24. THE SEVEN SECRETS OF
COMPUTER POWER REVEALED

Computers have powers that in earlier centuries would have seemed
miraculous—“real magic™—but although many computer programs
are dauntingly complicated, all of them are composed of steps that
are completely explainable in very simple terms. There is no room for
mysteries in what computers do. That very fact is part of the value of
computers as thinking tools, and explaining—in outline—how this
works is philosophically interesting in its own right. How computers
do their “magic” is well worth understanding at an elementary level.
This chapter provides that demystification.

We start by considering what is probably the simplest imagin-
able computer, a register machine, to see just what its powers are
and why. We will then go on to see how a Turing machine, and a
Von Neumann machine (such as your laptop) are just like register
machines, only more efficient. (Anything your laptop can do, 2
register machine can do, but don't hold your breath; it might take
centuries.) Then we can understand how other computer “architec-
tures” could further multiply the speed and capacity of our basic
machine, the register machine. The architecture of the human
brain is, of course, one of the most interesting and important
architectures to consider.

Hang on. Am I claiming that your brain is just a gigantic com-
puter? No—not yet in any case. I am pointing out that ifyour brain
is a gigantic computer, then there wi// be a way of understanding
all its activities with no residual mysteries—if only we can find it.
Our method will be reverse engineering: studying a complicated
system to uncover how it does what it does. Reverse engineering
tells us how the heart executes its duties as a pump and how the
lungs gather oxygen and expel carbon dioxide. Neuroscience is the

110 INTUITION PUMPS AND OTHER TOOLS FOR THINKING

attempt to reverse engineer the brain. We know what brains are
for—for anticipating and guiding and remembering and learning—
but now we need to figure out how they accomplish all this.

This is a topic of passionate controversy. The novelist Tom Wolfe
(2000) pinpointed the tender spot around which the battles rage
with the title of his essay “Sorry, But Your Soul Just Died.” If we
are to explore this dangerous territory—and not just waste every-
body’s time with declamations and denunciations—we need some
sharper tools. We need to know what computers can do and how
they do it before we can responsibly address the question of whether
or not our brains harbor and exploit incomprehensible or miraculous
phenomena beyond the reach of all possible computers. The only sat-

isfactory way of demonstrating that your brain isn't—couldn’t be—a
computer would be to show either (1) that some of its “moving parts” '
engage in sorts of information-handling activities that no computers
can engage in, or (2) that the simple activities its parts do engage

in cannot be composed, aggregated, orchestrated, computer-fashion,
into the mental feats we know and love.

Some experts—not just philosophers, but neuroscientists, psy-
chologists, linguists, and even physicists—have argued that “the
computer metaphor” for the human brain/mind is deeply misleading,
and, more dramatically, that brains can do things that computers
can’t do. Usually, but not always, these criticisms presuppose a very
naive view of what a computer is or must be, and end up proving only
the obvious (and irrelevant) truth, that brains can do lots of things
that your laptop can’t do (given its meager supply of transducers and
effectors, its paltry memory, its speed limit). If we are to evaluate
these strong skeptical claims about the powers of computers in gen-
eral, we need to understand where computer power iz genera/ comes
from and how it is, or can be, exercised.

The brilliant idea of a register machine was introduced at the dawn
of the computer age by the logician Hao Wang (1957), a student of
Kurt Gédel’s, by the way, and a philosopher. It is an elegant tool for
thinking, and you should have this tool in your own kit. It is not any-

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

where near as well known as it should be.” A register machine is an
idealized, imaginary (and perfectly possible) computer that consists
of nothing but some (finite number of) registers and a processing unit.
The registers are memory locations, each with a unique address
(register 1, register 2, register 3, and so on) and each able to have, as
contents, a single integer (o, 1, 2, 3, . . .). You can think of each register
as a large box that can contain any number of beans, fromoto .. .,
however large the box is. We usually consider the boxes to be capable
of holding any integer as contents, which would require infinitely
large boxes, of course. Very large boxes will do for our purposes.
The processing unit is equipped with just three simple compe-
tences, three “instructions” it can “follow,” in stepwise, one-at-a-time
fashion. Any sequence of these instructions is a program, and each
instruction is given a number to identify it. The three instructions are:

End. That is, it can stop or shut itself down.

Increment register n (add 1 to the contents of register 7; put
a bean in box 7) and go to another step, step 7.

Decrement register n (subtract 1 from the contents of
register 7; remove one bean from box 7) and go to another
step, step 7.

The Decrement instruction works just like the Increment instruction,
except for a single all-important complication: What should it do if
the number in register 7 is o? It cannot subtract 1 from this (registers
cannot hold negative integers as contents; you can’t take a bean out of
an empty box), so, stymied, it must Branch. That is, it must go to some
other place in the program to get its next instruction. This requires
every Decrement instruction to list the place in the program to go to

*1 am grateful to my colleague George Smith for introducing me to register machines, in an
introductory course on computers we co-taught at Tufts in the mid-1980s. He recognized
the tremendous pedagogical potential of register machines, and developed the expository
structure I adapt here for a slightly different audience. The Curricular Software Studio that
George and I founded at Tufts grew out of that course.

12

INTUITION PUMPS AND OTHER TOOLS FOR THINKING

next if the current register has content o. So the full definition of

Decrement is:

Decrement register 7 (subtract 1 from the contents of
register 7) if you can and go to step 7 OR if you can’t
decrement register 7, Branch to step p.

Here, then, is our inventory of everything a register machine can do,
with handy short names: End, Inc, and Deb (for Decrement-or-Branch).

At first glance, you might not think such a simple machine could
do anything very interesting; all it can do is put a bean in the box or
take a bean out of the box (if it can find one, and branch to another
instruction if it can’t). In fact, however, it can compute anything any
computer can compute.

Let’s start with simple addition. Suppose you wanted the register
machine to zdd the contents of one register (let’s say, register 1) to the
contents of another register (register 2). So, if register 1 has contents
[3] and register 2 has contents [4], we want the program to end up
with register 2 having contents [7] since 3 + 4 = 7. Here is a program
that will do the job, written in a simple language we can call RAP,
for Register Assembly Programing:

program 1. ADD [1,2]

STEP INSTRUCTION REGISTER GO TO STEP [BRANCH TO STEP]
I Deb I 2 3

% Inc 2 I

3 End

The first two instructions form a simple /oop, decrementing regis-
ter 1 and incrementing register 2, over and over, until register 1 1s empty,
which the processing unit “notices” and thereupon branches to step 3,
which tells it to halt. The processing unit cannot tell what the content
of a register is except in the case where the content is o. In terms of
the beans-in-boxes image, you can think of the processing unit as
blind, unable to see what is in a register until it is empty, something
it can detect by groping. But in spite of the fact that it cannot tell, in

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

general, what the contents of its registers are, if it is given program I
to run, it will a/ways add the content of register 1 (whatever number is
in register 1) to the content of register 2 (whatever number is in reg-
ister 2) and then stop. (Can you see why this must always work? Go
through a few cases to make sure.) Here is a striking way of looking
at it: the register machine can add two numbers together perfectly
without knowing which numbers it is adding (or what numbers are
or what addition is)!

Exercise 1
a. How many steps will it take the register machine to add 2 + 5 and get
7, running program I (counting End as a step)?
b. How many steps will it take to add 5 + 2?
(What conclusion do you draw from this?)"

There is a nice way to diagram this process, in what is known as a
flow graph. Each circle stands for an instruction. The number inside
the circle stands for the address of the register to be manipulated (not
the content of a register) and “+” stands for Inc and “-” stands for
Deb. The program always starts at «, alpha, and stops when it arrives
at (), omega. The arrows lead to the next instruction. Note that every
Deb instruction has two outbound arrows, one for where to go when
it can decrement, and one for where to go when it can’t decrement,
because the contents of the register is o (branching on zero).

1 2

— G
AN

Q

* Solutions to the problems in the exercises can be found in the appendix.

13

INTUITION PUMPS AND OTHER TOOLS FOR THINKING

Now let’s write a program that simply moves the contents of one
register to another register:

program 2: MOVE [4,5]

STEP INSTRUCTION REGISTER GO TO STEP [BRANCH TO STEP]

L Deb 5 I 2
2 Deb 4 3 4
3 Inc 5 2
4. End
Here is the flow graph:
1
o —
P
3
A
AN
0\

Notice that the first loop in this program cleans out register s, so
that whatever it had as content at the beginning won’t contaminate
what is built up in register 5 by the second loop (which is just our
addition loop, adding the content of register 4 to the o in register 5).
This initializing step is known as zeroing out the register, and it is a
very useful, standard operation. You will use it constantly to prepare
registers for use.

A third simple program copies the content of one register to another ‘
register, leaving the original content unchanged. Consider the flow
graph and then the program:

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

1
) e
e

program 3: COPY [1,3]

STEP INSTRUCTION REGISTER GO TO STEP [BRANCH TO STEP]

I Deb 3 I 2
2. Deb 4 2 3
3 Deb I 4 6
4 Inc 3 5

& Inc 4 3

6. Deb 4 7 8
7 Inc I 6

8 End

This is certainly a roundabout way of copying, since we do it by first
moving the contents of register 1 to register 3 while making a duplicate
copy in register 4, and then moving that copy back into register 1. But
it works. Always. No matter what the contents of registers 1, 3, and 4
are at the beginning, when the program halts, whatever was in register
1 will still be there and a copy of that content will be in register 3.

If the way this program works isn’t dead obvious to you yet, get
out some cups for registers (pencil a number on each cup, its address)
and a pile of pennies (or beans) and “hand simulate” the whole pro-
cess. Put a few pennies in each register and make a note of how
many you put in register 1 and register 3. If you follow the program
slavishly, when you finish, the number of pennies in register 1 will
be the same as it was at first, and the same number will now be in
register 3. It is very important that you internalize the basic processes
of the register machine, so you don’t have to think hard about them,

15

INTUITION PUMPS AND OTHER TOOLS FOR THINKING

because we're going to be exploiting this new talent in what follows.
So take a few minutes to become a register machine (the way an actor
can become Hamlet).

I find that some of my students lapse into a simple error: they
imagine that when they decrement a register, they have to put that
penny, the one they just took from register 7, in some other register.
No. Decremented pennies just go back in the big pile, your “infinite”
supply of pennies to use in this simple adding-and-subtracting routine.

With moving, copying, and zeroing out in our kit, we are ready to
go back to our addition program and improve it. Program 1 puts the
right answer to our addition problem in register 2, but in the process
it destroys the original contents of registers 1 and 2. We might want
to have a fancier addition program that saves these values for some
later use, while putting the answer somewhere else. So let’s consider
the task of adding the content of register 1 to the content of register 2,
putting the answer in register 3 and leaving the contents of registers
1 and 2 intact.

Here is a flow graph that will accomplish that:

e

13

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

We can analyze the loops, to see what each does. First we zero
out the answer register, register 3, and then we zero out a spare regis-
ter (register 4) to use as a temporary holding tank or uffer. Then we
copy the content of register 1 to both registers 3 and 4, and move that
content back from the buffer to 1, restoring it (and in the process,
zeroing out register 4 for use again as a buffer). Then we repeat this
operation using register 2, having the effect of adding the content
of register 2 to the content we’d already moved to register 3. When
the program halts, buffer 4 is empty again, the answer is in register
3, and the two numbers we added are back in their original places,
registers 1 and 2.

This thirteen-step RAP program puts all the information in the
flow graph in the form that the processing unit can read:

program 4. Non-destructive ADD [1,2,3]

STEP INSTRUCTION REGISTER GO TO STEP [BRANCH TO STEP]

L Deb 3 I 2

2. Deb 4 2 3

3. Deb I 4 6

4. Inc 3 5

5. Inc 4 3

6. Deb 4 7 8

7. Inc I 6

8. Deb 2 9 11
9. Inc 3 10

10. Inc 4 I1

II. Deb 4 12 13
12. Inc 2 11

13. End

I am not going to recommend that you simulate this program
by hand with the cups and pennies. Life is short, and once you have
internalized the basic processes in your imagination, you can now take
advantage of a prosthetic device, RodRego, a register machine you
can download from http://sites.tufts.edu/rodrego/.

18

INTUITION PUMPS AND OTHER TOOLS FOR THINKING

press any key to start

Home screen for the original RodRego register machine, 1986

There are both PC and Mac versions of RodRego available
to run on your computer. We developed this thinking tool more
than twenty years ago at the Curricular Software Studio, and hun-
dreds of students and others have used it to become fluent register
machine thinkers. You can type in your RAP programs and watch
them run, with either beans or numbers in the registers. There are
also animated PowerPoint demonstrations of the path taken by the
processing unit through the flow graph for addition, for instance, so
you can see exactly how RAP instructions correspond to the circles
in the flow graph.

Now let’s turn to subtraction. Here is a first stab at a flow
graph for subtracting the content of register 2 from the content
of register 1, putting the answer in register 4. Can you see what is
wrong with it?

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

.
__ﬁ :
Q

This will work only when the content of register 1 is greater than
the content of register 2. But what if this isn’t so? Register 1 will “zero
out” halfway through one pass in the subtraction loop, before it can
finish the subtraction. What should happen then? We can't just ask
the computer to end, for this leaves the wrong answer (o) in register 4.
We can use this zeroing out to start a new process, which first backs
up half a loop and undoes the provisional decrementing from register
2. At this point the content of register 2 (not register 1) gives the right
answer if we interpret it as a negative number, so you can simply
move that content to register 4 (which is already zeroed out) and put
a sign somewhere indicating that the answer is a negative number.
The obvious thing to do is to reserve a register for just this task—let’s
say, register 3. Zero it out at the beginning, along with register 4,
and then have the program put a “flag” in register 3 as the sign of
the answer, with o meaning + and 1 meaning —. Following is the
flow graph, with comments explaining what each step or loop does.
(You can put such comments in your RAP programs, in between
marks. They are for you and other human beings; RodRego will
ignore them.)

19

120 INTUITION PUMPS AND OTHER TOOLS FOR THINKING

OL——><~—— initializes the answer register
9

moves the answer «—"fixes” register 2

to register 4

puts a minus
<«—sign flag in
) register 3

moves the answer
to register 4 ’
Q

Q

Exercise 2

a. Write the RAP program for this flow graph. (Note that since the pro-
gram branches, you can number the steps in several different ways. It
doesn’t matter which way you choose as long as the ‘go to” commands
point to the right steps.)

b. What happens when the program tries to subtract 3 from 3 or 4
from 42

¢. What possible error is prevented by zeroing out register 3 before trying
the subtraction at step 3 instead of after step 42

With addition and subtraction under our belts, multiplication and
division are easily devised. Multiplying # times # is just adding 7 to
itself . times. So we can instruct the computer to do just that, using

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

one register as a counter, counting down from to o by decrementing
once each time the addition loop is completed.

Exercise 3

a. Draw a flow graph (and write the RAP program) for multiply-
ing the content of register 1 by the content of register 3, putting the
answer in register s.

b. (1 Optional)* By copying and moving, improve the multiplier you cre-
ated in problem a: when it stops, the original contents of register 1
and register 3 are restored, so that you can easily check the inputs and
outputs for correctness after a run.

¢. (Optional) Draw a flow graph and write a RAP program that
examines the contents of register 1 and register 3 (without destroy-
ing them!) and writes the address (1 or 3) of the larger content in

register 2, and puts 2 in register 2 if the contents of registers 1 and 3
are equal. (After this program has executed, the contents of register 1
and register 3 should be unchanged, and register 2 should say if their
contents are equal, and if not, which of those two registers has the

larger content.)

Division, similarly, can be done by subtracting the divisor over
and over again from the dividend and counting up the number of
times we can do that. We can leave the remainder, if any, in a special
remainder register. But here we must be careful to add one crucial
safety measure: we mustn't divide by zero (must we?), so before any
division starts, we should run a simple check on the divisor, by trying
to decrement it. If we can decrement it, we should increment it just
once (restoring it to its proper value) and then proceed with the divi-
sion. If we hit zero, however, when we try to decrement it, we need to
raise an alarm. We can do this by reserving a register for an ERROR

* This means the other exercises are compulsory! I mean it. If you want to take advantage of
this thinking tool, you have to practice, practice, practice until you become fluent. Working
through the simple compulsory exercises may take you an extra hour or two, but it’s worth it.

D S
?"rv;,;-—,_c' e

121

INTUITION PUMPS AND OTHER TOOLS FOR THINKING

flag: a 1 in register 5 can mean “TILT! I've just been asked to divide
by zero!”

Here is the flow graph for dividing the content of register 1 by the
content of register 2, putting the answer in register 3, the remainder

in register 4, and highlighting register 5 for an “error message” (a 1

means “I was asked to divide by zero”).

@ <— increments quotient

Walk through the flow graph, and notice how zero in the divisor
aborts the operation and raises a flag. Notice, too, that register 4 is
doing double duty, serving not only as a copy of the divisor, for restor-
ing the divisor for each successive subtraction, but also as a potential
remainder register. If register 1 zeros out before register 4 can dump
its content back into register 2 for another subtraction, that content is
the remainder, right where it belongs.

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

SecreT 1. Competence without Comprehension: Something—
e.g., a register machine—can do perfect arithmetic without
having to comprehend what it is doing.

The register machine isn't a mind; it comprehends nothing; but
it sorta comprehends three simple things—Inc, Deb, and End—in
the sense that it slavishly executes these three “instructions” when-
ever they occur. They aren’t rea/ instructions, of course; they are
sorta instructions. They look like instructions to us, and the register
machine executes them as if they were instructions, so it’s more than
handy to call them instructions.

As you can now see, Deb, Decrement-or-Branch, is the key to the
power of the register machine. It is the only instruction that allows
the computer to “notice” (sorta notice) anything in the world and use
what it notices to guide its next step. And in fact, this conditional
branching is the key to the power of all stored-program computers,
a fact that Ada Lovelace recognized back in the nineteenth century
when she wrote her brilliant discussion of Charles Babbage’s Analyti-
cal Engine, the prototype of all computers.”

Assembling these programs out of their parts can become a rather
routine exercise once we get the hang of it. In fact, once we have
composed each of the arithmetic routines, we can use them again
and again. Suppose we numbered them, so that ADD was operation

o and SUBTRACT was operation 1, MULTIPLY was operation 2,
and so forth. COPY could be operation 5, MOVE could be operation
6, and so on. Then we could use a register to store an instruction, by
number.

* Ada Lovelace, daughter of the poet Lord Byron, was an amazing mathematician and much
else. In 1843 she published her translation of an Italian commentary on Babbage’s Analytical
Engine, together with her own notes, which were longer and deeper than the piece she had
translated: Menabrea (1842). Included in these notes was her carefully worked-out system for
using Babbage’s Engine to compute Bernoulli numbers. For this she is often hailed as the
first computer programmer.

123

124 INTUITION PUMPS AND OTHER TOOLS FOR THINKING

Exercise 4 (Optional)
Draw a flow graph, and write a RAP program that turns a register
machine into a simple pocket calculator, as follows:

a. Use register 2 for the operation.

o=ADD
1=SUBTRACT
2=MULTIPLY
3=DIVIDE

b. Put the values to be acted on in registers 1 and 3.
(Thus 3 0 6 would mean 3 + 6, and 513 would mean 5 —3, and 42 §
would mean 4 X 5, and 9 3 3 would mean 9 + 3). Then put the results
of the operation in registers 4 through 7, using register 4 for the sign
(using o for + and 1 for =) and register 5 for the numerical answer,
register 6 for any remainder in a case of division, and register 7 as
an alarm, signaling a mistake in the input (either divide-by-zero or

an undefined operation in register 2.

Notice that in this example, we are using the contents of registers
(in each case, a number) to stand for four very different things: a
number, an arithmetical operation, the sign of a number, and an error

flag.

SECRET 2: What a number in a register stands for depends on
the program that we have composed.

Using the building blocks we have already created, we can con-
struct more impressive operations. With enough patience we could
draw the flow graph and write the program for SQUARING the Q
number in register 7, or a program to FIND THE AVERAGE of
the contents in registers 1 through 20, or FACTOR the content of ‘.
register 6, putting a I in register 5 if 5 is a factor, or COMPARE l
the contents of register 3 and register 4 and put the larger content in
register 5 unless it is exactly twice as large, in which case puta flag in

register 7. And so forth.

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

A particularly useful routine would SEARCH through a hundred
registers to see if any of them had a particular content, putting the
number of that register’s address in register 1or. (How would it work?
Put the TARGET number in register 102, and a copy of the target in
register 103; Z€ro out register 101, then, starting at register 1, subtract
ts contents from the contents of 103 (after incrementing register 101),
looking for a zero answer. If you don’t get it, go on to register 2, and
so forth. If any register has the target number, halt; the address of
that register will be in register ror.) Thanks to the basic “sensory”
power embodied in Des—its capacity to “notice” a zero when it tries
to decrement a register—we can turn the register machine’s “eyes” in
on itself, so it can examine its own registers, moving contents around
and switching operations depending on what it finds where.

SECRET 3: Since a number in a register can stand for anything,
this means that the register machine can, in principle, be
designed to “notice” anything, to “discriminate” any pattern
or feature that can be associated with a number—or a number
of numbers.

For instance, a black-and-white picture—any black-and-white
picture, including a picture of this page—can be represented by a
large bank of registers, one register for each pixel, with o for a white
spot and 1 for a black spot. Now, write the register machine program
that can search through thousands of pictures looking for a picture
of a straight black horizontal line on a white background. (Don't
actually try to do it. Life is short. Just imagine in some detail the
difficult and hugely time-consuming process that would accomplish
this.) Once you've designed—in your imagination—your horizontal-
line-recognizer, and your vertical-line-recognizer, and your semi-
circle-recognizer, think about how you might yoke these together
with a few (dozen) other useful discriminators and make something
that could discriminate a (capital) letter “A™—in hundreds of dif-
ferent fonts! This is one of the rather recent triumphs of computer

125

126

INTUITION PUMPS AND OTHER TOOLS FOR THINKING

programming, the Optical Character Recognition (OCR) software that
can scan a printed page and turn it quite reliably into a computer text
file (in which each alphabetic or numerical symbol is represented by
a number, in ASCII code, so that text can be searched, and all the
other wizardry of word-processing can be accomplished—by nothing
but arithmetic). Can an OCR program read? Not really; it doesn’t
understand what is put before it. It sorta reads, which is a wonder-
fully useful competence that can be added to our bountiful kit of
moving parts.

SECRET 4: Since a number can stand for anything, a number
can stand for an instruction or an address.

We can use a number in a register to stand for an instruction,
such as ADD or SUBTRACT or MOVE or SEARCH, and to
stand for addresses (registers in the computer), so we can store a
whole sequence of instructions in a series of registers. If we then
have a main program (program A) that instructs the machine to go
from register to register doing whatever that register instructs it to
do, then we can store a second program B in those registers. When
we start the machine running program A, the first thing it does is to
consult the registers that tell it to run program B, which it thereupon
does. This means that we could store program A once and for all in
the register machine’s central processing unit in a reserved set of
registers (it could be “firmware” burnt into the ROM—read-only
memory), and then use program A to run programs B, C, D, and
so on, depending on what numbers we put in the regular registers.
By installing program A in our register machine, we turn it into a
stored-program computer.

Program A gives our register machine the competence to faith-
fully execute whatever instructions we put (by number) into its regis-
ters. Every possible program it can run consists of a series of numbers,
in order, that program A will consult, in order, doing whatever each
number specifies. And if we devise a system for putting these instruc-

N o

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

tions in unambiguous form (for instance, requiring each instruction
name to be the same length—say two digits), we can treat the whole
series of numbers that compose the B program, say,

86, 92, 84, 29, 08, 50, 28, 54, 90, 28, 54, 90
as one great big long number:
869284290850285490285490

This number is both the unique “name” of the program, program
B, and the program itself, which is executed, one step at a time, by
program A. Another program is

284570297590287529075489274902754248509284 28540423,

and another is

89082964724902849524988567433904385038824598028545442547
89653985

but most interesting programs would have much, much longer names,
millions of digits long. The programs you have stored on your laptop,
such as a word processor and a browser, are just such long numbers,
many millions of (binary) digits long. A program that is 10 megabytes
in size is a string of eighty million os and 1s.

SECRET 5: All possible programs can be given a unique number
as a name, which can then be treated as a list of instructions to
be executed by a Universal machine.

Alan Turing was the brilliant theoretician and philosopher who
worked this scheme out, using another simple imaginary computer,
one that chugs back and forth along a paper tape divided into

127

128

INTUITION PUMPS AND OTHER TOOLS FOR THINKING

squares, making its behavior depend (a4a/—conditional branching)
on whether it reads a zero or a one on the square currently under its
reading head. All the Turing machine can do is flip the bit (erasing
o, writing 1, or vice versa) or leave the bit alone, and then move left
or right one tape square and go to its next instruction. I think you will
agree that writing Turing machine programs to ADD and SUB-
TRACT and perform other functions, using just the binary numbers
o and 1 instead of all the natural numbers (o, 1, 2, 3, 4, 5, etc.), and
moving just one square at a time, is a more daunting exercise than
our register machine exercises, but the point Turing made is exactly
the same. A Universal Turing machine is a device with a program
A (hardwired, if you like) that permits it to “read” its program B off
its paper tape and then execute that program using whatever else
is on the tape as data or input to program B. Hao Wang'’s register
machine can execute any program that can be reduced to arithmetic
and conditional branching, and so can Turing’s Turing machine.
Both machines have the wonderful power to take the number of
any other program and execute iz. Instead of building thousands of
different computing machines, each hardwired to execute a particu-
lar complicated task, we build a single, general-purpose Universal
machine (with program A installed), and then we can get it to do
our bidding by feeding it programs—software—that create virtual
machines.

The Universal Turing machine is a universal mimic, in other
words. So is our less well-known Universal register machine. So is
your laptop. There is nothing your laptop can do that the Universal
register machine can’t do, and vice versa. But don’t hold your breath.
Nobody said that all machines were equal in speed. We've already
seen that our register machine is achingly slow at something as labo-
rious as division, which it does by serial subtraction, for heaven’s
sake! Are there no ways to speed things up? Indeed there are. In fact,
the history of computers since Turing’s day is precisely the history
of ever-faster ways of doing what the register machine does—and
nothing else.

THE SEVEN SECRETS OF COMPUTER POWER REVEALED 129

SECRET 6: All the improvements in computers since Turing
invented his imaginary paper-tape machine are simply ways of
making them faster.

For instance, John von Neumann created the architecture for the
first serious working computer, and in order to speed it up, he widened
the window or reading head of Turing’s machine from 1-bit-at-a-time
to many-bits-at-a-time. Many early computers read 8-bit “words” or
16-bit “words” or even 12-bit words. Today 32-bit words are widely
used. This is still a bottleneck—the von Neumann bottleneck—but
it is thirty-two times wider than the Turing machine bottleneck!
Simplifying somewhat, we can say that each word is COPIED
from memory one at a time, into a special register (the Instruction
Register), where it is READ and executed. A word typically has
two parts, the Operation Code (e.g, ADD, MULTIPLY, MOVE,
COMPARE, JUMP-IF-ZERO) and an Address, which tells the
computer which register to go to for the contents to be operated on.
So, 10101110 1110I010I0T might tell the computer to perform operation
rorortIo on the contents of register 1rrororororor, putting the answer,
always, in a special register called the Accumulator. The big differ-
ence between the register machine and a Von Neumann machine is
that the register machine can operate on any register (Inc and Deb
only, of course), while a Von Neumann machine does all the arithme-
tic work in the Accumulator, and simply COPIES and MOVES (or
STORES) contents to the registers that make up the memory. It pays
for all this extra moving and copying by being able to perform many
different fundamental operations, each hardwired. That is, there is
a special electronic circuit for ADD and another for SUBTRACT
and yet another for JUMP-IF-ZERO, and so forth. The Operation
Code is rather like an area code in the telephone system or a zip code
in the mail: it sends whatever it is working on to the right place for
execution. This is how software meets hardware.

How many primitive operations are there in real computers these
days? There can be hundreds, or thousands, or in a return to the

—

130

INTUITION PUMPS AND OTHER TOOLS FOR THINKING

good old days, a computer can be a RISC (Reduced Instruction Set
Computer), which gets by with a few-dozen primitive operations but
makes up for it in the blinding speed with which they are executed.
(If Inc and Deb instructions could be carried out a million times faster
than a hardwired ADD operation, it would pay to compose ADD by
using Inc and Deb, as we did earlier, and for all additions with less
than a million steps, we’d come out ahead.)

How many registers are there in real computers these days? Mil-
lions or even billions (but theyre each finite, so that really large
numbers have to be spread out over large numbers of registers). A
byte is 8 bits. If you have 64 megabytes of RAM (random access
memory) on your computer, you have sixteen million 32-bit registers,
or the equivalent. We saw that numbers in registers can stand for
things other than positive integers. Real numbers (like 7 or V2 or %)
are stored using a system of “floating point” representations, which
breaks the number into two parts, the dase and the exponent, as in
scientific notation (“1.495 X 10+”), which permits computer arithme-
tic to handle (approximations of) numbers other than the natural
numbers. Floating-point operations are just arithmetical operations
(particularly multiplications and divisions) using these floating-point
numbers as values, and the fastest super-computer you could buy
twenty years ago (when I wrote the first version of this chapter) could
perform over 4 MEGAFLOPS: over 4 million ffoating point opera-
tions per second.

If that isn't fast enough for you, it helps to yoke together many
such machines in parallel, so they are all working at the same
time, not serially, waiting in a queue for results to work on. There
is nothing that such a parallel machine can do that a purely serial
machine cannot do, slower. In fact, most of the parallel machines
that have been actively studied in the last twenty years have been
virtual machines simulated on standard (nonparallel) Von Neumann
machines. Special-purpose parallel hardware has been developed,
and computer designers are busily exploring the costs and benefits of
widening the von Neumann bottleneck, and speeding up the traffic

THE SEVEN SECRETS OF COMPUTER POWER REVEALED

through it, in all sorts of ways, with co-processors, cache memories,
and various other approaches. Today, Japan’s Fujitsu K-computer can
operate at 10.51 PETAFLOPS—which is over ten thousand #ri//ion
floating-point operations per second.

That might be almost fast enough to simulate the computational
activity of your brain in real time. Your brain is a parallel processor
par excellence, with something in the neighborhood of a hundred
billion neurons, each quite a complicated little agent with an agenda.
The optic “nerve,” carrying visual information from your eye to your
brain, is, all by itself, several million channels (neurons) wide. But
neurons operate much, much slower than computer circuits. A neuron
can switch state and send a pulse (plausibly, its version of Inc or Deb)
in a few milliseconds—thousandths, not millionths or billionths, of
a second. Computers move bits around at near the speed of light,
which is why making computers smaller is a key move in making
them faster; it takes roughly a billionth of a second for light to travel
a foot, so if you want to have two processes communicate faster than
that, they have to be closer together than that.

SECRET 7: There are no more secrets!

Perhaps the most wonderful feature of computers is that because
they are built up, by simple steps, out of parts (operations) that are
also dead simple, there is simply no room for them to have any secrets
up their sleeve. No ectoplasm, no “morphic resonances,” no invisible
force fields, no hitherto unknown physical laws, no wonder tissue.
You Anow that if you succeed in getting a computer program to model
some phenomenon, there are no causes at work in the model other
than the causes that are composed of all the arithmetical operations.

Now what about quantum computing, which is all the rage these
days? Aren’t quantum computers capable of doing things that no
ordinary computer can do? Yes and no. What they can do is solve
many problems, compute many values simultaneously, thanks to
“quantum superposition,” the strange and delicate property in which

131

132

INTUITION PUMPS AND OTHER TOOLS FOR THINKING

an unobserved entity can be in “all possible” states at once, until
observation brings about “collapse of the wave packet.” (Consult your
favorite popular physics book or website for more on this.) Basically, a
quantum computer is just the latest—very impressive—innovation in
speed, a quantum leap, one might say, in processing speed. A Turing
machine chugging along on its paper tape, or a register machine
running around incrementing and decrementing single registers, has
a very strict limit on what it can do in practically small chunks of
time—minutes or hours or days. A supercomputer like the Fujitsu
K-computer can do all the same things trillions of times faster, but
that is still not fast enough to solve some problems, especially in
cryptography. That is where the speed bonus of quantum computers
could pay off—if people can solve the ferociously difficult engineering
problems encountered in trying to make a stable, practical quantum
computer. It may not be possible, in which case we may have to settle

for mere quadrillions of FLOPS.

i
H
L
b
§
-
H
i

P g

O ——

RO ———

InTUITION PUMPS
AND OTHER
TOOLS FOR THINKING

Danier C. DENNETT

W. W. NorToN & COMPANY

New York * London

