Space-Efficient Estimation of Statistics over Sub-Sampled Streams

Andrew McGregor
University of Massachusetts
mcgregor@cs.umass.edu

A. Pavan Iowa State University pavan@cs.iastate.edu

Srikanta Tirthapura Iowa State University snt@iastate.edu David Woodruff
IBM Research Almaden
dpwoodru@us.ibm.com

Sampled IP Packet Streams

- IP Traffic Monitoring
 - 40Gbps 100s of Gbps
 - Cisco Netflow standard for monitoring
 - Sampled Netflow
 - Network Monitor sees only a random sample of the original packet stream
 - Different Types of Sampling Used
 - IETF Working Group (psamp)

Sampled Streams

 What can we compute over a stream by observing only a random sample of the stream?

- Two Constraints:
 - Only observe a random sample
 - Streaming, Memory Bound Computation

Model: Bernoulli Sampling

Original Stream P

$$a_1, a_2, \ldots, a_n$$

$$a_i \in \{1, 2, 3, \dots, m\}$$

Bernoulli Sampler selects each a_i with probability p

Sampled Stream L

Aggregates and Analysis of Original Stream P

Stream Processor

Aggregates

The stream is a sequence of items $\,(a_1,a_2,\ldots,a_n)\,$

What matters is the vector $f = \langle f_1, f_2, ..., f_m \rangle$ where f_i is frequency of i

- Frequency Moments $F_k(f) = \sum_{i=1}^m f_i^k$
- Number of Distinct Elements
- Empirical Entropy $H(f) = \sum_{i=1}^{m} \frac{f_i}{n} \lg \left(\frac{n}{f_i} \right)$
- Heavy Hitters

Preliminaries

- Let g_i be the frequency of item i in the substream $g_i = B(f_i, p)$
- *L* contains the frequency vector $\langle g_1, g_2, ..., g_m \rangle$
- Randomized multiplicative approximation, for parameters $\begin{bmatrix} 1 & \chi \end{bmatrix}$

$$\Pr\left[\frac{1}{\alpha} \le \frac{X}{\tilde{X}} \le \alpha\right] \ge 1 - \delta$$

Results

- Number of Distinct Elements
 - (Known) Upper Bound on Result Quality
 - Simple Streaming Algorithm that meets the bound
- Frequency Moments, F_k, k > 0
 - Smaller values of p increase streaming space complexity
 - Matching upper and lower bounds (w.r.t p)
 - Tradeoff between processing time and space
- Entropy
 - Matching Upper and Lower Bounds for Additive Error
 - Relative Error Impossible in small space
- Heavy Hitters
 - Sampling is a good fit

Related Work

- Duffield, Lund, Thorup, "Properties and prediction of flow statistics from sampled packet streams", IMC 2002
- Duffield, Lund, and Thorup, "Estimating flow distributions from sampled flow statistics", SIGCOMM 2003
- Rusu and Dobra, "Sketching sampled data streams" ICDE 2009
- Bar-Yossef, "Sampling Lower Bounds via Information Theory", STOC 2003

Results: Number of Distinct Elements

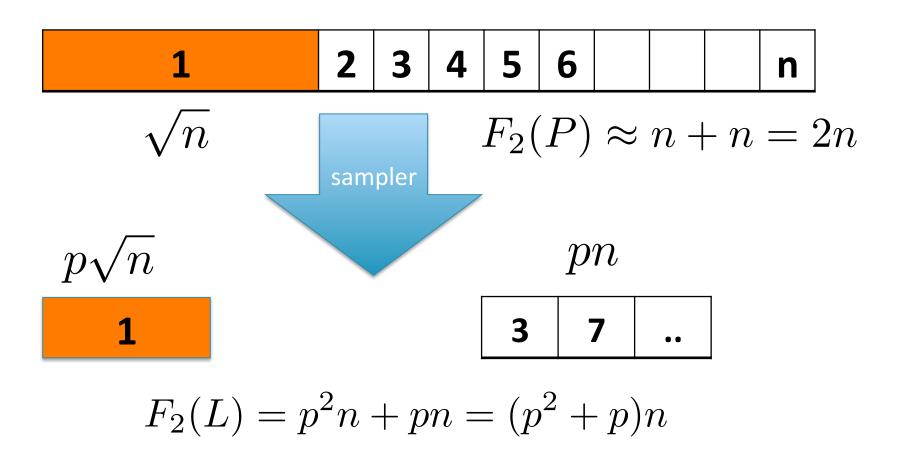
For constant p, estimate $F_0(P)$ from observing L

- Any algorithm must have relative error (Charikar et al. PODS 2000) $\Omega\left(\frac{1}{\sqrt{p}}\right)$
- A simple streaming algorithm has relative $O\left(\frac{1}{\sqrt{p}}\right)$ error
- Other Estimators, such as GEE (Generalized Error Estimator) also possible in single pass

Frequency Moments F_k

Theorem (Upper Bound): There is a one pass streaming algorithm which observes L and outputs a $(1+\epsilon,\delta)$ -estimator to $F_k(P)$ where $k\geq 2$ using $\tilde{O}\left(\frac{1}{p}m^{1-2/k}\right)$ space. assuming $p=\tilde{\Omega}(\min(m,n)^{-1/k})$

Computing F₂: Why is This Hard?



Algorithm 1 for F₂

$$Z = \frac{F_2(L) - F_1(L)}{p^2}$$
 $E[Z] = F_2(P)$

- Algorithm
 - 1. Estimate $F_2(L)$ using streaming algorithm on L
 - 2. Use in above formula for Z

Algorithm 1 for F₂ (contd)

- To get $(1+\epsilon,\delta)$ -approximation for $\it Z$, space needed is $\tilde{\it O}\left(\frac{1}{p^2}\right)$
- Issue: Need to estimate $F_2(L)$ with very high accuracy to get good relative error for

$$\frac{F_2(L)-F_1(L)}{p^2}$$

Algorithm 2 for F₂

Collisions. The number of 2-wise collisions in P

$$C_2(P) = \sum_{i=1}^m \binom{f_i}{2}$$

- Observation: $F_2(P) = 2C_2(P) + F_1(P)$
- Algorithm:
 - Estimate and $C_2(P), F_1(P)$ with mult. $\operatorname{error}(1+\epsilon)$

Estimating $C_2(P)$

• Observation: $E[C_2(L)] = p^2C_2(P)$ $Var(C_2(L)) = O(p^3F_2^{1.5})$

ullet If $C_2(L)$ estimated accurately, we are done

But this is hard in general, in small space

Estimating $C_2(L)$

$$F_2(P) = 2C_2(P) + F_1(P)$$

Case I:

$$C_2(L) = \Omega(p^2 F_2(P))$$

 ${f \cdot}$ Estimate $C_2(L)$ hence $C_2(P)$

with good relative error

Case 2:

$$C_2(L) = O(p^2 F_2(P))$$

$$C_2(P) \ll F_2(P)$$

- ullet Accurate estimate of $\ C_2(L)$ not needed
- Get an estimate within a multiplicative error of 3

Estimating $C_2(L)$

Estimate with good relative error when

$$C_2(L) = \Omega(p^2 F_2(P))$$

- Technique due to Indyk & Woodruff (STOC 2005)
 - Divide items {1,2..,m} into classes based on frequency
 - Estimate the size of different classes that contribute to the final result

Tight Lower Bound for F_k

Theorem: Any constant-pass streaming algo. that $(1+\epsilon,\delta)$ -approximates F_k for a sufficiently small constants ϵ,δ by observing a sampled stream, in the Bernoulli sampling model, requires $\Omega\left(m^{1-2/k}/p\right)$ bits of space

F_k Time-Space Tradeoff

With sampled stream at probability p

• Processing Time: $\tilde{O}(pn)$

• Streaming Space:
$$\tilde{O}\left(\frac{m^{1-2/k}}{p}\right)$$

• Product: $\tilde{O}(nm^{1-2/k})$

Entropy

- No multiplicative error approximation possible with probability 9/10, even if $p > \frac{1}{2}$
 - The entropy of sampled stream could be zero,
 while that of the original stream non-zero
- If $p = \Omega(n^{-1/3})$ there is an approximation H' to H(f) such that
 - $-H' \le 100H(f)$ with prob. at least 99/100

$$H' \ge H(f)/2 - o(1)$$

Heavy Hitters

 The frequency of heavy hitters are (approximately) proportionately maintained in the sampled stream

Precise upper and lower bounds in paper

Conclusions

- Extreme Volume Data Streams
- F_k
 - Upper and Lower Bounds for F_k , k > 0
 - Smooth Space-Time tradeoff
- Number of distinct Elements, Entropy
 - Sampling harms, streaming does not
- Heavy Hitters:
 - Sampling and Streaming are both ok