Rectangle-Efficient Aggregation in Spatial Data Streams

Srikanta Tirthapura Iowa State

David Woodruff IBM Almaden

The Data Stream Model

 Stream S of additive updates (i, Δ) to an underlying vector v:

$$V_i < -V_i + \Delta$$

- Dimension of v is n
- v initialized to 0ⁿ
- Number of updates is m
- Δ is an integer in {-M, -M+1, ..., M}
- Assume M, m ≤ poly(n)

Applications

- Coordinates of v associated with items
- v_i is the number of times (frequency) item i occurs in S
- Number of non-zero entries of v = number of distinct items in S
 - denoted $|v|_0$
- $|v|_1 = \Sigma_i |v_i|$ is sum of frequencies in S
- $|v|_2^2 = \sum_i v_i^2$ is self-join size
- $|v|_p = (\Sigma_i v_i^p)^{1/p}$ is p-norm of v

Lots of Known Results

- (ϵ, δ) -approximation
 - output estimator E to |v|_p
 - $-\Pr[|v|_p \le E \le (1+\epsilon) |v|_p] \ge 1-\delta$
- Let O~(1) denote poly($1/\epsilon$, log n/δ)
- Optimal estimators for |v|_p:
 - $-0 \le p \le 2$, use O~(1) memory
 - -p > 2 use $O\sim(n^{1-2/p})$ memory
 - Both results have O~(1) update time

Range-Updates

 Sometimes more efficient to represent additive updates in the form ([i,j], Δ):

$$\forall k \in \{i, i+1, i+2, ..., j\}: v_k \leftarrow v_k + \Delta$$

- Useful for representing updates to time intervals
- Many reductions:
 - Triangle counting
 - Distinct Summation
 - Max Dominance Norm

A Trivial Solution?

Given update ([i, j], Δ), treat it as j-i+1 updates (i, Δ), (i+1, Δ), (i+2, Δ), ..., (i+j, Δ)

 Run memory-optimal algorithm on the resulting j-i+1 updates

 Main problem: update time could be as large as n

Scattered Known Results

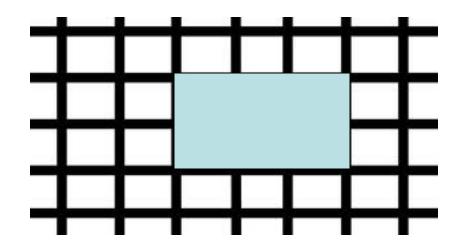
- Algorithm is range-efficient if update time is O~(1) and memory optimal up to O~(1)
- Range-efficient algorithms exist for
 - positive-only updates to $|v|_0$
 - $-|v|_{2}$
- For $|v|_p$, p>2, can get O~ $(n^{1-1/p})$ time and memory
- Many questions open (we will resolve some)

Talk Outline

- General Framework: Rectangle Updates
- Problems
 - Frequent points ("heavy hitters")
 - Norm estimation
- Results
- Techniques
- Conclusion

From Ranges to Rectangles

Vector v has coordinates indexed by pairs $(i,j) \in \{1, 2, ..., n\}$ $x \{1, 2, ..., n\}$



• Rectangular updates ($[i_1, j_1] \times [i_2, j_2], \Delta$)

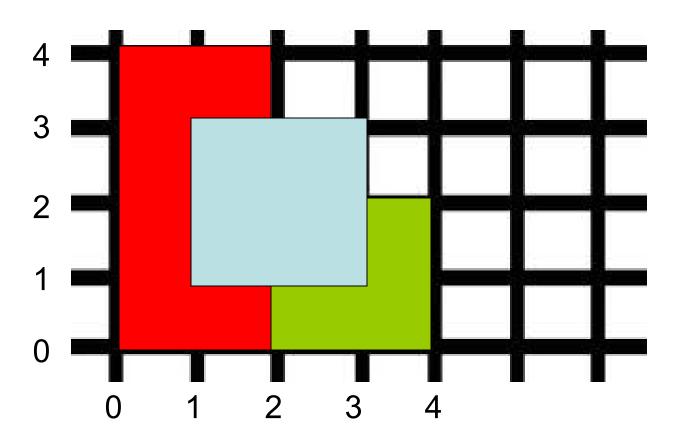
$$\forall (i,j) \in [i_1, j_1] \times [i_2, j_2]: v_{i,j} <- v_{i,j} + \Delta$$

Spatial Datasets

- A natural extension of 1-dimensional ranges is to axis-aligned rectangles
- Can approximate polygons by rectangles
- Spatial databases such as OpenGIS

- No previous work on streams of rectangles
- What statistics do we care about?

Klee's Measure Problem



What is the volume of the union of three rectangles? $[0, 2] \times [0,4], [1, 3] \times [1,3], [2, 4] \times [0,2]$

Other Important Statistics

max_{i,j} v_{i,j} is the depth

can approximate the depth by approximating |v|_p for large p > 0
 (sometimes easier than computing depth)

• also of interest: find "heavy" hitters, namely, those (i,j) with $v_{i,j} \ge \epsilon \, |v|_1$ or $v_{i,j}^2 \ge \epsilon \, |v|_2^2$

Notation

 Algorithm is rectangle-efficient if update time is O~(1) and memory optimal up to O~(1)

- For (ε, δ) -approximating $|v|_p$ we want
 - for $0 \le p \le 2$, O~(1) time and memory
 - for p > 2, O~(1) time and O~ $(n^2)^{1-2/p}$ memory

Our Results

- For $|v|_p$ for $0 \le p \le 2$, we obtain the first rectangle-efficient algorithms
 - First solution for Klee's Measure Problem on streams
- For finding heavy hitters, we obtain the first rectangle-efficient algorithms
- For p > 2 we achieve:
 - O~(n²)¹-²/p memory and time
 OR
 - $O\sim(n^2)^{1-1/p}$ memory and $O\sim(1)$ time

Our Results

- For any number d of dimensions:
- For |v|_p for 0 ≤ p ≤ 2 and heavy hitters:
 - $O^{(1)}$ memory and $O^{(d)}$ time
- For $|v|_p$ for p > 2:
 - O~ $(\dot{n}^d)^{1-2/p}$ memory and time OR
 - $O\sim(n^d)^{1-1/p}$ memory and $O\sim(d)$ time
- Only a mild dependence on d
- Improves previous results even for d = 1

Our Techniques

Main idea:

- Leverage a technique in streaming algorithms for estimating $|v|_p$ for any $p \ge 0$

 Replace random hash functions in technique with hash functions with very special properties

Indyk/W Methodology

- To estimate $|v|_p$ of a vector v of dimension n:
- Choose O(log n) random subsets of coordinates of v, denoted S⁰, S¹, ..., S^{log n}
 - Sⁱ is of size n/2ⁱ
- \forall Sⁱ: find those coordinates $j \in S^i$ for which $v_i^2 \ge \gamma \cdot |v_{S^i}|_2^2$
 - Use CountSketch:
 - Assign each coordinate j a random sign $\sigma(j) \in \{-1,1\}$
 - Randomly hash the coordinates into 1/ γ buckets, maintain $\Sigma_{j \text{ s.t. h(j)} = k \text{ and } j \in S^i} \sigma(j) \cdot v_j$ in k-th bucket

$$\Sigma_{j \text{ s.t. h(j)}} = 2 \text{ and } j \in S^{j} \quad \sigma(j) \cdot V_{j}$$

 Our observation: can choose the Sⁱ and hash functions in CountSketch to be pairwise-independent

Special Hash Functions

 Let A be a random k x r binary matrix, and b a random binary vector of length k

Let x in GF(2^r)

Ax + b is a pairwise-independent function:

- For
$$x \neq x' \in GF(2^r)$$
 and $y \neq y' \in GF(2^k)$:
 $Pr[Ax+b = y \text{ and } Ax'+b = y'] = 1/2^{2k}$

Special Hash Functions Con'd

Given a stream update ([i₁, j₁] x [i₂, j₂], Δ):
 can decompose [i₁, j₁] and [i₂, j₂] into O(log n)
 disjoint dyadic intervals:

$$[i_1, j_1] = [a_1, b_1] \cup ... \cup [a_s, b_s]$$

 $[i_2, j_2] = [c_1, d_1] \cup ... \cup [c_{s'}, d_{s'}]$

- Dyadic inteval: [u2q, (u+1)2q) for integers u,q
- Then $[i_1, j_1] \times [i_2, j_2] = \bigcup_{r, r'} [a_r, b_r] \times [c_{r'}, d_{r'}]$

Special Hash Functions Con'd

- A property of function Ax+b: can quickly compute the number of x in the interval [a_r, b_r] x [c_r, d_r] for which Ax+b = e
- By the structure of dyadic intervals, this corresponds to fixing a subset of bits of x, and letting the remaining variables be free:

of $x \in [a_r,b_r] \times [c_{r'},d_{r'}]$ for which Ax+b = e is # of z for which A'z = e', z is unconstrained

Can now use Gaussian elimination to count # of z

Techniques WrapUp

- Step 1: Modify Indyk/W analysis to use only pairwiseindependence
- Step 2: Given update ($[i_1, j_1] \times [i_2, j_2], \Delta$), decompose into disjoint products of dyadic intervals $\bigcup_{r, r'} [a_r, b_r] \times [c_{r'}, d_{r'}]$
- Step 3: For each [a_r, b_r] x [c_r, d_r], find the number of items in each Sⁱ and each bucket of CountSketch and with each sign by solving a system of linear equations
- Step 4: Update all buckets

Conclusion

Contributions:

- Initiated study of rectangle-efficiency
- Gave rectangle-efficient algorithms for estimating $|v|_p$, $0 \le p \le 2$ and heavy hitters
- Tradeoffs for estimating |v|_p for p > 2
- Improve previous work even for d = 1

Open Questions:

- Get $O\sim(n^d)^{1-2/p}$ memory and $O\sim(1)$ time for p>2
- Other applications of the model and technique