Synchronous Sequential Circuits
 Assigned Date: Fifteenth Week Due Date: Dec. 4, 2017

P1. (15 points) A sequential circuit has 2 rising edge triggered flip-flops (outputs A and B), two inputs (X and Y) and one output Z . One of the flip-flops is D the other is JK. The logic expressions for this circuit are:

$$
\begin{aligned}
D_{a} & =X^{\prime} \cdot Y+X \cdot A \\
J_{b} & =X^{\prime} \cdot B+X^{\prime} \cdot A \\
K_{b} & =Y \cdot B \\
Z & =X \cdot B
\end{aligned}
$$

a) Sketch the circuit diagram
b) Construct the transition table
c) Construct the state diagram

P2. (40 points) A counter has a special counting sequence: $0,5,7,1,0,5,7,1$, and so on. Design this counter with minimal number of states.
a) (5 points) Draw the state diagram for the counter.
b) (5 points) Construct the state-assigned table including the next state and output.
c) (10 points) Draw the circuit diagram for the counter using D flip-flops.
d) (10 points) Repeat (c) using T flip-flops.
e) (10 points) Repeat (c) using JK flip-flops.

P3. (15 points) Use synchronous sequential circuit (SSC) analysis to reverse engineer the operation of the circuit shown below.
a) Is this a Mealy or Moore machine?
b) Write the expressions for Next State and Output logic.
c) Draw the state transition diagram.

Cpr E 281 HW 12
ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits
Assigned Date: Fifteenth Week Due Date: Dec. 4, 2017

P4. (10 points) Draw the state diagram for a Mealy state machine with two inputs (X and Y) and two outputs (Z1 and Z2). The two inputs represent a two-bit binary number (N). If the present value of N is greater than the previous value of N then $\mathrm{Z1}=0$ and $\mathrm{Z2}=1$. And if the present value of N is less than the previous value of N then $\mathrm{Z} 1=1$ and $\mathrm{Z} 2=0$. Otherwise $\mathrm{Z} 1=\mathrm{Z} 2=0$.

P5. (20 points) Convert each of the following FSMs (shown below) to an ASM chart.

