Cpr E 281 HW06
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Binary Number Representation and Arithmetic

 Assigned Date: Seventh Week Due Date: Oct. 9, 2017P1. (10 points) Design a logic circuit to meet the following specifications:

- The circuit has 3 inputs ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) and one output F
- The circuit outputs a logic 1 for all input combinations that either have a decimal equivalent less than or equal to 2 (i.e., $\mathrm{ABC}<=2$) or greater than or equal to 6 (i.e., $A B C>=6$). The circuit outputs a logic 0 for all other input combinations.
(a) Derive the truth table for the logic circuit
(b) Use Karnaugh map to derive a minimum SOP expression

P2. (12 points) How many bits are required to represent each of the following sets of integers as unsigned numbers in binary?
(a) The integers 0 and 1
(b) The integers from 0 to 255 inclusively.
(c) The integers from 0 to 8191 inclusively.
(d) The integers from 0 to 4,095 inclusively.
(e) The integers from 0 to 456789 inclusively.
(f) The integers from 0 to $1,234,567$ inclusively.

P3. (12 points) How large a value can be represented by each of the following unsigned binary quantities?
(a) A 4-bit quantity.
(b) A 6-bit quantity
(c) A 10-bit quantity.
(d) A12-bit quantity
(e) A 16-bit quantity
(f) A 21-bit quantity

P4. (9 points) Convert the following unsigned binary numbers to decimal, octal, and hexadecimal:
(a) 1011010011
(b) 101011010
(c) 1000010

P5. (12 points) Convert the following decimal numbers to 8 -bit 1 's complement binary:
(a) 113_{10}
(b) -75_{10}
(c) -121_{10}
(d) 142_{10}

Cpr E 281 HW06
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Binary Number Representation and Arithmetic

 Assigned Date: Seventh Week Due Date: Oct. 9, 2017P6. (9 points) How many ternary (base 3) digits are required to represent numbers in the following ranges?
(a) The integer 0 and 1.
(b) The integers from 0 to 8191 inclusively.
(c) The integers from 0 to 456789 inclusively.

P7. (9 points) What is the value represented by the bit string 110101 if:
(a) it is in sign-and-magnitude representation?
(b) it is in 1's complement representation?
(c) it is in 2's complement representation?

P8. (9 points) Negate the following binary numbers in 4-bit 2's complement representation: (Remark: Negate means you find the negative of the number.)
(a) 0001
(b) 1100
(c) 0111

P9. (9 points) Give the 4-bit 2's complement representation for the following decimal numbers:
(a) -6
(b) -1
(c) 6

P10. (9 points) Answer the following:
(a) What advantage does 2's complement have over 1's complement?
(b) If you want to write the number 710 using 10-bit 2's complement representation, what do you need to do?
(c) If you want to write the number -710 using 11-bit 2's complement representation, what do you need to do?
(d) Clarify why we can't represent -710 2's complement using only 10-bit.

