On Optimality of Clustering by Space Filling Curves

Pan Xu Srikanta Tirthapura panxu@iastate.edu snt@iastate.edu lowa State University

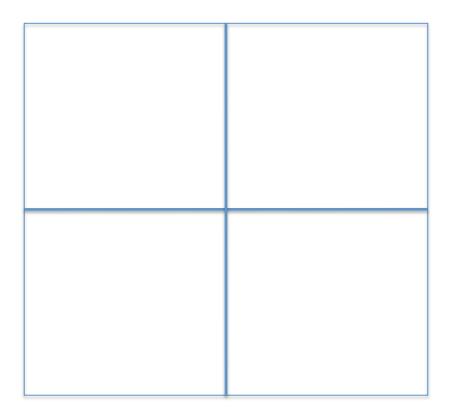
Multi-dimensional Data

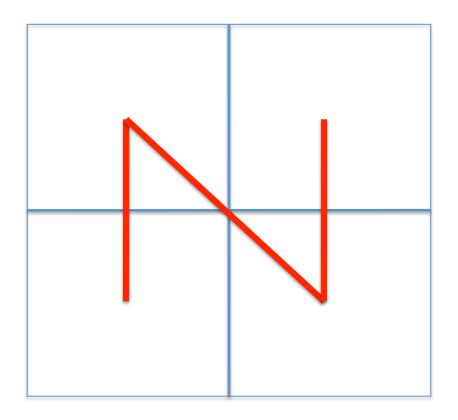
Indexing and managing single-dimensional data is a solved problem

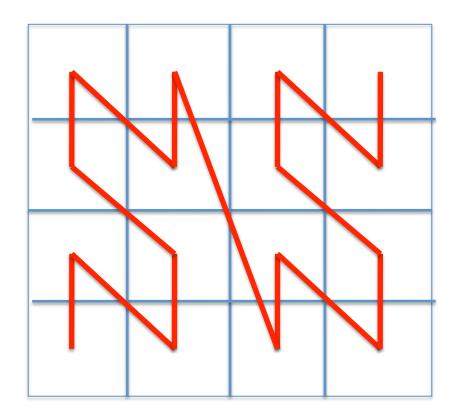
- Multi-dimensional data is not
 - Computational Geometry (k-d trees, quad trees)
 - Databases (R-trees, Space Filling Curves, etc)
 - Parallel Computing (same as above)

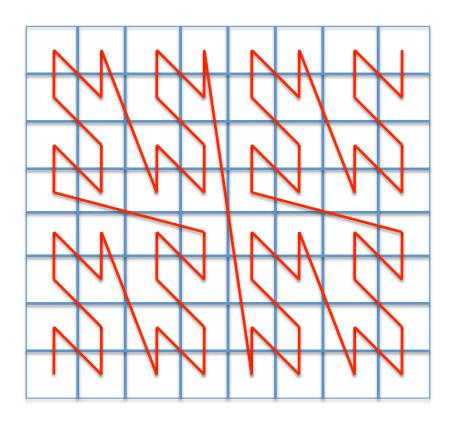
Space Filling Curve (SFC)

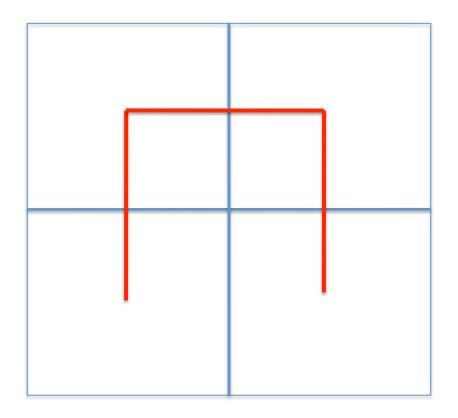
- Discrete multi-dimensional universe
- Path that passes through each point in a multidimensional universe exactly once
- Recipe for processing multi-dimensional data
 - Use and SFC to map data to a single dimension
 - Use a single dimensional data structure for indexing (ex: B+ trees)

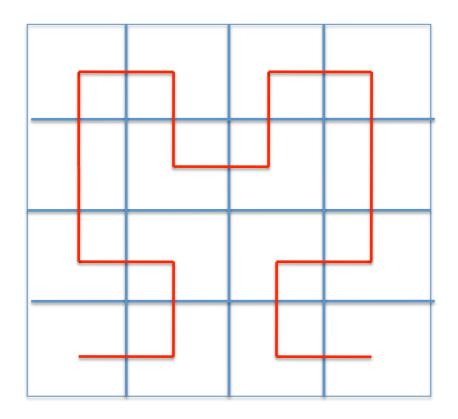


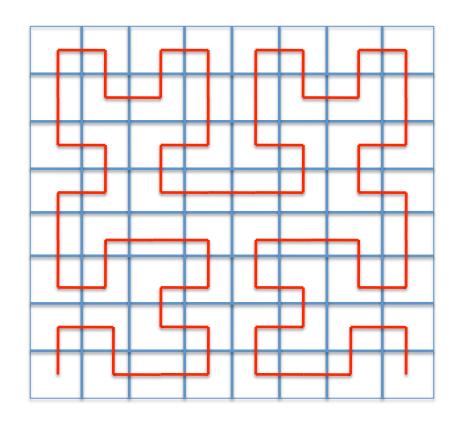


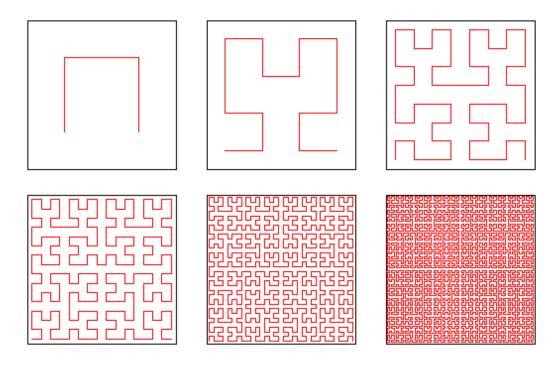












Source: http://www.math.osu.edu/~fiedorowicz.1/math655/Peano.html
Prof. Zbigniew Fiedorowicz

Where SFCs?

- Databases
 - Spatial databases, Geographic Information Systems
 - Commercial and Open Source Products: Oracle Spatial, OpenGIS
- Parallel Computing
 - Partitioning data among processors
 - Deciding which data to include inside a cache
- Thousands of Citations

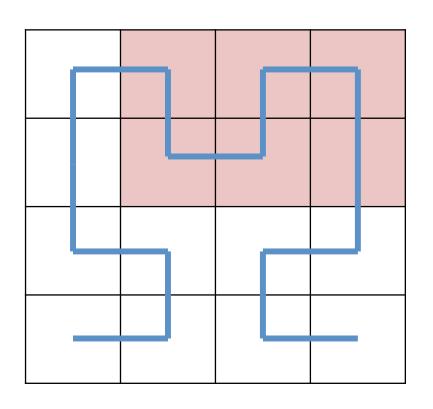
Performance of an SFC

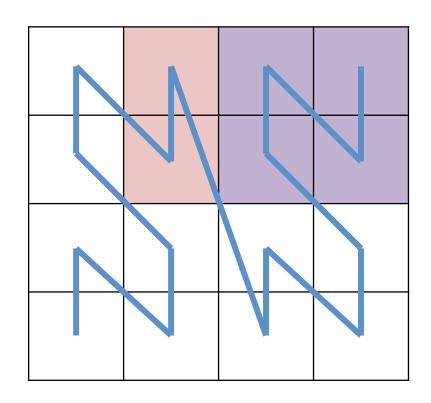
- Range Queries
 - Find me all coffee shops between latitudes x and x', longitudes y and y', and priced between z and z'
 - A query is a subset of the universe
 - Rectangular Queries: Intersection of halfplanes
 - Rectilinear Queries: Union of multiple disjoint rectangles
- Using SFC, a multidimensional range split into many one dimensional ranges
- Each one dimensional range is evaluated "quickly" using an index

Clustering Number

• Given a query q and SFC π , the clustering number π of SFC for query q is defined as the smallest number of contiguous regions on the SFC that the query q can be divided into

Clustering Number





1 for the Hilbert Curve

2 for the Z Curve

Average Clustering Number

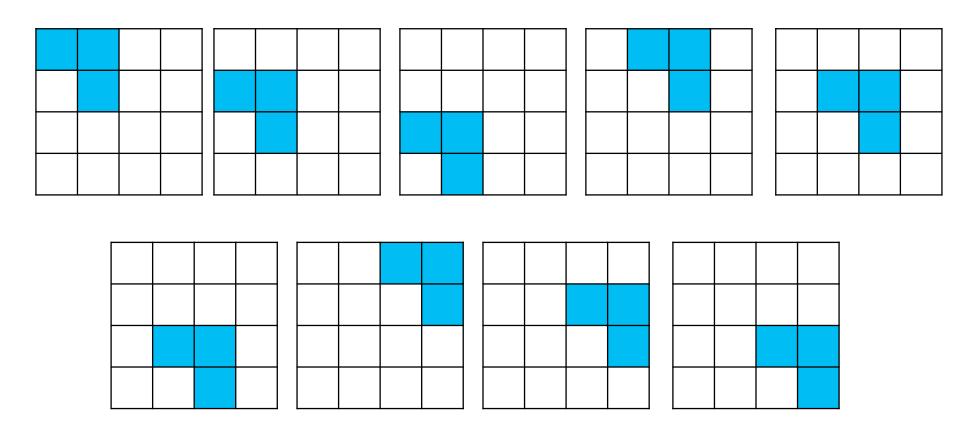
• For a set of queries Q, the average clustering number of an SFC π is:

$$c(Q,\pi) = \frac{\sum_{q \in Q} c(q,\pi)}{|Q|}$$

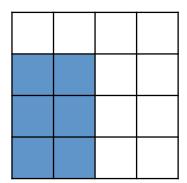
- Set of queries formed by:
 - Translations of a basic query shape
 - Rotations of a query
 - Translations + Rotations

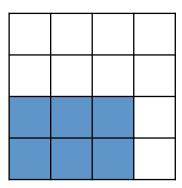
Translation of a Query Shape

Q = T(q) = all translations of a basic query shape q



Rotation





With d dimensions, d! possible rotations for a single query.

Questions

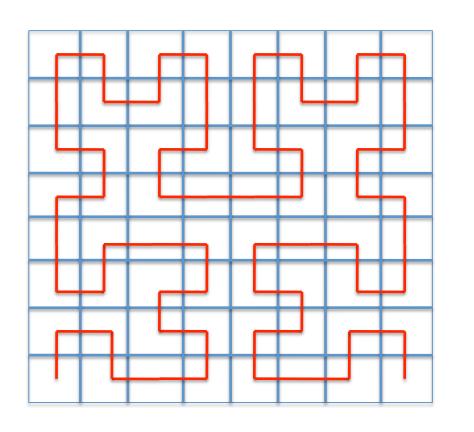
- Given SFC π and query set Q, what is $c(Q,\pi)$?
- Lower bounds on $c(Q,\pi)$?
- Optimality of a curve for a class of queries?

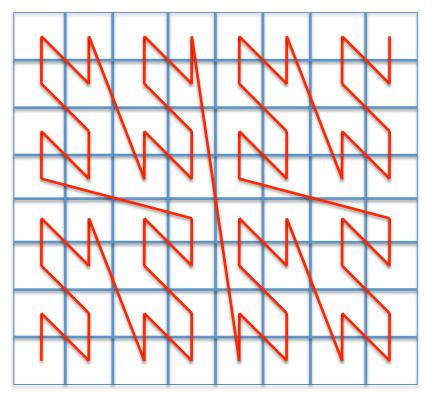
- Setting:
 - d dimensional universe $n^{1/d} \times n^{1/d} \times \dots$
 - Total number of cells = n

Prior Work

- Orenstein and Merrett (1984)
 - proposed use of SFCs for use in range queries for databases
- Jagadish (1997)
 - In two dimensions, the clustering number of the Hilbert curve for 2 x 2 queries is 2
- Moon, Jagadish, Faloutsos, Saltz (2001)
 - In d dimensions, the clustering number of the Hilbert curve on rectilinear queries is $\frac{S_g}{2d}$ where S_g is the surface area of query S_g , and S_g is the number of dimensions
- 300+ citations to the above work since 2001

Continuous SFCs





Continuous SFC

Non-Continuous SFC

Our Results

	Continuous SFCs	General SFCs
Rectangular Queries	Exact Formula	Lower Bound, Continuous is optimal
General (Rectilinear) Queries	Exact Formula	Continuous need not be optimal

Our Results

 When all rotations are considered for rectangular queries, Hilbert SFC is optimal (and so is any continuous SFC)

• Note:

Results for limiting n, and for constant query size,
 which does not increase with n

General Techniques

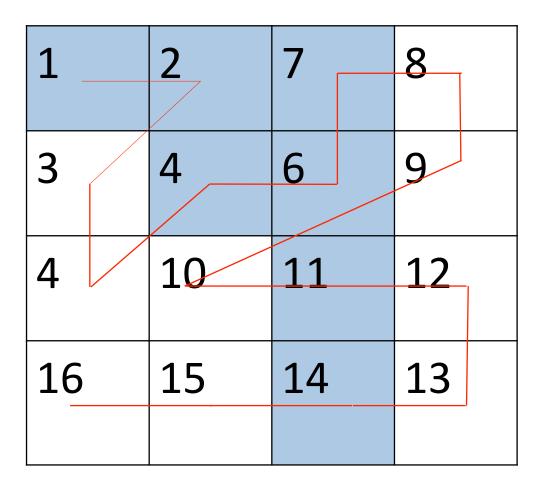
For points α , β and query q, define 0-1 function $I(q,\alpha,\beta)$

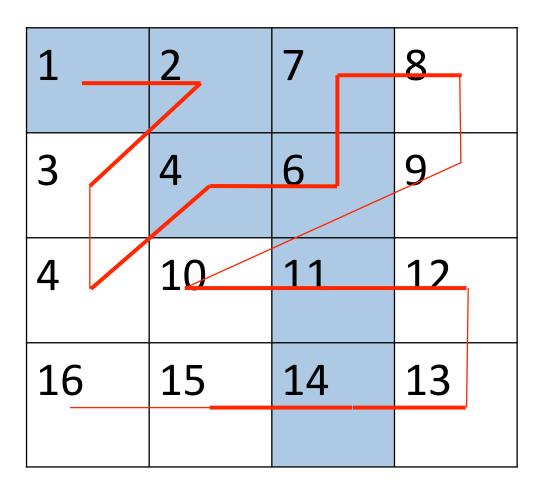
- 1 if $\alpha \in q$, $\beta \in q$
- 0 otherwise

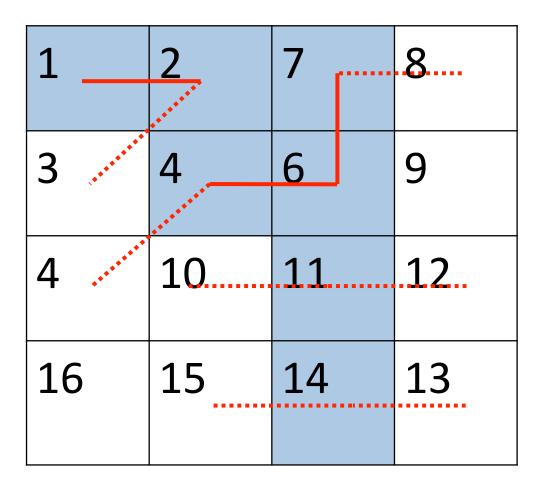
• $N(\pi)$ = All pairs of vertices in SFC π

Lemma: For any query q,

$$c(q,\pi) = |q| - \sum_{(\alpha,\beta) \in N(\pi)}^{} I(q,\alpha,\beta)$$







1	2	7	8
3	4	6	9
4	10	11	12
16	15	14	13

Average Clustering Number

• For each edge (α, β) that is part of the SFC, and set of queries Q, let

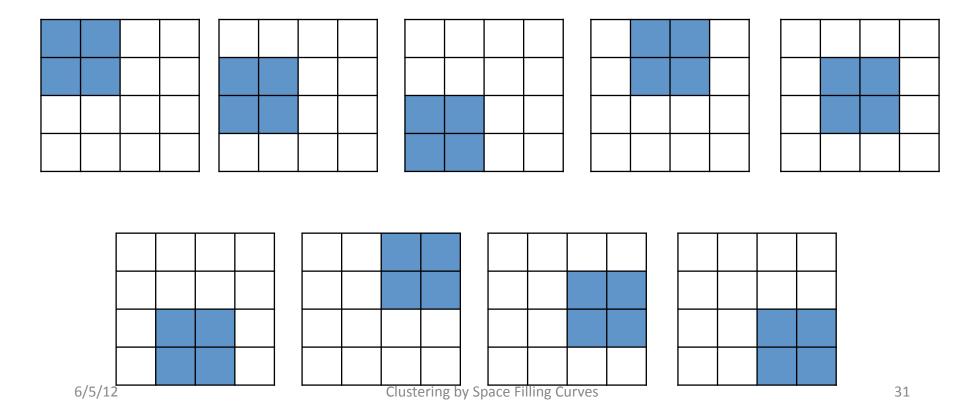
$$P_Q(\alpha, \beta) = \{ q \in Q \mid I(q, \alpha, \beta) = 1 \}$$

 Lemma: Suppose Q is the set of queries formed by transformations of a basic shape q

$$c(Q,\pi) = |q| - \frac{\sum_{(\alpha,\beta)\in\pi} P_Q(\alpha,\beta)}{|Q|}$$

Counting Question

• For a set of queries Q and cells α , β , how many queries in Q include both α and β ?



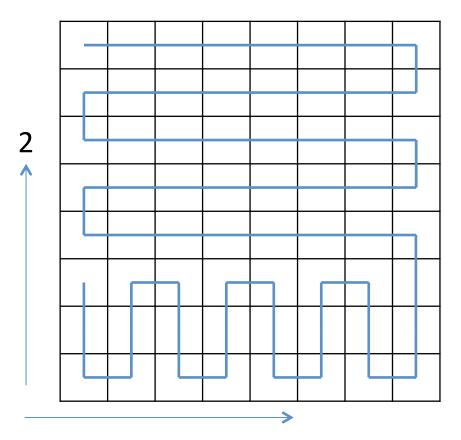
Continuous SFC, Arbitrary Query, Translations Only

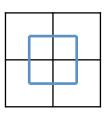
• Given query shape g, and SFC π

$$\lim_{n\to\infty} c(T(g),\pi) = |g| - \mu(\pi).\nu(g)$$

- $\mu(\pi) = [\mu_1(\pi), \mu_2(\pi), ...]$ $\mu_i(\pi)$ is fraction of edges of π along dim. i
- $v(g) = [v_1(g), v_2(g), ...]$ $v_i(g)$ number of edges in "skeleton" of g along dim. i

Continuous SFC

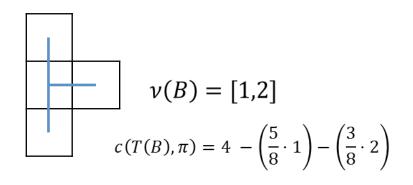




$$\nu(A) = [2,2]$$

$$c(T(A),\pi) = 4 - 2 = 2$$

Query A



Dimension 1

$$\mu(\pi) = \begin{bmatrix} \frac{5}{8}, \frac{3}{8} \end{bmatrix}$$
 Quer
Quer
Space Filling Curves

Query B

Continuous SFC, Arbitrary Query

Above Formula allows exact computation of average clustering number

Also extends to Translation + Rotation

Symmetric SFC, Arbitrary Query

 A symmetric SFC is one which has the same number of edges along each dimension i, i.e.

$$\mu(\pi) = \left[\frac{1}{d}, \frac{1}{d}, \dots\right]$$

• Corollary: For every symmetric SFC π , and query shape g,

$$c(T(g),\pi) = \frac{S_g}{2d}$$

where S_g is the surface area of g

The result of Moon et al. (2001) follows from the above

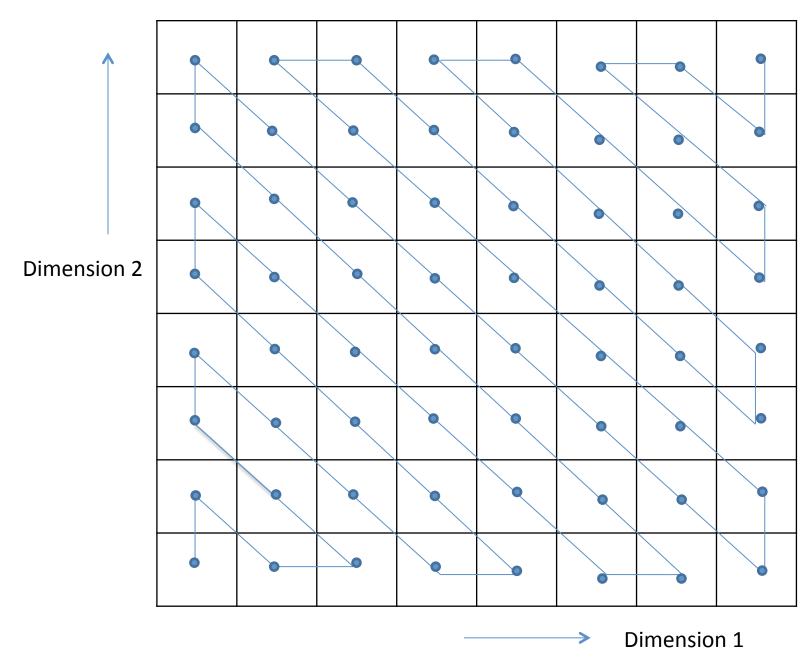
Arbitrary SFC, Rectangular Query

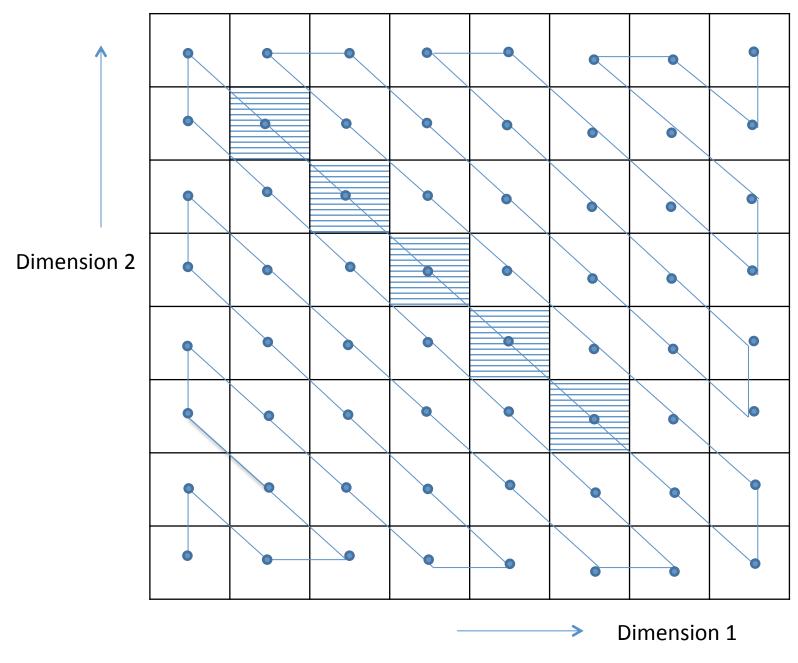
• Lower Bound Theorem: For any rectangular query r, and any subset of rotations $\Lambda \subseteq \Lambda^*$, for any SFC π (not necessarily continuous)

$$\lim_{n\to\infty}c(Q(r,\Lambda),\pi)\geq |r|-\nu^{max}$$

Where v^{max} is the maximum element of corresponding v vector for rotations.

 Corollary: For any rectangular query r, and subset of rotations, there is a continuous SFC that is optimal





Our Results

	Continuous SFCs	General SFCs
Rectangular Queries	Exact Formula	Lower Bound, Continuous is optimal
General (Rectilinear) Queries	Exact Formula	Continuous need not be optimal

Conclusions

- Fundamental Results about SFCs
- General Method from first principles
- "Edge-centric" perspective, i.e. count the number of queries crossing the edges
- Answers Explicit Open Questions by Jagadish (1997), Moon et al. (2001) and others