

CprE 2810: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Algorithmic State Machine (ASM) Charts

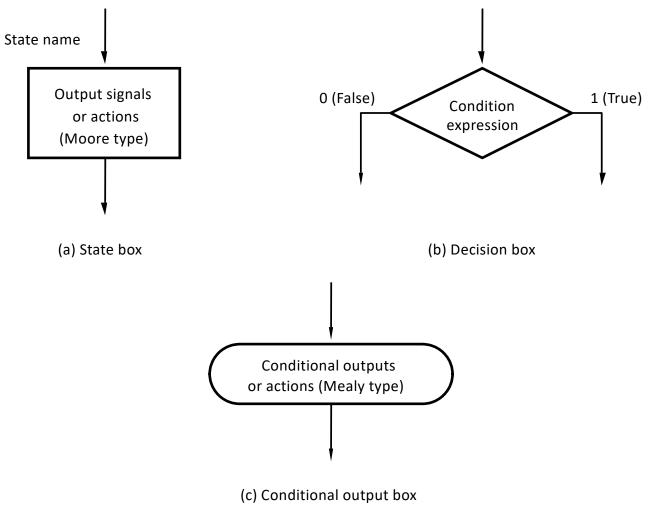
CprE 2810: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 12 is out
- It is due on Monday Dec 1 @ 10pm

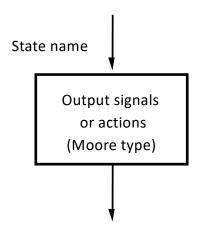
Administrative Stuff

The FINAL exam is scheduled for

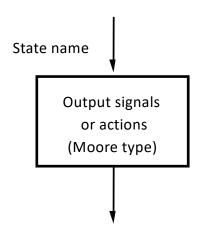

Wednesday Dec 17 @ 2:15 - 4:15 PM

Reading Material for Next Lecture

- "The Seven Secrets of Computer Power Revealed" by Daniel Dennett.
- This is Chapter 24 in his book "Intuition Pumps and Other Tools for Thinking", 2013

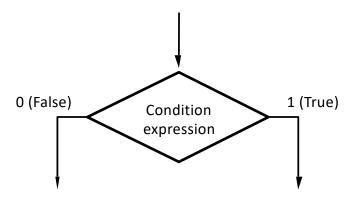

Algorithmic State Machine (ASM) Charts

Elements used in ASM charts

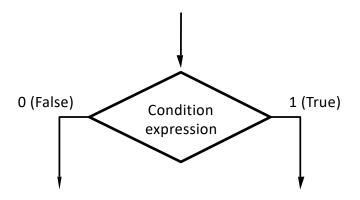


[Figure 6.81 from the textbook]

State Box

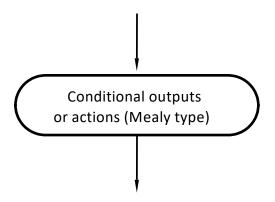


State Box



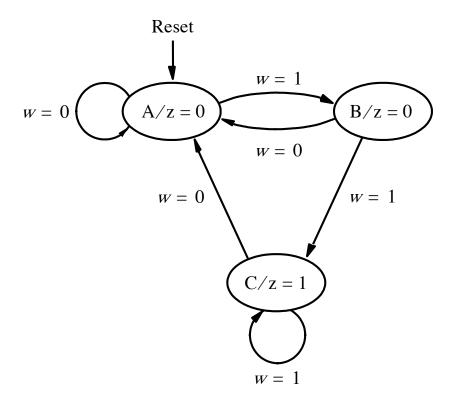
- Indicated with a rectangle
- Equivalent to a node in the State diagram
- The name of the state is written outside the box
- Moore-type outputs are written inside the box
- Only the output that must be set to 1 is written (by default, if an output is not listed it is set to 0)

Decision Box

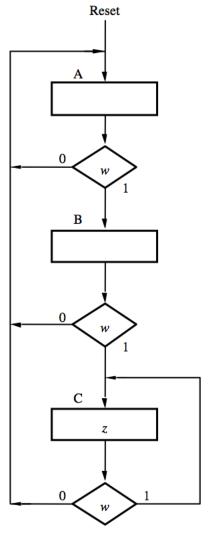


Decision Box

- Indicated with a diamond shape
- Used for a condition expression that must be tested
- The exit path is chosen based on the outcome of the test
- The condition is on one or more inputs to the FSM
- Shortcut notation: w means "is w equal to 1?"

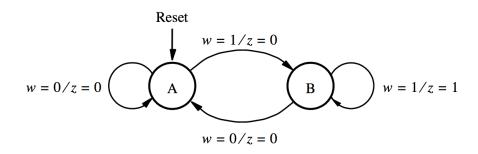

Conditional Output Box

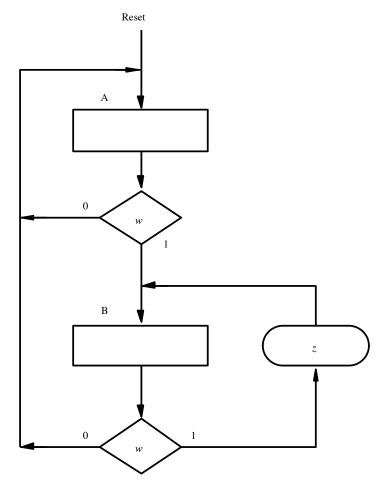
- Indicated with an oval shape
- Used for a Mealy-type output signals
- The outputs depend on the state variables and inputs
- The condition that determines when such outputs are generated is placed in a separate decision box


Some Examples

Moore FSM

[Figure 6.3 from the textbook]

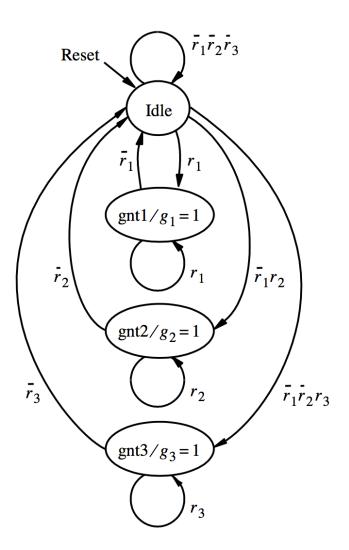

ASM chart



[Figure 6.82 from the textbook]

Mealy FSM

ASM chart



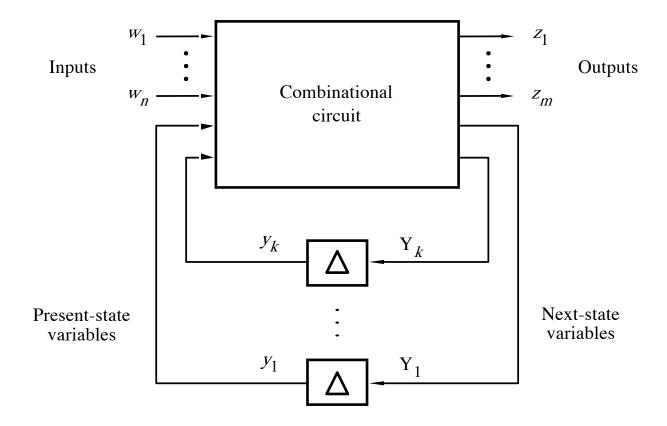
[Figure 6.23 from the textbook]

[Figure 6.83 from the textbook]

FSM

ASM chart

[Figure 6.73 from the textbook]



[Figure 6.84 from the textbook]

ASM Chart is different from a Flow Chart

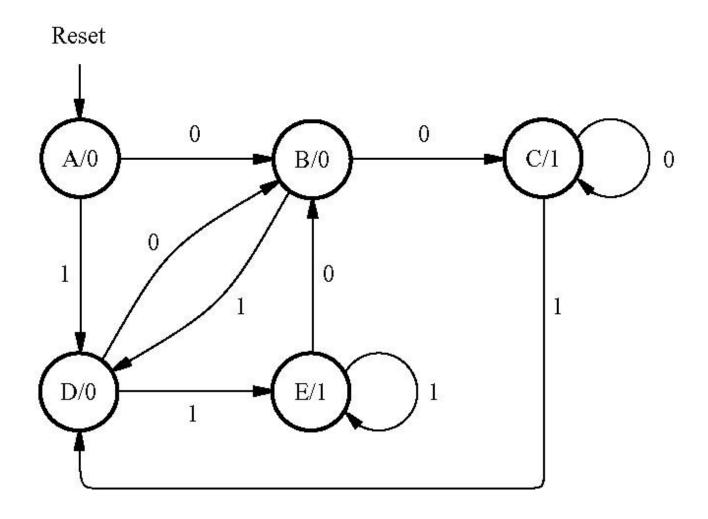
- The ASM chart implicitly includes timing info
- It is assumed that the underlying FSM changes from one state to another on every active clock edge
- Flow charts don't make that assumption.

The general model for a sequential circuit

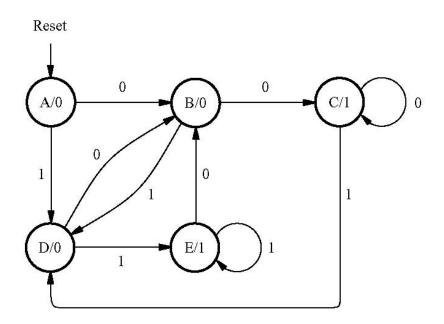
The general model for a sequential circuit

$$M = (W, Z, S, \varphi, \lambda)$$

- W, Z, and S are finite, nonempty sets of inputs, outputs, and states, respectively.
- φ is the state transition function, such that $S(t+1) = \varphi[W(t), S(t)]$.
- λ is the output function, such that $\lambda(t) = \lambda[S(t)]$ for the Moore model and $\lambda(t) = \lambda[W(t), S(t)]$ for the Mealy model.


Examples of Solved Problems

Example 6.12


Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true, then the output z should be set to 1; otherwise to 0.

State Diagram

State Table for the FSM

Present	Next	Output	
state	w = 0	w = 1	z
A	В	D	0
В	$^{\mathrm{C}}$	D	0
С	$^{\mathrm{C}}$	D	1
D	В	${ m E}$	0
Е	В	\mathbf{E}	1

State Table for the FSM

Present	Next	Output	
state	w = 0	w = 1	z
A	В	D	0
В	$^{\mathrm{C}}$	D	0
С	$^{\mathrm{C}}$	D	1
D	В	${ m E}$	0
E	В	\mathbf{E}	1

Present	Next	Output	
state	w = 0	w = 1	z
A	В	D	0
В	$^{\mathrm{C}}$	D	0
С	$^{\mathrm{C}}$	D	1
D	В	${ m E}$	0
E	В	\mathbf{E}	1

	Present	Next	Next state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
С	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1

	Present	Next	_	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
\mathbf{E}	100	001	100	1
·				

$$z = y_3 + \overline{y}_1 y_2$$

How can we derive this expression?

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
\mathbf{E}	100	001	100	1
'	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

Truth Table for the Output z

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
\mathbf{E}	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

y 3	y ₂	<i>y</i> ₁	z
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Truth Table for the Output z

	Present	Next	state	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

у з	y ₂	<i>y</i> ₁	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

Truth Table for the Output z

		Present state $y_3y_2y_1$		Next	state				
				w = 0	w = 1	O ₁	utp	ut	
				$y_3y_2y_1$ $Y_3Y_2Y_2$		$Y_3Y_2Y_1$	$Y_1 Y_3Y_2Y_1$		z
Α		000		001	011		0		
В		001		010	011		0		
\mathbf{C}		010		010	011		1		
D		011		001	100		0		
Ε		100		001	100		1		
		101		ddd	ddd		d		
		110		ddd	ddd		d		
		111		ddd	ddd		d		

<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

K-Map for the Output z

							y_1
	Present state		Next state				
					w = 0	w = 1	O
	$y_3y_2y_1$		$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z		
Α	000		001	011		0	
В	001		010	011		0	
С	010		010	011		1	
D	011		001	100		0	
\mathbf{E}	100		001	100		1	
·	101		ddd	ddd		d	
	110		ddd	ddd		d	
	111		ddd	ddd		d	

<i>y</i> ₃ <i>y</i> ₂	2			
	00	01	11	10
0	0	1	d	1
1	0	0	d	d

<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

The Expression for the Output z

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
С	010	010	011	1
D	011	001	100	0
\mathbf{E}	100	001	100	1
	101	ddd	ddd	d
	110	ddd	ddd	d
	111	ddd	ddd	d

y_3y_2		y ₁	y ₂	y
	00	01	11	10
0	0	1	d	1
1	0	0	d	d
l '				

у з	y ₂	<i>y</i> ₁	z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	d
1	1	0	d
1	1	1	d

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1

$$Y_1 = w\overline{y}_1\overline{y}_3 + w\overline{y}_2\overline{y}_3 + \overline{w}y_1y_2 + \overline{w}\overline{y}_1\overline{y}_2$$

$$Y_2 = y_1 \overline{y}_2 + \overline{y}_1 y_2 + w \overline{y}_2 \overline{y}_3$$

$$Y_3 = wy_3 + wy_1y_2$$

How can we derive these expressions?

Truth Table for Y₃

		Novet	atata	
	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
\mathbf{E}	100	001	100	1
,	101	ddd	ddd	d
	110	ddd	d <mark>dd</mark>	d
	111	ddd	<mark>d</mark> dd	d

w	<i>y</i> ₃	y_2	y_1	<i>Y</i> ₃	Y ₂	Y ₁
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	d		
0	1	1	0	d		
0	1	1	1	d		
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	1		
1	1	0	0	1		
1	1	0	1	d		
1	1	1	0	d		
1	1	1	1	d		

Truth Table for Y₂

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
,	101	d <mark>dd</mark>	<mark>d</mark> dd	d
	110	ddd	d <mark>d</mark> d	d
	111	<u>d</u> dd	<mark>d</mark> dd	d

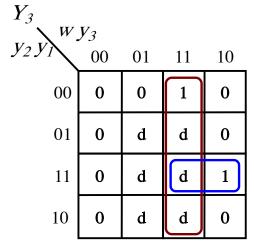
w	<i>y</i> ₃	y_2	y_1	Y_3	Y_2	<i>Y</i> ₁
0	0	0	0	0	0	
0	0	0	1	0	1	
0	0	1	0	0	1	
0	0	1	1	0	0	
0	1	0	0	0	0	
0	1	0	1	d	d	
0	1	1	0	d	d	
0	1	1	1	d	d	
1	0	0	0	0	1	
1	0	0	1	0	1	
1	0	1	0	0	1	
1	0	1	1	1	0	
1	1	0	0	1	0	
1	1	0	1	d	d	
1	1	1	0	d	d	
1	1	1	1	d	d	

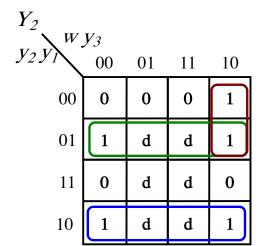
Truth Table for Y₁

		-		
	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1
,	101	ddd	ddd	d
	110	ddd	ddd	d
	111	<u>dd</u> d	ddd	d

w	<i>y</i> ₃	y_2	y_1	Y_3	Y ₂	<i>Y</i> ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

K-Maps for Y_3 , Y_2 , Y_1

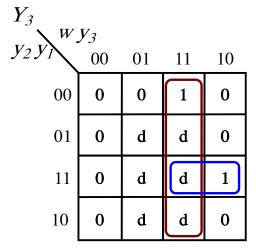

Y_3	y_3			
$y_2 y_1^W$	00	01	11	10
00	0	0	1	0
01	0	d	d	0
11	0	d	d	1
10	0	d	d	0


Y_2 $W y_3$							
$y_2y_1^W$	00	01	11	10			
00	0	0	0	1			
01	1	d	d	1			
11	0	d	d	0			
10	1	d	d	1			

Y_1 $W Y_3$								
y_2y_1	00	01	11	10				
00	1	1	0	1				
01	0	d	d	1				
11	1	d	d	0				
10	0	d	d	1				

w	y_3	y_2	y_1	Y_3	Y_2	Y_1
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

K-Maps for Y_3 , Y_2 , Y_1



Y_1	<i>Y</i> 3			
y_2y_1	00	01	11	10
00	1	1	0	1
01	0	d	d	1
11	1	d	d	0
10	0	d	d	1

w	y_3	y_2	y_1	Y_3	Y ₂	Y_{I}
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	0
1	1	0	0	1	0	0
1	1	0	1	d	d	d
1	1	1	0	d	d	d
1	1	1	1	d	d	d

Expressions for Y₃, Y₂, Y₁

Y_2 $W Y_3$								
$y_2y_1^W$	00	01	11	10				
00	0	0	0	1				
01	1	d	d	1				
11	0	d	d	0				
10	1	d	d	1				

w	<i>y</i> ₃	y_2	y_1	Y_3	Y ₂	Y ₁
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	0	1	d	d	d
0	1	1	0	d	d	d
0	1	1	1	d	d	d
1	0	0	0	0	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
			1	1	0	0

$$Y_1 = w\overline{y}_1\overline{y}_3 + w\overline{y}_2\overline{y}_3 + \overline{w}y_1y_2 + \overline{w}\overline{y}_1\overline{y}_2$$

$$Y_2 = y_1\overline{y}_2 + \overline{y}_1y_2 + w\overline{y}_2\overline{y}_3$$

$$Y_3 = wy_3 + wy_1y_2$$

Next State and Output Expressions

$$Y_1 = w\overline{y}_1\overline{y}_3 + w\overline{y}_2\overline{y}_3 + \overline{w}y_1y_2 + \overline{w}\overline{y}_1\overline{y}_2$$

$$Y_2 = y_1\overline{y}_2 + \overline{y}_1y_2 + w\overline{y}_2\overline{y}_3$$

$$Y_3 = wy_3 + wy_1y_2$$

$$z = y_3 + \overline{y}_1 y_2$$

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
С	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

B,C, D, E – when $y_3=1$

Present	Next	Output	
state	w = 0	w = 1	z
A	В	D	0
В	$^{\mathrm{C}}$	D	0
С	$^{\mathrm{C}}$	D	1
D	В	${ m E}$	0
E	В	E	1

Present	Next	Output	
state	w = 0	w = 1	z
A	В	D	0
В	С	D	0
C	С	D	1
D	В	${ m E}$	0
E	В	\mathbf{E}	1

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	001	011	0
В	001	010	011	0
\mathbf{C}	010	010	011	1
D	011	001	100	0
Ε	100	001	100	1

Output
z
0
0
1
0
1

B,C, D, E – when $y_3=1$

	Present	Next	_	
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

	Present	Next	state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
Α	000	100	110	0	cut here
В	100	101	110	0	cathere
\mathbf{C}	101	101	110	1	
D	110	100	111	0	
Ε	111	100	111	1	

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	100	110	0
	001	ddd	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

Truth Table for the Output z

	Present		Next	state				
		state		w = 0	w = 1	О	utp	ut
	$y_3y_2y_1$		$Y_3Y_2Y_1$	$Y_3Y_2Y_1$		z		
A		000		100	110		0	
		001		ddd	ddd		d	
		010		ddd	ddd		d	
		011		ddd	ddd		d	
В		100		101	110		0	
$^{\rm C}$		101		101	110		1	
D		110		100	111		0	
Ε		111		100	111		1	

y 3	<i>y</i> ₂	<i>y</i> ₁	z
0	0	0	0
0	0	1	d
0	1	0	d
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Expression for the Output z

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	100	110	0
	001	ddd	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d .
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

z y_3y_2	2			y ₁
y_1	00	01	11	10
0	0	d	0	0/
1	a	d	1	1

<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	z
0	0	0	0
0	0	1	d
0	1	0	d
0	1	1	d
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Truth Table for Y₃

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
	001	ddd	d <mark>dd</mark>	d
	010	<mark>d</mark> dd	d <mark>dd</mark>	d
	011	ddd	ddd	d
В	100	101	1 10	0
С	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

w	y_3	y_2	y_1	Y_3	<i>Y</i> ₂	Y_1
0	0	0	0	1		
0	0	0	1	d		
0	0	1	0	d		
0	0	1	1	d		
0	1	0	0	1		
0	1	0	1	1		
0	1	1	0	1		
0	1	1	1	1		
1	0	0	0	1		
1	0	0	1	d		
1	0	1	0	d		
1	0	1	1	d		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		

Truth Table for Y₂

	Present	Next	Next state		
	state	w = 0	w = 1	Output	
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z	
A	000	100	110	0	
	001	ddd	d <mark>d</mark> d	d	
	010	<mark>dd</mark> d	<mark>d</mark> d	d	
	011	ddd	ddd	d	
В	100	101	1 10	0	
\mathbf{C}	101	101	110	1	
D	110	100	111	0	
Ε	111	10 0	111	1	

w	<i>y</i> ₃	y_2	y_1	<i>Y</i> ₃	Y_2	<i>Y</i> ₁
0	0	0	0	1	0	
0	0	0	1	d	d	
0	0	1	0	d	d	
0	0	1	1	d	d	
0	1	0	0	1	0	
0	1	0	1	1	0	
0	1	1	0	1	0	
0	1	1	1	1	0	
1	0	0	0	1	1	
1	0	0	1	d	d	
1	0	1	0	d	d	
1	0	1	1	d	d	
1	1	0	0	1	1	
1	1	0	1	1	1	
1	1	1	0	1	1	
1	1	1	1	1	1	

Truth Table for Y₁

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
A	000	100	110	0
	001	ddd	ddd	d
	010	ddd	ddd	d
	011	ddd	ddd	d
В	100	101	110	0
$^{\rm C}$	101	101	110	1
D	110	100	111	0
Ε	111	100	$11\overline{1}$	1

w	y_3	y_2	y_1	<i>Y</i> ₃	Y_2	Y_1
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

K-Maps for Y_3 , Y_2 , Y_1

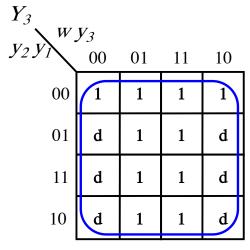
Y_3	y_3			
$y_2 y_1^W$	00	01	11	10
00	1	1	1	1
01	d	1	1	d
11	d	1	1	d
10	d	1	1	d

Y_2	<i>Y</i> 3			
$y_2y_1^W$	00	01	11	10
00	0	0	1	1
01	d	0	1	d
11	d	0	1	d
10	d	0	1	d

Y_1	<i>y</i> ₃			
$y_2y_1^W$	00	01	11	10
00	0	1	0	0
01	d	1	0	d
11	d	0	1	d
10	d	0	1	d

w	y_3	y_2	y_1	Y_3	Y_2	Y_{I}
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

K-Maps for Y_3 , Y_2 , Y_1



Y_2	<i>y</i> ₃			
y_2y_1	00	01	11	10
00	0	0	1	1
01	d	0	1	d
11	d	0	1	d
10	d	0	1	d

Y_1	<i>y</i> ₃			
y_2y_1	00	01	11	10
00	0	1	0	0
01	d	1	0	d
11	d	0	1	d
10	d	0	1	d

w	y_3	y_2	y_1	Y_3	Y_2	Y_{I}
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

K-Maps for Y₃, Y₂, Y₁

Y_2	V 3			
$y_2y_1^W$	00	01	11	10
00	0	0	1	1
01	d	0	1	d
11	d	0	1	d
10	d	0	1	d

w	<i>y</i> ₃	y_2	y_1	<i>Y</i> ₃	Y ₂	<i>Y</i> ₁
0	0	0	0	1	0	0
0	0	0	1	d	d	d
0	0	1	0	d	d	d
0	0	1	1	d	d	d
0	1	0	0	1	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	1	1	0
1	0	0	1	d	d	d
1	0	1	0	d	d	d
1	0	1	1	d	d	d
110 11	_					

Y_1	V_3			
y_2y_1	00	01	11	10
00	0	1	0	0
01	d	1	0	d
11	d	0	1	d
10	d	0	1	d

$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$
$$Y_2 = w$$
$$Y_3 = 1$$

_	-	•		•	,
	0	0	1	1	0
	0	1	1	1	0
	1	0	1	1	1
	1	1	1	1	1

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

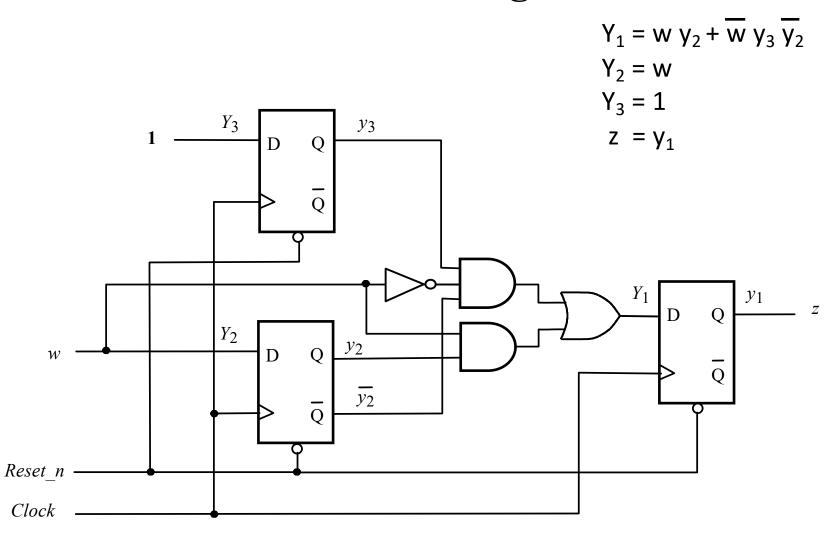
$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$

$$Y_2 = w$$

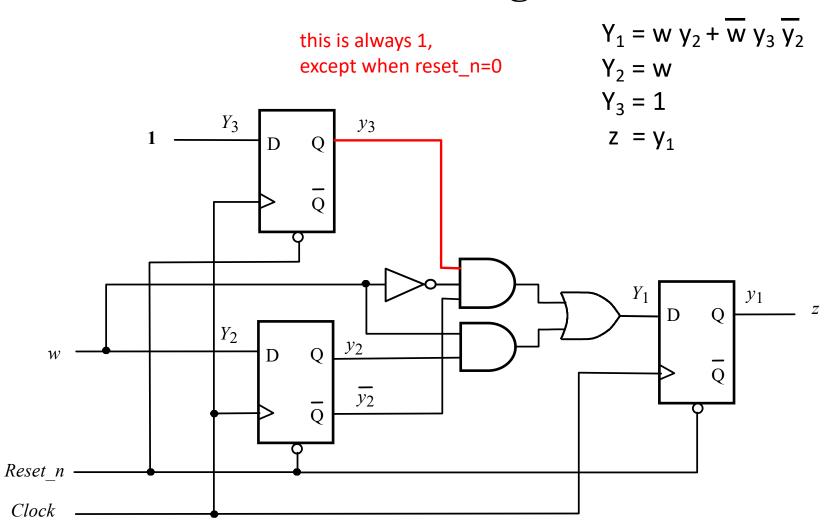
$$Y_3 = 1$$

$$z = y_1$$

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1


$$Y_1 = wy_2 + \overline{w}y_3\overline{y}_2$$

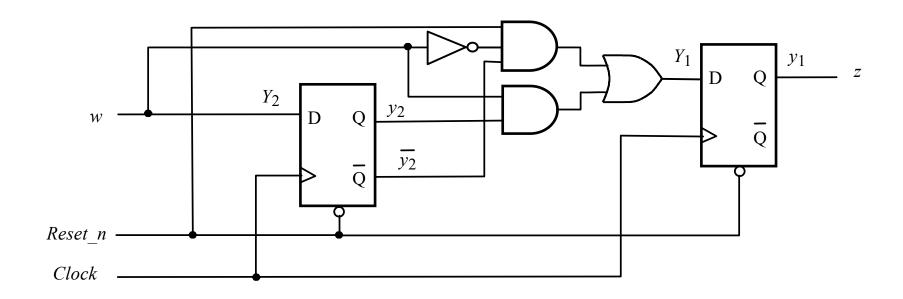
$$Y_2 = w$$


$$Y_3 = 1$$

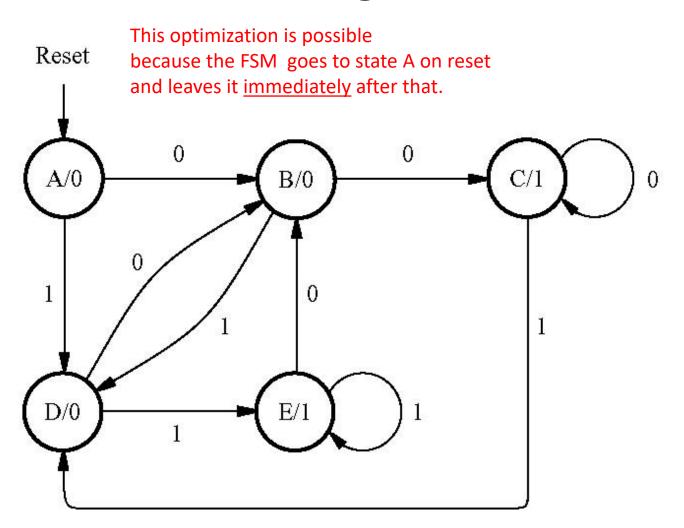
$$z = y_1$$

The Circuit Diagram

The Circuit Diagram


The Circuit Diagram

$$Y_{1} = w y_{2} + \overline{w} y_{3} \overline{y}_{2}$$

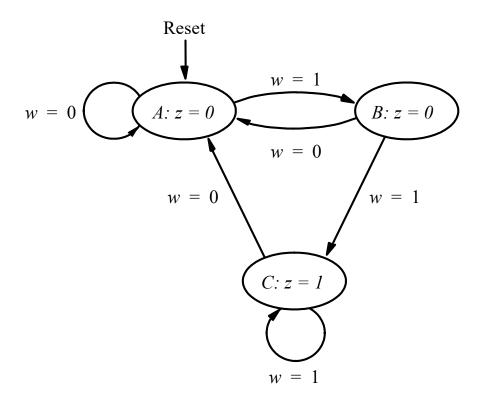

$$Y_{2} = w$$

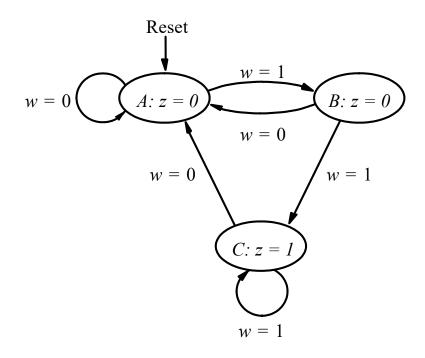
$$Y_{3} = 1$$

$$z = y_{1}$$

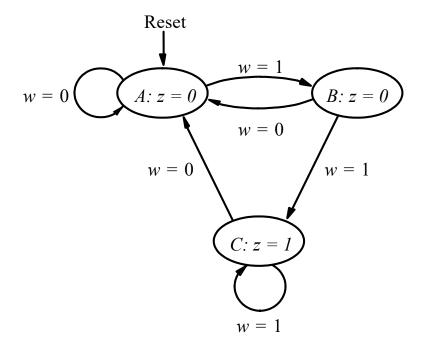
State Diagram

Example 6.13


Goal


- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- But do this with two different FSMs. The first one detects two consecutive 1's. The second one detects two consecutive 0's.
- If either condition (i.e., output of FSM) is true then the output z should be set to 1; otherwise to 0.

Example 6.13


(Construct the first FSM)

FSM to detect two consecutive 1's (this was the first example in Chapter 6)

Present	Next state Out		Output
state	w = 0	w = 1	Z
A			
В			
C			

Present	Next	Output	
state	w = 0	w = 1	\overline{z}
A	A	В	0
В	A	C	0
C	A	C	1

Figure 6.4 from the textbook]

A Better State Encoding

Present	Next	Output		
state	w = 0	w = 1	z	
A	A	В	0	
В	A	C	0	
C	A	C	1	

Suppose we encoded our states another way:

$$A \sim 00$$

$$B \sim 01$$

A Better State Encoding

Present	Next state		Output
state	w = 0	w = 1	\overline{z}
A	A	В	0
В	A	C	0
C	A	C	1

	I	state	W
$A \sim 00$			
$B \sim 01$			
C ~ 11		ī	

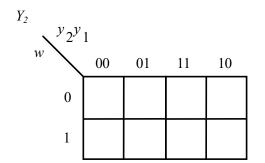
Present		Next state		
	state	w = 0	w = 1	Output
				Z

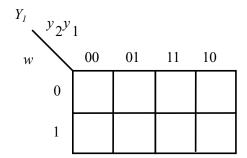
A Better State Encoding

Present	Next state		Output
state	w = 0	w = 1	z
A	A	В	0
В	A	C	0
C	A	C	1

	Present	Next state		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	$Y_2 Y_1$	Y_2Y_1	Z
A	00	00	01	0
В	01	00	11	0
\mathbf{C}	11	00	11	1
	10	dd	dd	d

Let's Derive the Logic Expressions

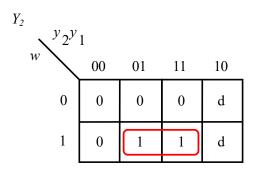

	Present	Next state		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
A	00	00	01	0
В	01	00	11	0
C	11	00	11	1
	10	dd	dd	d


Let's Derive the Logic Expressions

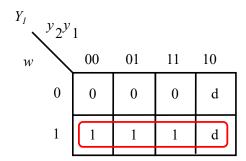
Warning:
This table does not enumerate y_2y_1 , in the standard way, so be careful when filling out the K-Map.

A B C

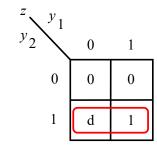
Present	Next state		
state	w = 0	w = 1	Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	11	0
11	00	11	1
10	dd	dd	d



y_2 y_1	0	1
0		
1		


Warning:
This table does not enumerate y_2y_1 , in the standard way, so be careful when filling out the K-Map.

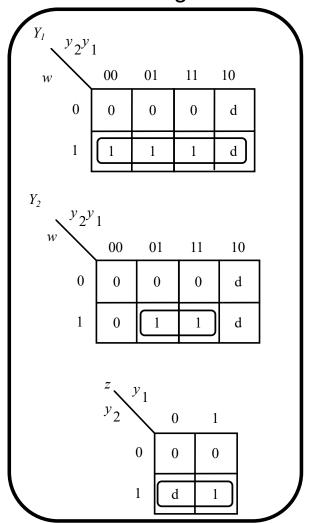
A B C

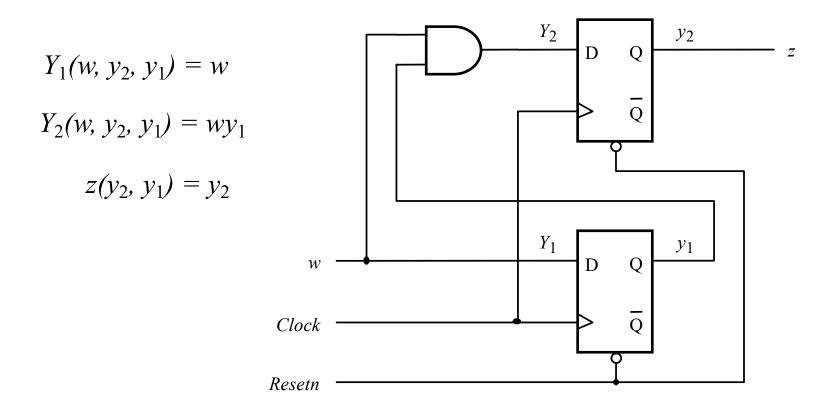

Present	Next	Next state	
state	w = 0 $w = 1$		Output
<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	11	0
11	00	11	1
10	dd	dd	d

$$Y_2(w, y_2, y_1) = wy_1$$



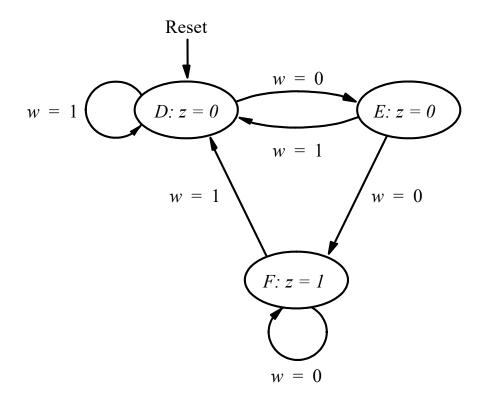
$$Y_1(w, y_2, y_1) = w$$



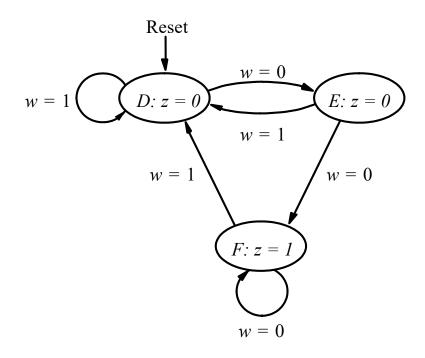

$$z(y_2, y_1) = y_2$$

Original State Encodings

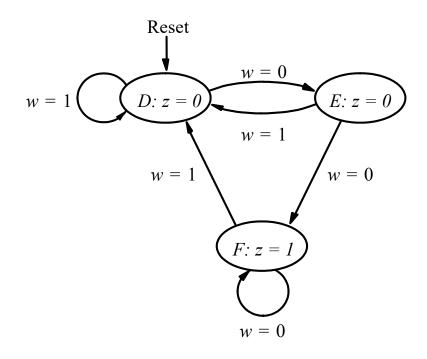
New State Encodings



[Figure 6.17 from the textbook]


Example 6.13

(Construct the second FSM)


FSM to detect two consecutive 0's

This is similar to the previous one. Just invert the w's and relabel the states to D,E,F.

Present	Next state	Output
state	w = 0 $w = 1$	Z
D		
Е		
F		

Present	nt Next state		Output
state	w = 0	w = 1	z
D	Е	D	0
Е	F	D	0
F	F	D	1

FSM that detects a sequence of two zeros

Present	Ne xt state		Output
state	w = 0	w = 1	z_{zeros}
D	E	D	0
E	F	D	0
F	F	D	1

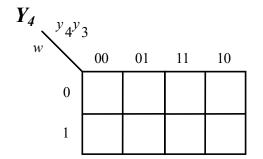
(a) State table

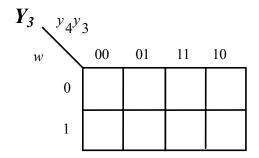
	Present	Next	Next state	
	state	w = 0	w = 1	Output
	y_4y_3	Y_4Y_3	Y_4Y_3	z_{zeros}
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

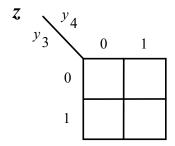
FSM that detects a sequence of two zeros

Present state	Ne xt state $w = 0$ $w = 1$	Output z_{zeros}
D E F	$\begin{array}{c} E \\ F \\ \end{array} \begin{array}{c} D \\ D \\ \end{array}$	0 0 1

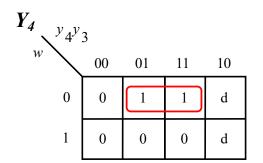
Only these two columns are swapped relative to the first FSM. And the states have different names now.

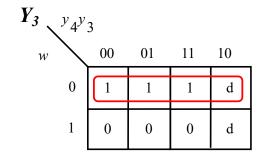

(a) State table

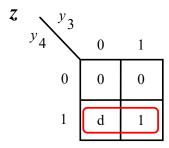

	Present	Next	Next state	
	state	w = 0	w = 1	Output
	y_4y_3	Y_4Y_3	Y_4Y_3	z_{zeros}
D	00	01	00	0
\mathbf{E}	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

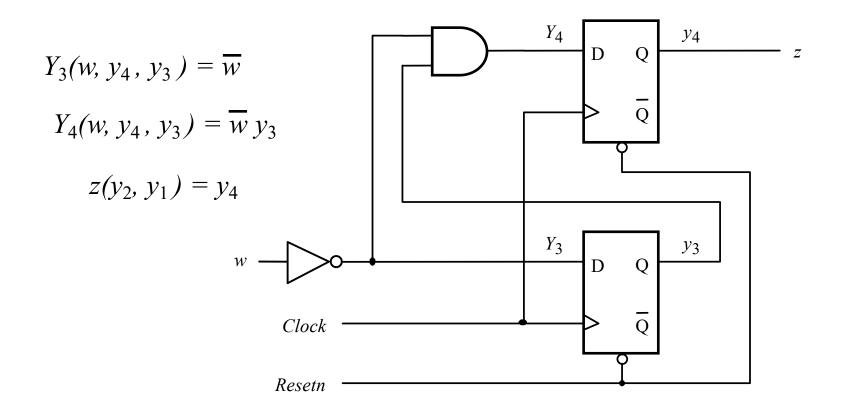

Only these two columns are swapped relative to the first FSM.

	Present	Next state		
	state	w = 0 $w = 1$		Output
	<i>y</i> 4 <i>y</i> 3	Y_4Y_3	Y_4Y_3	Z
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

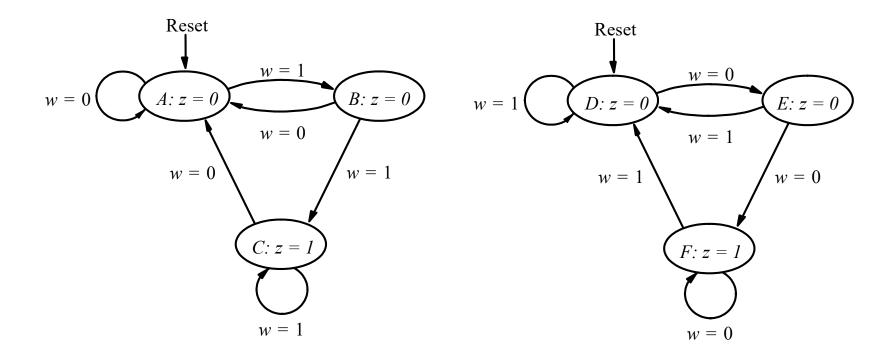

	Present	Next state		
	state	w = 0 $w = 1$		Output
	<i>y</i> 4 <i>y</i> 3	Y_4Y_3	Y_4Y_3	Z
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d




	Present	Next state		
	state	w = 0 $w = 1$		Output
	<i>y</i> 4 <i>y</i> 3	Y_4Y_3	Y_4Y_3	Z
D	00	01	00	0
E	01	11	00	0
F	11	11	00	1
	10	dd	dd	d

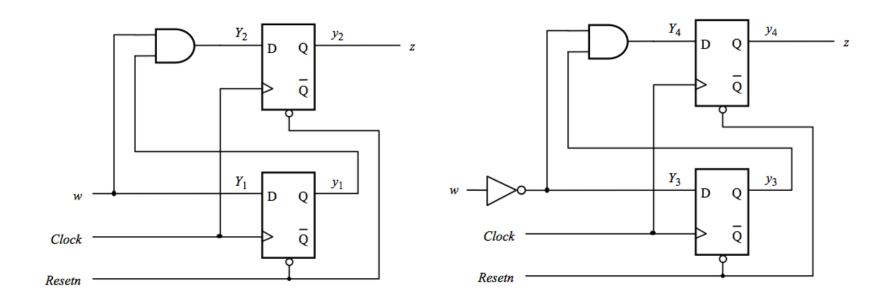

$$Y_4(w, y_4, y_3) = \overline{w} y_3$$
 $Y_3(w, y_4, y_3) = \overline{w}$ $z(y_4, y_3) = y_4$

$$Y_3(w, y_4, y_3) = \overline{w}$$


$$z(y_4, y_3) = y_4$$

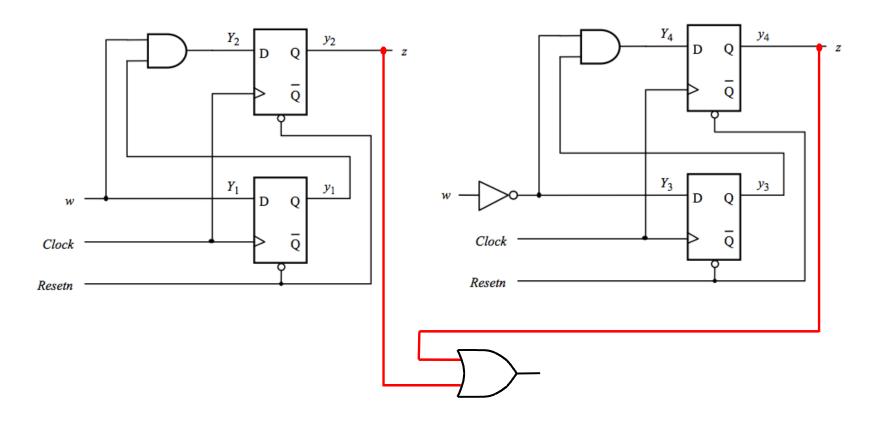
Example 6.13

(Combine the two FSMs)

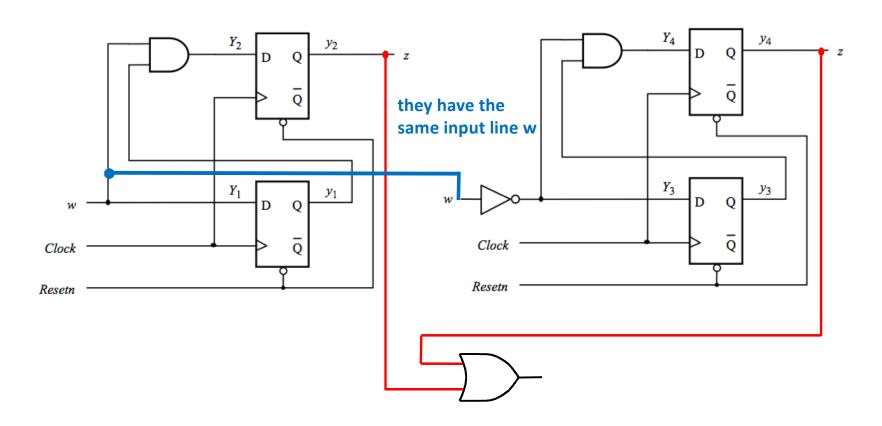

The Two FSMs

Detect two consecutive 1's

Detect two consecutive 0's


The Two Circuit Diagrams

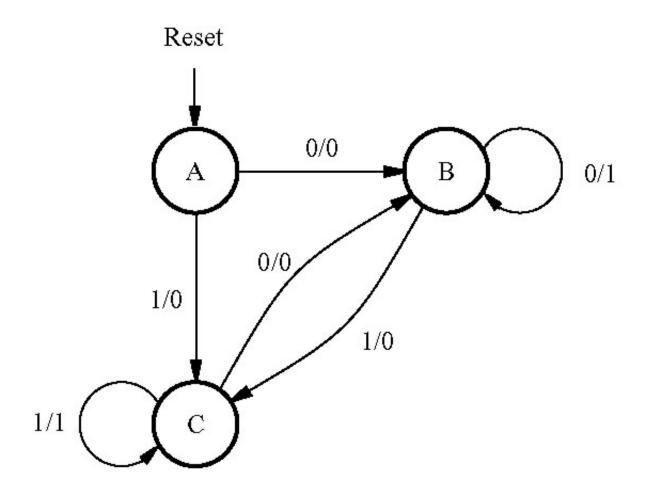
Detect two consecutive 1's


Detect two consecutive 0's

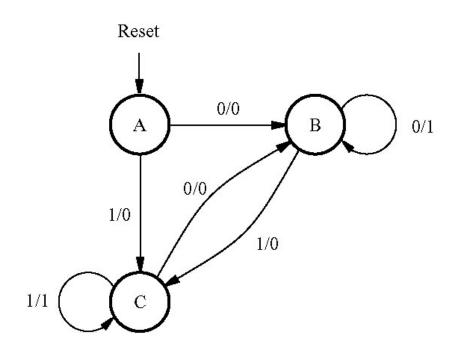
The Combined Circuit Diagram

Detect two consecutive 1's or two consecutive 0's

The Combined Circuit Diagram


Detect two consecutive 1's or two consecutive 0's

Example 6.14


Goal

- Design an FSM that detects if the previous two values of the input w were equal to 00 or 11.
- If either condition is true, then the output z should be set to 1; otherwise to 0.
- Implement this as a Mealy-type machine

State Diagram

Building the State Table

Present	Next	state	Outp	out z
state	w = 0	w = 1	w = 0	w = 1
A	В	С	0	0
В	В	$^{\mathrm{C}}$	1	0
С	В	$^{\mathrm{C}}$	0	1

State Table

Present	Next	state	Outp	out z
state	w = 0	w = 1	w = 0	w = 1
A	В	С	0	0
В	В	$^{\mathrm{C}}$	1	0
С	В	С	0	1

Building the State-Assigned Table

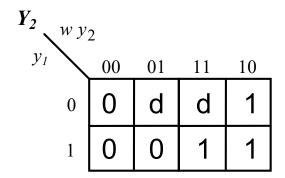
Present	Next	state	Output z	
state	w = 0	w = 1	w = 0	w = 1
A	В	$^{\mathrm{C}}$	0	0
В	В	\mathbf{C}	1	0
С	В	С	0	1

Present	Next state		Output	
state	w = 0	w = 1	w = 0	w = 1
$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
00	01	11	0	0
01	01	11	1	0
11	01	11	0	1

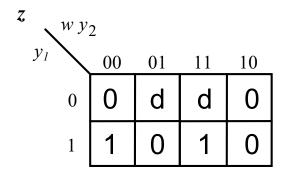
	Present	Next	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1	
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z	
_	00	01	11	0	0	
,	01	01	11	1	0	
,	11	01	11	0	1	

	Present	Next state		Out		
	state	w = 0	w = 1	w = 0	w = 1	
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z	
Α	00	01	11	0	0	
В	01	01	11	1	0^{cut}	here
С	11	01	11	0	1	

	Present	Next	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1	
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z	
Α	00	01	11	0	0	
В	01	01	11	1	0	
С	11	01	11	0	1	

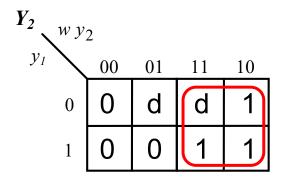

	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
A	00	01	11	0	0
В	01	01	11	1	0
·	1 0	d d	d d	d	d
\mathbf{C}	11	01	11	0	1

Truth Table for Y_2 , Y_1 , and z


	Present	Next state		Output	
	state	w = 0	w = 1	w = 0	w = 1
	y_2y_1	Y_2Y_1	Y_2Y_1	z	z
A	00	01	11	0	0
$_{\mathrm{B}}$	01	01	11	1	0
	1 0	d d	d d	d	d
\mathbf{C}	11	01	11	0	1

w	y_2	y_1	Y_2	Y_1	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_2 , Y_1 , and z



Y_1 $w y_2$							
y_1	00	01	11	10			
0	1	р	1	1			
1	1	1	1	1			

w	y_2	y_1	Y_2	<i>Y</i> ₁	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

K-Maps for Y_2 , Y_1 , and z

$$Y_2 = w$$

Y_1 $w y_2$							
y_1	00	01	11	10			
0	1	d	1	1			

$$Y_1 = 1$$

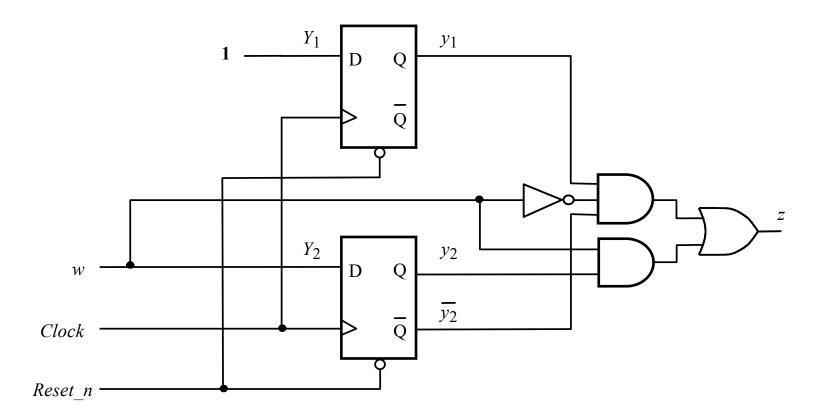
w	y_2	y_1	Y ₂	Y_1	z
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	d	d	d
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	0
1	1	0	d	1	d
1	1	1	1	1	1

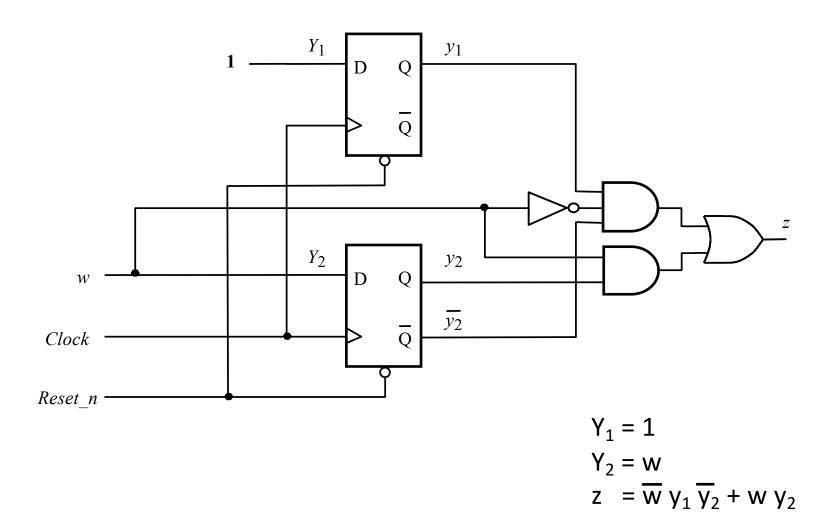
$$z = \overline{w} y_1 \overline{y_2} + w y_2$$

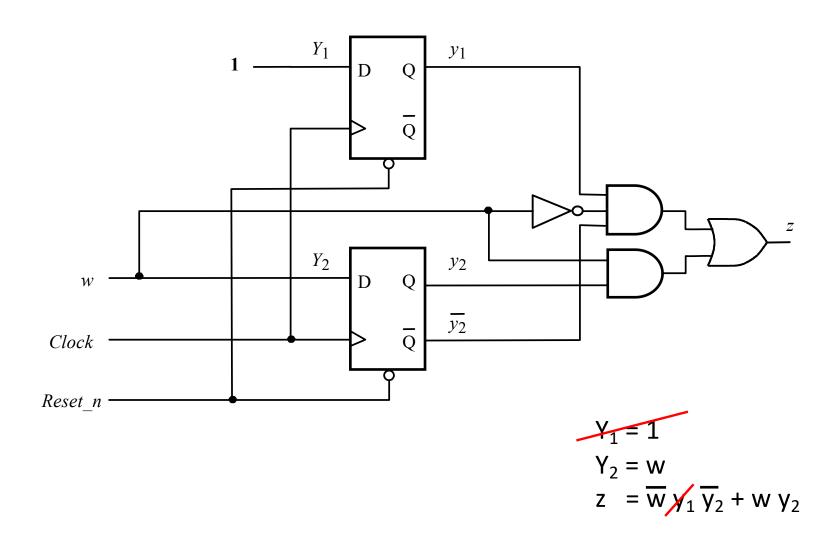
	Present state	Next state		Output	
		w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
1	00	01	11	0	0
3	01	01	11	1	0
7	11	01	11	0	1

$$Y_1 = 1$$

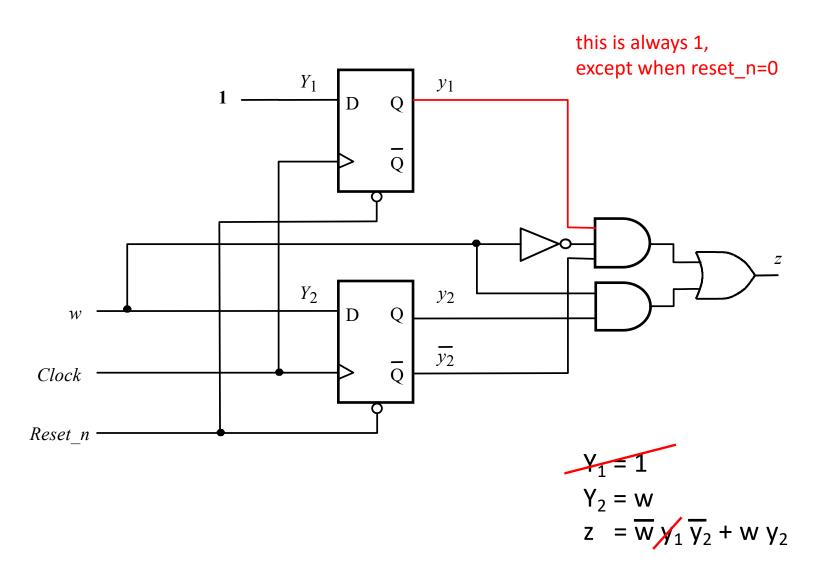
$$Y_2 = w$$

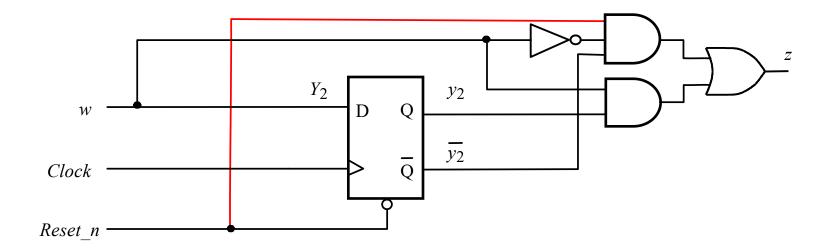

$$z = \overline{w} y_1 \overline{y}_2 + w y_2$$


	Present state	Next state		Output	
		w = 0	w = 1	w = 0	w = 1
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	z	z
Α	00	01	11	0	0
В	01	01	11	1	0
С	11	01	11	0	1

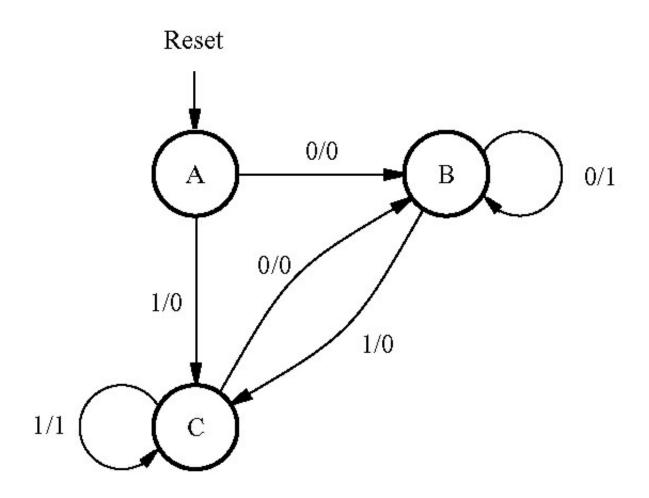

$$Y_1 = 1$$

$$Y_2 = W$$

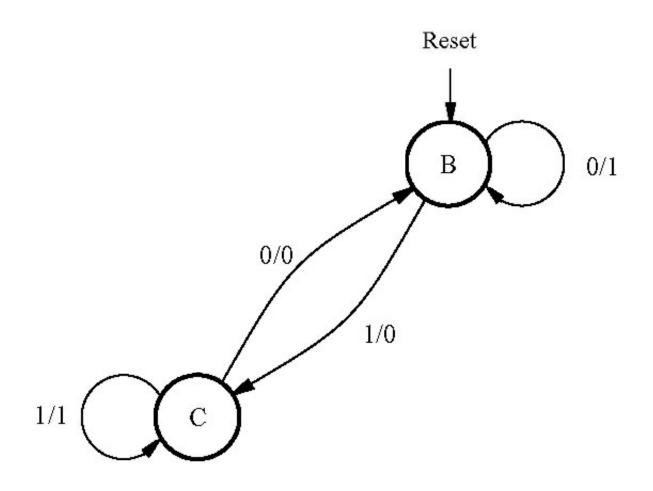

$$z = \overline{W} y_1 \overline{y}_2 + W y_2$$



The Circuit Diagram



The Simplified Circuit Diagram



$$Y_2 = W$$

 $z = \overline{W} \overline{y}_2 + W y_2$

Original State Diagram

New State Diagram

Example 6.15

Goal

Implement this state-assigned Table using JK flip-flops

	Present	Next		
	state	w = 0	w = 1	Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	z
Α	000	100	110	0
В	100	101	110	0
\mathbf{C}	101	101	110	1
D	110	100	111	0
Ε	111	100	111	1

	Present	Flip-flop inputs									
	state	4	w = 0				w = 1				
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z	
Α	000	100	1d	0d	0d	110	1d	1d	0d	0	
В	100	101	d0	0d	1d	110	d0	1d	0d	0	
$^{\rm C}$	101	101	d0	0d	d0	110	d0	1d	d1	1	
D	110	100	d0	d1	0d	111	d0	d0	1d	0	
E	111	100	d0	d1	d1	111	d0	d0	d0	1	

$Q(t) \rightarrow Q(t+1)$	JK
<u>0 → 0</u>	0 d
0 → 1	1 d
$1 \rightarrow 0$	d 1
1 → 1	d 0

[Figure 6.94 from the textbook]

	Present	Flip-flop inputs								
	state		w =	w = 0			w = 1			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	00 <mark>0</mark>	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
E	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c}
Q(t) \rightarrow Q(t+1) & J K \\
\hline
0 \rightarrow 0 & 0 d \\
0 \rightarrow 1 & 1 d \\
1 \rightarrow 0 & d 1 \\
1 \rightarrow 1 & d 0
\end{array}$$

-	Present	Flip-flop inputs								
	state	w = 0				w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
С	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c}
Q(t) \rightarrow Q(t+1) & J K \\
\hline
0 \rightarrow 0 & 0 d \\
\hline
0 \rightarrow 1 & 1 d \\
1 \rightarrow 0 & d 1 \\
1 \rightarrow 1 & d 0
\end{array}$$

48	Present Flip-flop inputs									
	state $w = 0$					w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	$10\overline{1}$	$10\overline{1}$	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|cccc}
Q(t) \to Q(t+1) & J & K \\
\hline
0 \to 0 & 0 & d \\
0 \to 1 & 1 & d \\
1 \to 0 & d & 1 \\
\hline
1 \to 1 & d & 0
\end{array}$$

	Present	Flip-flop inputs								
	state	w = 0				w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
Α	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
C	101	101	d0	0d	d0	110	d0	1d	d1	1
$D \mid$	110	100	d0	d1	0d	111	d0	d0	1d	0
E	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c}
Q(t) \rightarrow Q(t+1) & J K \\
\hline
0 \rightarrow 0 & 0 d \\
0 \rightarrow 1 & 1 d \\
1 \rightarrow 0 & d 1 \\
1 \rightarrow 1 & d 0
\end{array}$$

	Present	Flip-flop inputs								
	state		w = 0			w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
E	$11\overline{1}$	10 <u>0</u>	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|cccc}
Q(t) \rightarrow Q(t+1) & J & K \\
\hline
0 \rightarrow 0 & 0 & d \\
0 \rightarrow 1 & 1 & d \\
\hline
1 \rightarrow 0 & d & 1 \\
1 \rightarrow 1 & d & 0
\end{array}$$

27	Present	Flip-flop inputs								
	state		w =	: 0		w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	0 <mark>00</mark> 0	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

$$\begin{array}{c|c}
Q(t) \rightarrow Q(t+1) & J K \\
\hline
0 \rightarrow 0 & 0 d \\
0 \rightarrow 1 & 1 d \\
1 \rightarrow 0 & d 1 \\
1 \rightarrow 1 & d 0
\end{array}$$

	Present	Flip-flop inputs								
	state	w = 0				w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
$_{\rm A}$	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
C	$1\overline{01}$	$1\overline{0}1$	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Е	111	100	d0	d1	d1	111	d0	d0	d0	1

$Q(t) \rightarrow Q(t+1)$	JK
0 → 0	0 d
$0 \rightarrow 1$	1 d
$1 \rightarrow 0$	d 1
1 → 1	d 0

And so on...

The Expression for **z**

17	Present	Flip-flop inputs								
	state	w = 0				w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	00 <mark>0</mark>	100	1d	0d	0d	110	1d	1d	0d	0
В	10 <mark>0</mark>	101	d0	0d	1d	110	d0	1d	0d	0
С	10 <mark>1</mark>	101	d0	0d	d0	110	d0	1d	d1	1
D	11 <mark>0</mark>	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

z is equal to y₁

The Expression for J₃

ų,	Present			9	Flip-floj	p inputs				~ a a
	state		w =	= 0			Output			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1 d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

J₃ is equal to 1

The Expression for K₃

ų,	Present	Flip-flop inputs								
	state		w =	0			Output			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1

K₃ is equal to 0

The Expression for J₂

u,	Present	N.		1	Flip-floj	p inputs				6-c 6 0
	state	4	w =	: 0		w = 1				Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0 d	0d	110	1d	1 d	0d	0
В	100	101	d0	0d	1d	110	d0	1 d	0d	0
С	101	101	d0	0d	d0	110	d0	1 d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	1d	0
Ε	111	100	d0	d 1	d1	111	d0	dO	d0	1

J₂ is equal to w

The Expression for K₂

Ψ.	Present			9	Flip-floj	p inputs						
	state $y_3y_2y_1$	4	w =	: 0			Output					
		$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z		
A	000	100	1d	0d	0d	110	1d	1d	0d	0		
В	100	101	d0	0d	1d	110	d0	1d	0d	0		
\mathbf{C}	101	101	d0	0d	d0	110	d0	1d	d1	1		
D	110	100	d0	d1	0d	111	d0	d0	1d	0		
Ε	111	100	d0	d1	d1	111	d0	d0	d0	1		

 K_2 is equal to \overline{W}

The Expression for J₁

	Present			9	Flip-floj	p inputs				a20 60 00
	state		w =	: 0			Output			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	z
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	10 <mark>0</mark>	101	d0	0d	1 d	110	d0	1d	0d	0
\mathbf{C}	10 <mark>1</mark>	101	d0	0d	d0	110	d0	1d	d1	1
D	110	100	d0	d1	$\overline{0}d$	111	d0	d0	1d	0
\mathbf{E}	1 <mark>1</mark> 1	100	d0	d1	d1	111	d0	d0	d0	1

$$J_1$$
 is equal to $w y_2 + \overline{w} y_3 \overline{y}_2$

The Expression for K₁

43	Present	Flip-flop inputs								
	state		w =	= 0			Output			
	$y_3y_2y_1$	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	$Y_3Y_2Y_1$	J_3K_3	J_2K_2	J_1K_1	
A	000	100	1d	0d	0d	110	1d	1d	0d	0
В	100	101	d0	0d	1d	110	d0	1d	0d	0
$^{\mathrm{C}}$	$1\overline{01}$	101	d0	0d	d 0	110	d0	1d	d1	1
D	110	100	d0	d1	0d	111	d0	d0	$1\overline{d}$	0
Ε	1 <mark>1</mark> 1	100	d0	d1	d1	111	d0	d0	d0	1
	001								d	

 K_1 is equal to \overline{W} $y_2 + \overline{W} y_2 y_1$

All Logic Expressions

$$J_{1} = wy_{2} + \overline{w}y_{3}\overline{y}_{2}$$

$$K_{1} = \overline{w}y_{2} + wy_{1}\overline{y}_{2}$$

$$J_{2} = w$$

$$K_{2} = \overline{w}$$

$$J_{3} = 1$$

$$K_{3} = 0$$

$$z = y_{1}$$

Questions?

THE END