to back up

a car or a truck.

8.3 Learning of Tool Affordances

Chapter 7 described a novel method for learning tool affordances by a robot. The tool

affordances are represented in terms of the expected outcomes of exploratory behaviors. In

other words, the affordances of the tools are grounded in the behavioral repertoire of the

robot. Because the robot learns the tool representation using the verification principle the

robot can independently test and verify its own representation. Furthermore, the robot

can autonomously correct this representation when the tools don’t behave as expected. For

example, the robot was able to relearn the affordances of a tool when the tool was broken.

Thus, the verification principle gives the robot the ability to autonomously detect errors

in its own representation. Consequently, the robot has the ability to perform error driven

learning. A robot that was programmed to use a specific tool in a specific way would never

be able to recover from such a failure.

The work presented in Chapter 7 represents one of the first computational models of

tool affordances. When I first started working in this area the term affordance was not

even familiar to many roboticists. Over the last couple of years, however, the interest in

this area has been growing steadily and it seems that soon affordance research may become

mainstream robotics. For example, in 2006 in Dagstuhl, Germany there was an workshop

entitled: Towards Affordance-Based Robot Control.1

The results presented in Chapter 7 also demonstrate that a robot can use exploratory

behaviors to both learn and represent the functional properties or affordances of tools. This

answers affirmatively the third research question stated in Section 1.2.

One shortcoming of the behavior-grounded approach is that there are tool affordances

1See http://www.dagstuhl.de/de/programm/kalender/semhp/?semid=28425
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that are unlikely to be discovered by the robot because it lacks the required exploratory

behavior. For example, if the robot does not have a pushing behavior in its behavioral

repertoire it will never be able to discover the pushing affordance of a new tool. This

problem can be solved, however, if the ability to learn new exploratory behaviors is added.

The best way to achieve this would be through social interaction with humans who are

experienced tool users. Thus, future work should address the problem of social learning of

exploratory behaviors through human-robot interaction.

Another shortcoming of the current implementation is that the robot uses a purely

random behavioral babbling exploration procedure to learn the affordances of all tools. A

better option would be to use human feedback during the learning process to narrow down

the exploration space. For example, the human can suggest which behaviors the robot

should use to explore the tool. The human can also focus the attention of the robot to a

specific part of the tool which is critical for solving a specific task.

Yet another shortcoming of the current implementation is that the robot explores all

new tools in the same way. It start the exploration with an empty affordance table and

adds new affordances as they are discovered through behavioral babbling. If a new tool is

similar to an already explored tool the robot should be able to explore this similarity to

speed up the exploration process. Currently, this is not possible because the method ignores

the shape of the tools completely. The shape is neither detected nor used in any way. The

tool representation is entirely based on the observable outcomes that the movements of the

tool produce on the attractor object. A natural extension would be to learn to associate

the affordances with specific local shapes of the tools. This can later be used to infer the

affordances of a novel tool without actually performing any exploratory behaviors.

8.4 Future Work

This dissertation began with the vision that one day there will intelligent robots which

can overcome the limitations of their bodies by using tools and thus would be more useful

than the robots of today. This dissertation made a small step in that direction. There

are still significant challenges, however, which must be overcome before we can have truly
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autonomous tool-using robots. This section describes four broad areas for future work that

can bring us even closer to that vision:

• Other Modes of Tool Use - The experiments described in this dissertation have

focused on only one tool-using mode: extension of reach. Designing robot algorithms and

representations which can address the amplification of force and the control of liquids tool-

using modes seem to be a fruitful area of future work. Both of these modes, however, are

very challenging to implement on a robot. For example, learning that a hammer can be used

to crush objects is a non-trivial task because the crushed object will be totally transformed

after the action of the hammer. The sensing challenges for liquids are even more difficult.

Robots that can learn to control liquids autonomously would be very useful, especially as

household robots that can assist with everyday chores or nurse robots that can take care of

elderly people in homes and hospitals.

• Tool Modification - The experiments described in this dissertations used only rigid

and non-deformable tools. Both humans and animals, however, are capable of using de-

formable tools. For example, under lab conditions a New Caledonian crow was observed to

consistently bend a piece of wire into a hook in order to extract food rewards that would

be impossible to get otherwise (Weir et al., 2002). There is not a single robot today that

can autonomously solve this task.

• Tool Manufacture - An even more challenging area for future work is tool manufacture.

While tool modification focuses on modifying a single tool, tool manufacture focuses on

combining two tools to build a new tool. Tool manufacture in animals was first reported by

Köhler (1931) who observed that one of his chimpanzees was able to combine two hollow

sticks into a longer stick by inserting one into the other.

• Tools That Extend Sensory Abilities - Another fruitful area of future work deals with

tools that extend the sensory abilities of the robot such as - magnifying glasses, night vision

goggles, or earphones. For example, a magnifying glass can be used to study the shapes

and forms of small objects. Before we can have robots that can achieve this, however, we

will need to design some very pliable models for the organization of the robot’s senses. The

237



challenges from a perceptual perspective are also significant.

In all of the tasks mentioned above the real challenge is not solving the individual task

because for any concretely specified task an engineered solution can be designed. Instead,

the real challenge is how to design robot algorithms which can solve tasks like these au-

tonomously. In other words, the algorithms and the internal representations that the robot

uses must be independent of any task.

Finally, I believe that research in autonomous tool using robots is only going to increase

in importance as robots begin to spread to human inhabited environments. Some of that

has already began to happen. However, the really exciting applications of autonomous tool

using robots are still ahead of us.
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Farné, A. and Ládavas, E. Dynamic size-change of hand peripersonal space following
tool use. NeuroReport, 11(8):1645–1649, June 2000.

Fitzpatrick, P., Metta, G., Natale, L., Rao, S., and Sandini, G. Learning about
objects through action - initial steps towards artificial cognition. In IEEE ICRA, Taipei,
Taiwan, May 12-17, 2003.

Flom, R. and Bahrick, L. E. Is featural information necessary for 5-month-olds’ per-
ception of motion specifying the self? In Society for Research in Child Development,
Minneapolis, MN, April 2001.

Frederiks, J. A. M. Disorders of the body schema. In Vinken, P. J. and Bruyn,

G. W., editors, Handbook of Clinical Neurology: Disorders of Speech Perception and
Symbolic Behavior, volume 4, pages 207–240. North Holland, 1969.

Freud, S. New introductory lectures on psychoanalysis. Norton, New York, 1965.

Fujita, M., Kuroki, Y., Ishida, T., and Doi, T. Autonomous behavior control architec-
ture of entertainment humanoid robot sdr-4x. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 960– 967, Oct. 27-31 2003.

Gallistel, C. Time has come. Neuron, 38(2):149–150, 2003.

Gallistel, C. R. Coordinate transformations in the genesis of directed action. In Bly,

B. O. M. and Rummelhart, D. E., editors, Cognitive science, pages 1–42. Academic,
New York, 1999.

Gallistel, C. R. and Gibbon, J. Time, rate and conditioning. Psychological Review,
107:289–344, 2000.

Gallup, G., Anderson, J., and Shillito, D. The mirror test. In Bekoff, M., Allen,

C., and Burghardt, G., editors, The Cognitive Animal: Empirical and Theoretical
Perspectives on Animal Cognition. MIT Press, Cambridge, MA, 2002.

Gallup, G. G. Self recognition in primates: A comparative approach to the bidirectional
properties of consciousness. American Psychologist, 32:329–338, 1977.

Gallup, G. G., Wallnau, L. B., and Suarez, S. D. Failure to find self-recognition in
mother-infant rhesus monkey pairs. Folia Primatologica, 32(210-219), 1980.

Gallup, G. G. J. Chimpanzees: self-recognition. Science, 167(3914):86–7, Jan. 2 1970.

Gardiner, M. The superellipse: A curve between the ellipse and the rectangle. Scientific
American, 213:222–234, 1965.

Gerkey, B., Vaughan, R. T., and Howard, A. The player/stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings of the 11th International
Conference on Advanced Robotics (ICAR), pages 317–323, Coimbra, Portugal, June 2003.

Gibbon, J. Scalar expectancy theory and weber’s law in animal timing. Psychological
Review, 84(3):279–325, 1977.

Gibbon, J. Origins of scalar timing. Learning and Motivation, 22(1-2):3–38, February-May
1991.

243



Gibbon, J. and Church, R. M. Sources of variance in an information processing theory
of timing. In Roitblat, H., Bever, T., and Terrace, H., editors, Animal cognition,
pages 465–488. L. Erlbaum Associates, Hillsdale, NJ, 1984.

Gibbon, J., Malapani, C., Dale, C. L., and Gallistel, C. Toward a neurobiology of
temporal cognition: advances and challenges. Current Opin Neurobiology, 7(2):170–84,
1997.

Gibbs, Jr., R. W. Embodiment and Cognitive Science. Cambridge University Press, 2006.

Gibson, E. J. Principles of perceptual learning and development. Appleton-Century-Crofts,
New York, 1969.

Gibson, J. J. The ecological approach to visual perception. Houghton Mifflin, Boston, 1979.

Girdner, J. B. An experimental analysis of the behavioral effects of a perceptual conse-
quence unrelated to organic drive states. American Psychologist, (8):354–355, 1953.

Glenberg, A. What memory is for. Behavioral and Brain Sciences, 20(1):1–55, 1997.

Glickman, S. E. and Sroges, R. W. Curiosity in zoo animals. Behaviour, 27:151–187,
1966.

Go, J., Browning, B., and Veloso, M. Accurate and flexible simulation for dynamic,
vision-centric robot. Technical Report CMU-CS-04-180, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, November 2004.

Goldstein, M. H., King, A. P., and West, M. J. Social interaction shapes babbling:
Testing parallels between birdsong and speech. Proceedings of the National Academy of
Sciences (PNAS), 100(13), June 24 2003.

Goodal, J. Tool-using and aimed throwing in a community of free living chimpanzees.
Nature, 201:11264–1266, 1964.

Goodall, J. and van Lawick, H. Use of tools by egyptian vultures. Nature, 212:1468–
1469, 1966.

Graziano, M. S., Taylor, C. S., and Moore, T. Complex movements evoked by
microstimulation of precentral cortex. Neuron, 30 May 2002.

Graziano, M. S. A., Cooke, D. F., and Taylor, C. S. R. Coding the location of the
arm by sight. Science, 290:1782–1786, December 2000.

Green, K., Eggert, D., Stark, L., and Bowyer, K. W. Generic recognition of artic-
ulated objects through reasoning about potential function. Computer vision and Image
understanding, 62(2):177–194, September 1995.

Hall, K. and Schaller, G. B. Tool using behavior of the california sea otter. Journal
of Mammalogy, 45:287–298, 1964.

Haralick, R. M. and Shapiro, L. G. Computer and Robot Vision, chapter 18 Object
Models and Matching. Addison-Wesley, 1993.

Harnad, S. The symbol grounding problem. Physica D, 42:335–346, 1990.

244



Harrisson, B. Orang-utan. Boubleday, Garden City , N.J., 1963.

Hayes, P. J. The second naive physics manifesto. In Formal Theories of the Commonsense
World. Ablex, 1985.

Head, H. and Holmes, G. Sensory disturbances from cerebral lesions. Brain, 34:102–254,
1911.
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O’Regan, J. K. and Noë, A. A sensorimotor account of vision and visual consciousness.
Behavioral and Brain Sciences, 24(5), 2001.

Owings, D., Borchert, M., and Virginia, R. The behavior of california ground squir-
rels. Animal Behavior, (25):221–230, 1977.

Owings, D. and Cross, R. Snake mobbing by california ground squirrels: Adaptive
variation and ontogeny. Behaviour, (62):50–69, 1977.

Paillard, J. The hand and the tool: The functional architecture of human technical
skills. In Berthelet, A. and Chavail, J., editors, The Use of Tools by Human and
Non-human Primates, pages 36–46. Oxford University Press, New York, 1993.

Parker, C. The use of tools by apes. Zoonooz, 41:10–13, 1968.

Parker, S. and Gibson, K. Object manipulation, tool use and sensorimotor intelligence
as feeding adaptations in cebus monkeys and great apes. J. Hum. Evol, 6:623–641, 1977.

Parker, S., Mitchell, R., and Boccia, M., editors. Self-Awareness in Animals and
Humans: Developmental Perspectives. Cambridge University Press, Cambridge, 1994.

248



Parker, S. T. A developmental approach to the origins of self-recognition in great apes.
Human Evolution, 6:435–449, 1991.

Pearl, J. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.

Pfeifer, R. and Scheier, C. Understanding intelligence. MIT Press, 1999.

Piaget, J. The origins of intelligence in children. International Universities Press, New
York, 1952.

Pick, A. Störung der orientierung an eigen körper. Psychol. Forsch, 1:303–318, 1922.

Plotnik, J., de Waal, F., and Reiss, D. Self-recognition in an Asian elephant. Pro-
ceedings of the National Academy of Sciences of the United States (PNAS), 103(45):
17053–17057, November 7 2006.

Poirier, F. E. and McKee, J. K. Understanding Human Evolution. Prentice Hall, Upper
Saddle River, New Jersey, fourth edition, 1999.

Potts, R. Home bases and early hominids. American Scientific, 72:338–347, 1984.

Povinelli, D. J. and Cant, J. G. H. Arboreal clambering and the evolution of self-
conception. Quarterly review of Biology, 70(Issue 4.):393–421, Dec. 1995.

Povinelli, D. J., Reaux, J. E., Theall, L. A., and Giambrone, S. Folk Physics for
Apes: The Chimpanzee’s theory of how the world works. Oxford University Press, Oxford,
2000.

Power, T. G. Play and Exploration in Children and Animals. Lawrence Erlbaum Asso-
ciates, Publishers, Mahwah, New Jersey, 2000.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Nu-
merical Recipes in C: The Art of Scientific Computing. Cambridge University Press,
Cambridge, New York, second edition edition, 1992.

Ramachandran, V. and Blakeslee, S. Phantoms in the Brain: Probing the Mysteries
of the Human Mind. William Morrow, New York, 1998.

Ramachandran, V. S. and Rogers-Ramachandran, D. Synaesthesia in phantom limbs
induced with mirrors. Proc. Royal Society London, Series B., 263(1369), Apr. 22 1996.

Reed, E. S. Applying the theory of action systems to the study of motor skills. In Maijer,

O. and Roth, K., editors, Complex movement behavior: The motor action controversy,
pages 45–86. Elsevier Sciences Publishers, B. V. North Holland, 1988.

Reiss, D. and Marino, L. Mirror self-recognition in the bottlenose dolphin: A case of
cognitive convergence. Proceedings of the National Academy of Sciences (PNAS), 98(10):
5937–5942, May 8 2001.

Riedman, M. L. Sea Otters. Monterey Bay Aquarim, Monterey, California, 1990.

Rivlin, E., Dickinson, S. J., and Rosenfeld, A. Recognition by functional parts.
Computer Vision and Image Understanding, 62(2):164–176, 1995.

249



Rochat, P. Five levels of self-awareness as they unfold early in life. Consciousness and
Cognition, 12:717–731, 2003.

Schaal, S. and Atkeson, C. G. Robot juggling: An implementation of memory-based
learning. Control Systems Magazine, 14:57–71, 1994.
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Sharma, R., Hervé, J.-Y., and Cucka, P. Dynamic robot manipulation using visual
tracking. In Proceedings of IEEE International Conference on Robotics and Automation,
pages 1844–1849, 1992.

Sharma, R. and Sutanto, H. Integrating configuration space and sensor space for vision-
based robot motion planning. In Laumond, J.-P. and Overmars, M., editors, 1996
Workshop on the Algorithmic Foundations of Robotics:Algorithms for Robotic Motion and
Manipulation, pages 63–77, Wellesley, Massachusetts, 1996. A. K. Peters.

Shillito, D. J., Gallup, G. G. J., and Beck, B. B. Factors affecting mirror bahaviour
in western lowland gorillas, gorilla gorilla. Animal Behaviour, 57:999–1004, 1999.

Singh, S., Littman, M., Sutton, R., and Stone, P. Learning predictive state repre-
sentations. Paper Draft (unpublished), 2002.

Skinner, B. F. The Behavior of Organisms: An Experimental analysis. D. Appleton
Century, New York, 1938.

Smith, R. The Open Dynamics Engine (ODE) User Guide, 2003. http://ode.org/ (Date
accessed: May 2004).

St. Amant, R. and Wood, A. B. Tool use for autonomous agents. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), pages 184–189, 2005.

Stansfield, S. Visually-Guided Haptic Object Recognition. PhD thesis, University of
Pennsylvania, Dept. of Computer and Information Science, 1987. Technical Report MS-
CIS-87-92.

Stansfield, S. A. Representing generic objects for exploration and identification. In
Proceedings of the IEEE International Conference on Robotics and Automation, pages
1090–1095, 1988.

Stansfield, S. A. Robotic grasping of unknown objects: A knowledge-based approach.
International Journal of Robotics Research, 10(4):314– 326, August 1991.

Stark, L. and Bowyer, K. Generic Object Recognition using Form and Function, vol-
ume 10 of Series in Machine Perception and Artificial Intelligence. World Scientific,
Singapore, 1996.

250



Stark, L., Bowyer, K., Woods, K., Hall, L., and Cook, D. Application of ma-
chine learning in function-based recognition. In Ikeuchi, K. and Veloso, M., editors,
Symbolic Visual Learning, pages 141–169. Oxford University Press, New York, 1997.

Stark, L. and Bowyer, K. W. Achieving generalized object recognition through reason-
ing about association of function to structure. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 3(10):1097–1104, October 1991.

Stoytchev, A. Computational model for an extendable robot body schema. Technical
Report GIT-CC-03-44, Georgia Institute of Technology, College of Computing, October
21 2003.

Stoytchev, A. Toward learning the binding affordances of objects: A behavior-grounded
approach. In Proceedings of AAAI Symposium on Developmental Robotics, pages 17–22,
Stanford University, Mar 21-23 2005.

Struhsaker, T. T. and Hunkeler, P. Evidence of tool-using by chimpanzees in the
ivory coast. Primates, 15:212–219, 1971.

Sutton, M., Stark, L., and Bowyer, K. Gruff-3: Generalizing the domain of a function-
based recognition system. Pattern Recognition, 27(12):1743–1766, December 1994.

Sutton, M., Stark, L., and Bowyer, K. W. We do dishes, but we don’t do windows:
function-based modeling and recognition of rigid objects. In SPIE 1825: Intelligent
Robots and Computer Vision XI: Algorithms, Techniques and Active Vision, pages 132–
142, Boston, MA, November 1992.

Sutton, M., Stark, L., and Bowyer, K. W. Function-based generic recognition for
multiple object categories. In Jain, A. K. and Flynn, P., editors, Three-dimensional
Object Recognition systems, pages 447–470. Elsevier Science Publishers, 1993.

Sutton, R. Verification. on-line essay (http://www.cs.ualberta.ca/~sutton/IncIdeas/Verification.html)
(Date accessed: September 2006), 2001a.

Sutton, R. Verification, the key to AI. on-line essay
(http://www.cs.ualberta.ca/~sutton/IncIdeas/KeytoAI.html) (Date accessed: Septem-
ber 2006), 2001b.

Tattersall, I., Delson, E., and Couvering, J. V., editors. Encyclopedia of Human
Evolution and Prehistory. Garland Publishing, New York, 1988.

Tebbich, S., Taborsky, M., Fessl, B., and Blomqvist, D. Do woodpecker finches
acquire tool-use by social learning? Proceedings of the royal society of London Series B
- Biological Sciences, 268(1482):2189–2193, November 2001.

Tiemersma, D. Body Schema and Body Image: An Interdisciplinary and Philosophical
Study. Swets and Zeitlinger B. V., Amsterdam, 1989.

Tomasello, M. and Call, J. Primate Cognition. Oxford University Press, New York,
1997.

Triesman, M. Temporal discrimination and the indifference interval: Implications for a
model of the ”internal clock”. Psychological Monographs, 77(13), 1963.

251



Triesman, M. Noise and weber’s law: The discrimination of brightness and other dimen-
sions. Psychological Review, 71:314–330, 1964.

Tsai, R. Y. An efficient and accurate camera calibration technique for 3d machine vision.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
364–374, Miami Beach, FL, 1986.

Tsai, R. Y. ”a versatile camera calibration technique for high-accuracy 3d machine vi-
sion metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and
Automation, RA-3(4):323–344, August 1987.

Tsukamoto, Y. Pinpointing of an upper limb prosthesis. Journal of Prosthetics and
Orthotics, 12(1):5–6, 2000.

Umeyama, S. Least-squares estimation of transformation parameters between two point
patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 13
(4):376–80, 1991.

van Lawick-Goodall, J. Tool-using in primates and other vertebrates. In Lehrman,

D., Hinde, R., and Shaw, E., editors, Advances in the study of behavior, volume 3,
pages 195–249. Academic Press, New York, 1970.

Varela, F., Thompson, E., and Rosch, E. The embodies mind: Cognitive Science and
Human Experience. MIT Press, Cambridge, MA, 1991.

Vauclair, J. Phylogenetic approach to object manipulation in human and ape infants.
Human Development, 27:321–328, 1984.

Viana, L. M. and Jaulent, M. C. Object structure and action requirements: a compat-
ibility model for functional recognition. International Journal of Intelligent Systems, (6):
331–336, 1991.

Visalberghi, E. Tool use in a south american monkey species: an overview of the charac-
teristics and limits of tool use in cebus apella. In Berthelet, A. and Chavaillon, J.,
editors, The use of Tools by Human and Non-human Primates, pages 118–131. Clarendon
Press, Oxford, 1993.

Visalberghi, E. and Limongelli, L. Lack of comprehension of cause-effect relations in
tool-using capuchin monkeys (cebus apella). Journal of Comparative Psychology, 108:
15–22, 1994.

Visalberghi, E. and Trinca, L. Tool use in capuchin monkeys: distinguishing between
performing and understanding. Primates, 30:511–21, 1989.

Wang, X., Merzenich, M., Sameshima, K., and Jenkins, W. Remodelling of hand
representation in adult cortex determined by timing of tactile stimulation. Nature, 378:
71–75, Nov. 1995.

Washburn, S. L. Tools and human evolution. In Isaac, G. and Leakey, R., editors,
Human Ancestors: Readings from Scientific American. W. H. Freeman and Co., 1979. (
Originally published in Sep. 1960).

252



Watson, J. S. Contingency perception in early social development. In Field, T. M.

and Fox, N. A., editors, Social Perception in Infants, pages 157–176. Ablex Pub. Corp.,
Norwood, N. J., 1985.

Watson, J. S. Detection of self: The perfect algorithm. In Parker, S., Mitchell,

R., and Boccia, M., editors, Self-Awareness in Animals and Humans: Developmental
Perspectives, pages 131–148. Cambridge University Press, Cambridge, 1994.

Weir, A., Chappell, J., and Kacelnik, A. Shaping of hooks in new caledonian crows.
Science, 297:981, 9 August 2002.

Wenar, C. Executive competence in toddlers: A prospective, observational study. Genetic
Psychology Monographs, 93:189–285, 1976.

Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M.,
and Thelen, E. Autonomous mental development by robots and animals. Science, 291
(5504):599–600, Jan. 26 2001.

Westergaard, G. C. and Suomi, S. J. Mirror inspection varies with age and tool-using
ability in tufted capuchin monkeys (cebus apella). Human Evolution, 10(3):217–223, 1995.

White, R. W. Motivation reconsidered: The concept of competence. Psychological Review,
66:297–333, 1959.

Willson, R. Tsai Camera Calibration Software, 1995. (this document and the source code
can be downloaded from http://www-2.cs.cmu.edu/~rgw/TsaiCode.html) (Date accessed:
January 2005).

Wilson, E. Sociobiology: The new synthesis. Belknap, Cambridge, MA, 1975.

Wolff, P. H. The developmental psychologies of jean piaget and psychoanalysis. Psycho-
logical Issues, 2(1):3–181, 1960. [Monograph 5].

Yerkes, R. M. Chimpanzees: A Laboratory Colony. Yale University Press, New Haven,
1943.

Yerkes, R. M. and Yerkes, A. W. The Great Apes: A study of anthropoid life. Yale
University Press, New Haven, 1929.

Yoshikawa, Y., Hosoda, K., and Asada, M. Cross-anchoring for binding tactile and
visual sensations via unique association through self-perception. In Proceedings of the
Third International Conference on Development and Learning (ICDL), 2004.

Yoshikawa, Y., Kawanishi, H., Asada, M., and Hosoda, K. Body scheme acquisition
by cross map learning among tactile, image, and proprioceptive spaces. In Proceedings of
the Second International Workshop on Epigenetic Robotics, 2002.

Zlatev, J. and Balkenius, C. Introduction: Why epigenetic robotics? In Proceedings of
the First International Workshop on Epigenetic Robotics, September 16-18 2001.

Zumel, N. B. and Erdmann, M. A. Nonprehensile two palm manipulation with non-
equilibrium transitions between stable states. In IEEE International Conference on
Robotics and Automation, pages 3317–3323, 1996.

253


