Range-Efficient Computation of F₀ over Massive Data Streams

A. Pavan, Iowa State University Srikanta Tirthapura, Iowa State University

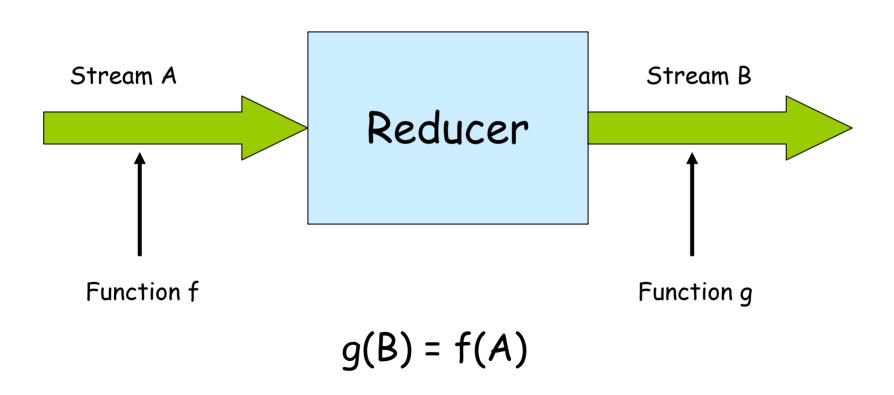
Data Streams

- Network Monitoring
 - All packets on a network link
 - Example Statistics:
 - Average packet size
 - Number of different source-destination pairs
- Sensor Data
 - Average (mean, median) and other aggregates of sensor readings
- Web-Click Streams
 - Frequently requested items
 - Change in request patterns over time
- One-pass algorithm is useful for data stored on disk

Data Stream Characteristics

- Massive Data Sets, One-pass processing
- Limited workspace
 - Much smaller than the size of the data
 - Typically poly-logarithmic in the size of data
- Fast Processing Time per item
 - Constant or logarithmic in data size
- Provide approximate answers to aggregate queries
 - Frequency Moments of Data (F₀, F₂, etc)
 - Quantiles, Distances between streams

Reductions Between Data-Stream Problems

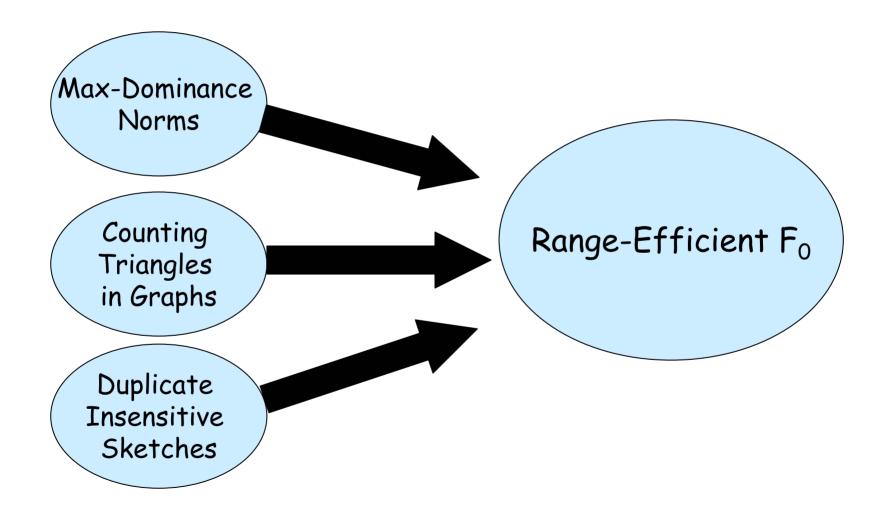


Reductions

• Single Element of Stream A may generate a *list of elements* in Stream B

- Algorithm on Stream B
 - Inefficient to process elements of a list one by one
 - List-efficient algorithms process the list quickly
 - Range-efficient algorithms process a range of integers quickly

Reductions to Range-Efficient F₀



Range Efficient F₀

Input Stream

Sequence of ranges
$$[l_1,r_1], [l_2,r_2] \dots [l_m,r_m]$$

for each i, $0 \le l_i \le r_i \le n$, and l_i , r_i are integers

Output:

Return |
$$[l_1,r_1]$$
 U $[l_2,r_2]$ U ... U $[l_m,r_m]$

i.e. number of distinct elements in the union (F_0)

Constraints:

- Single pass through the data
- Small Workspace
- Fast Processing Time

Example

Stream:

0	5	10	25	60	100	120	200

$$F_0$$
 is: $|[0,25] \cup [60,200]| = 167$

Approximate Answers

• Known that exact solutions requires too much workspace

• (ε,δ) -Approximation: return a random variable X such that

$$Pr[|X-F_0| > \varepsilon F_0] < \delta$$

Max-Dominance Norm

Given k streams of m integers each, (the elements of the streams arrive in an arbitrary order), where

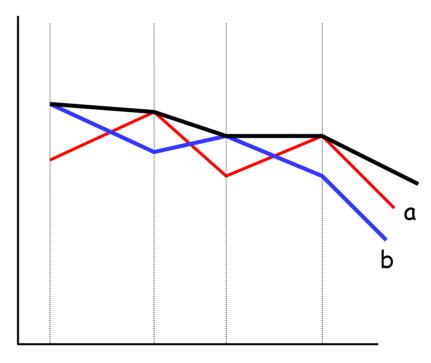
$$1 \le a_{i,j} \le n$$

. . .

$$a_{k,1} a_{k,2} \dots a_{k,m}$$

Return

$$\sum_{j=1}^{m} \max_{1 \le i \le k} a_{i,j}$$



Cormode and Muthukrishnan, ESA 2003

Reduction From Max-Dominance Norm

• Input stream I, output stream O:

F₀ of Output Stream = Dominance Norm of Input Stream

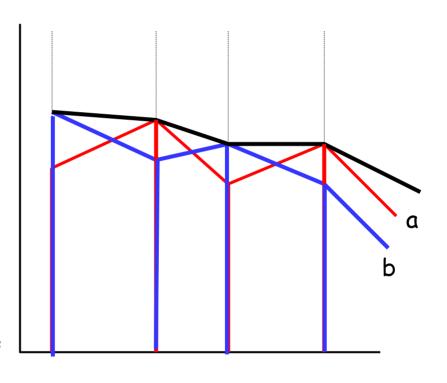
• Assign ranges to the k positions:

$$[1,n]$$
 $[n+1,2n]$... $[(k-1)n+1, kn]$

• When element $a_{i,j}$ is received, generate the range

$$[(j-1)m+1, (j-1)m+1+a_{i,j}]$$

• Observation: F₀ of the resulting stream of ranges is the dominance norm of the input stream



Reduction from Sensor Data Aggregation

- Problem: Compute aggregates over sensor observations
 - Sensors transmit "sketch" of data, instead of full data
 - Multi-path routing
 - Duplicate-insensitive sketches

- Duplicate-insensitive sum and average of sensor readings can be reduced to range-efficient F₀
 - Distinct Summation Problem
 - Considine et al. (2004) and Nath et al. (2004)

Counting Triangles in Graphs

• Problem:

- Graph G=(V,E), where V= $\{1..n\}$
- Elements of E arrive as a stream (i_1,j_1) , (i_2,j_2) ..
- Compute number of triangles in G

• Bar-Yossef et al. (SODA 2002) show a reduction to Range-efficient F₀ and F₂ on a stream of integers

Our Results

Input Stream

Sequence of ranges
$$[l_1,r_1], [l_2,r_2] \dots [l_m,r_m]$$

for each i, $0 \le l_i \le r_i \le n$, and l_i , r_i are integers

Output:

$$|[l_1,r_1] U [l_2,r_2] U ... U [l_m,r_m]|$$

- Randomized (ε, δ) -Approximation Algorithm for Range-efficient F_0 of a data stream
- Time complexity (n is the size of the universe):
 - Amortized processing time per interval: $O(\log(1/\delta) (\log (n/\epsilon)))$
 - Time to answer a query for F_0 : $O(\log 1/\delta)$
- Space Complexity: $O((1/\epsilon^2)(\log(1/\delta)) (\log n))$

Comparison to Previous Work

	Previous Work	Our Results
	Bar-Yossef et al. (2002)	
Range-Efficient F ₀	Time per item = $O(\log^5 n)(1/\epsilon^5)(\log 1/\delta)$	Time per item = $O(\log n + \log 1/\epsilon)(\log 1/\delta)$
	WorkSpace = $O(1/\epsilon^3)(\log n)(\log 1/\delta)$	Workspace = $O(1/\epsilon^2)(\log n)(\log 1/\delta)$
	Cormode, Muthukrishnan (2003)	
Max-Dominance Norms	Time per item= $O(1/\epsilon^4) (\log n) (\log m) (\log 1/\delta)$	Time per item = $O(\log n + \log 1/\epsilon)(\log 1/\delta)$
	Workspace = $O(1/\epsilon^2)(\log n+1/\epsilon (\log m) (\log \log m)) (\log 1/\delta)$	Workspace = $O(1/\epsilon^2)(\log m + \log n)(\log 1/\delta)$

Iowa State University

Related Work

- F₀ of a data stream
 - Flajolet-Martin (JCSS 1985)
 - Alon et al. (JCSS 1999)
 - Gibbons and Tirthapura (SPAA 2001)
 - Bar-Yossef et al. (RANDOM 2002)
 - Lower Bounds, Indyk-Woodruff (FOCS 2003)
- L₁ difference of data streams
 - Feigenbaum et al. (FOCS 1999)
 - Used range-summable hash functions

Algorithm

- Random Sampling
- Two Parts:
 - Adaptive Sampling
 - Change sampling probabilities dynamically
 - Gibbons and Tirthapura, SPAA 2001
 - Range Sampling
 - Quickly sample from a range of integers
 - Novel technical contribution

Adaptive Sampling for F₀

• Given a stream of numbers find the number of distinct elements in the stream

- Random Sampling Algorithm
 - Random Sample of distinct elements seen so far
 - Sampling Level i (sampling probability =1/2i)
 - If sample size exceeds threshold, then sub-sample to a smaller probability
- Target Workspace = $O(1/\epsilon^2)(\log 1/\delta)$ integers

Adaptive Sampling Example

Sample =
$$\{\}$$
, p = 1

5							

Sample =
$$\{5\}$$
, p = 1

Target Workspace = 4 numbers

Sample =
$$\{5,3\}$$
, p = 1

5 3 7	
-------	--

Sample =
$$\{5,3,7\}$$
, p = 1

Sample =
$$\{5,3,7\}$$
, p = 1

Target Workspace = 4 numbers

5	3	7	5	6											
---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--

Sample =
$$\{5,3,7,6\}$$
, p = 1

Target Workspace = 4 numbers

Sample =
$$\{5,3,7,6,8\}$$
, p = 1

Overflow, sub-sample

Sample =
$$\{3,6,8\}$$
, p = $\frac{1}{2}$

5	3 7	5	6	8	9								
---	-----	---	---	---	---	--	--	--	--	--	--	--	--

Sample =
$$\{3,6,8,9\}$$
, p= $\frac{1}{2}$

5	3	7	5	6	8	9	7							
---	---	---	---	---	---	---	---	--	--	--	--	--	--	--

Sample =
$$\{3,6,8,9\}$$
, p= $\frac{1}{2}$

Sample =
$$\{3,6,8,9,2\}$$
, p= $\frac{1}{2}$

Sample = $\{6,9\}$, $p=\frac{1}{4}$

Target Workspace = 4 numbers

Iowa State University

Finally,

Sample =
$$\{6,9\}$$
, $p=\frac{1}{4}$

Return (Sample Size)(4) = 8

Adaptive Sampling for Range F₀

• Naïve:

Given [x,y], successively insert $\{x, x+1, x+2, \dots y\}$ into F_0 algorithm

• Problem: Time per range very large

Range Sampling – Time Efficient

Quickly determine how many elements in range [l,r] belong to the sample at current probability

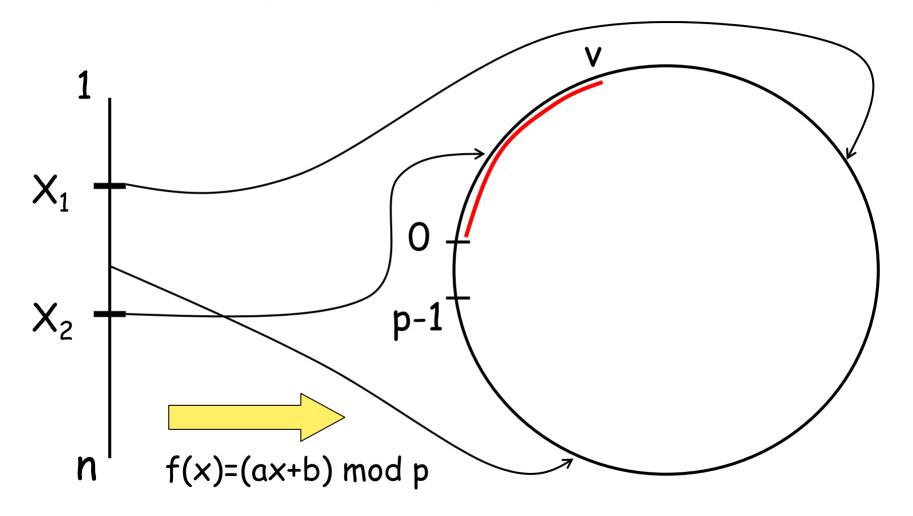
Hash Functions

- Random sample through a hash function
 - Consistent decisions for same elements
- Our Hash Function:

h:
$$\{1...n\} \rightarrow \{0,...,p-1\}, h(x) = (ax+b) \bmod p$$

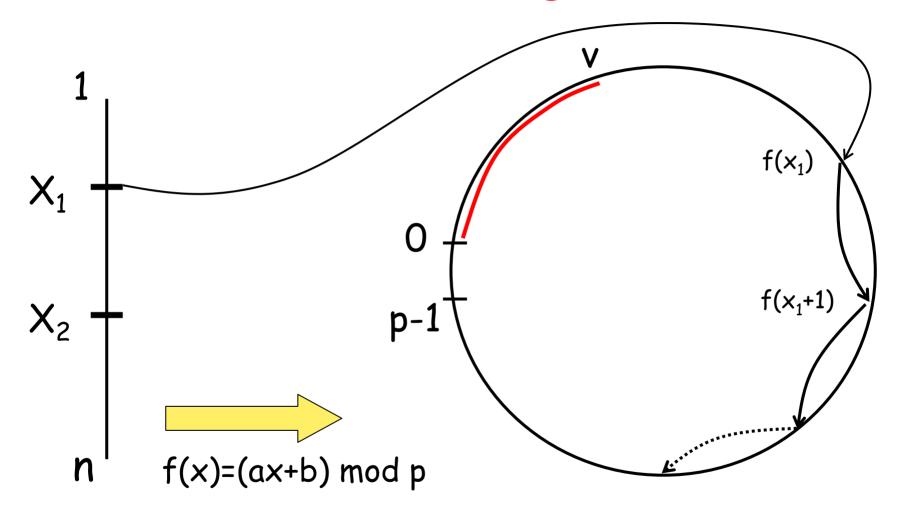
- Integers a and b chosen randomly from [0,p-1]
- Element x belongs in sample at level i if $h(x) \in \{0..v_i\}$ for some pre-determined v_i
- For Range [l,r], if for some $x \in [l,r]$ h(x) $\in \{0...v_i\}$, then the range is "useful"

Range Sampling Problem



Compute $|\{x \in [x1,x2]: f(x) \in [0,v]\}|$

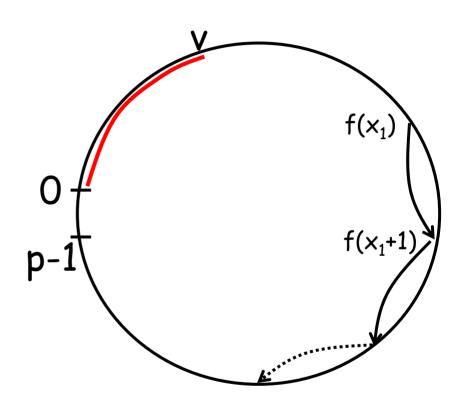
Arithmetic Progression



Common Difference = a

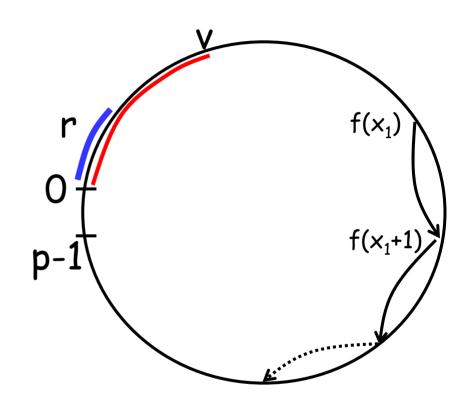
Low and High Revolutions

- Each revolution, number of hits on [0,v] is
 - v/a (low rev)
 - v/a + 1 (high rev)
- Task: Count number of low, high revolutions

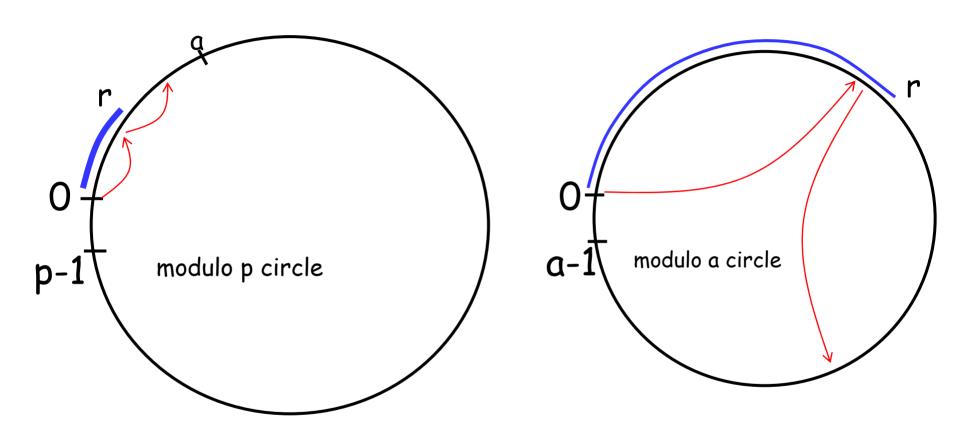


Starting Points of Revolutions

- Can find $r = (v v \mod a)$ such that:
 - If starting point in [0,r], then high revolution
 - Else low revolution
- Task: Count the number of revolutions with starting point in [0,*r*]



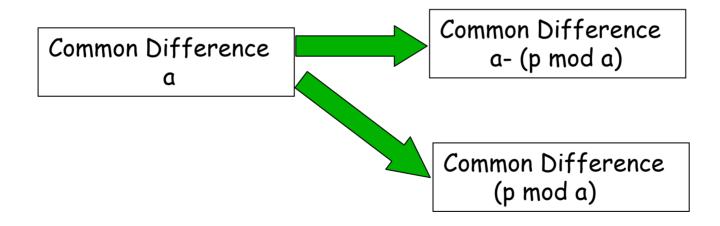
Recursive Algorithm



Observation: Starting Points form an Arithmetic Progression with difference (- p mod a)

Recursive Algorithm

- Focus on common difference
- Two Reductions Possible



At least one of the two common differences is smaller than a/2

Range Sampling

Range [x,y]:

• Time Complexity: O(log (y-x))

• Space Complexity: O(log (y-x) + log m)

• Plug back into adaptive sampling to get range-efficient F₀ algorithm

Extensions

- Distributed Streams
 - Each stream observed by different party
 - Party sends a "sketch" to a referee
 - Estimate F_0 over the union streams, using the sketches
- Multi-dimensional ranges

Sliding Windows

Open Problems

• Simple Range-Efficient Algorithms for F_k (k > 1)?

• Time Lower Bounds for Range-Efficient F₀

