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Overview 

• Smoothing and Counting Networks

• Analysis of behavior without proper 
initialization
- upper and lower bounds

• Self stabilization of smoothing networks 



Smoothing Networks

2-smoothing network

In a k-smoothing Network, the numbers of Tokens on 
different output wires differ by at most 2



Counting Networks

• 1-smoothing networks with other additional 
properties

• Aspnes, Herlihy and Shavit in 1991

• Since then, scalable Construction and Properties 
well studied

• Bitonic and Periodic networks are two popular 
counting networks



Balancer
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Counting Network

Depth = 4

Width = 4

Initial State: All balancers pointing up



1-Smoothing Property



Questions

• How do counting networks perform 
when initialized incorrectly (or by an 
adversary)?

• How to recover from illegal states 
reached during execution?



Motivation

• Initializing to a “correct” global state 
is hard or may be impossible 
– global reconfiguration expensive
– network switches reboot

• Step towards building fault tolerant 
and dynamic smoothing networks



Our Results(1)

Periodic and Bitonic Counting Networks:

• When started from an arbitrary state, 
output is log w smooth (w = width of 
network) 

• Tight lower bound: We demonstrate inputs 
such that the output is not log k smooth 
for any k < w



Our Results (2)

Self-stabilization of Balancing Networks

• Add extra state and actions
• If network begins in illegal state, will 

eventually return to a legal state
• Upper bound on the time till stabilization, 

and extra space required



Periodic[w] Counting Network

Block[w] Block[w] Block[w]



Block Network:
Inductive Definition
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Definitions

• Sequence                        is k-smooth if               
for all

• Matching layer of balancers for 
sequences X and Y joins        and       in a 
one-to-one correspondence
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Matching Lemma

If X and Y are each 
k-smooth then 
result of matching 
X and Y is 
(k+1)-smooth

Holds irrespective of 
the orientations of 
balancers
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Block[w] is (log w)-smooth

Block[n]

Block[n]

A

B

• Proof by 
Induction 

• Assume Output 
of Block[n] is 
log n smooth

• Show that 
output of 
Block[2n] is 
log (2n) smooth

Block[2n]



Lower Bound

• Worst Case bound: 
There exist input sequences and initial 
states such that output of Block[w] is not 
k-smooth for any k < log w

• Show a fixed-point sequence for Block[w]
which is not k-smooth for any k < log w



Fixed Point Sequence
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Bitonic Counting Network

Starting from an arbitrary initial state
• Output is always log w smooth, 

where w=width
• Matching worst case lower bound on 

smoothness



Self Stabilization

• Extra state and  actions added to the 
network

• Self-stabilizing Actions enabled only 
if network in illegal state 
otherwise, normal execution



Self Stabilization

• Definition:
Legal State can be reached in an execution 
starting from the Correct Initial State

• Natural definition, but hard to use directly, 
so need alternate characterization

• Local state can be observed easily

• Strategy: Characterize legality in terms of 
local states



Global vs Local States



Additional State

Top In Top Out

Bot In Bot Out

These counters can be bounded – details in paper



Local States

• Balancer is Legal if   
(1)Top In + Bot In = Top Out + Bot Out
(2)Toggle State is correct 

• Wire is Legal if
Tokens entering the wire = Tokens leaving 
the wire + Tokens in Transit



Global Legality in terms of 
Local

Theorem:

Iff (every wire and every balancer is in legal 
local state), then 
(the network is in a legal global state)

Now focus on stabilizing the local states
- simpler problem



Space and Time Complexity

• Time to Stabilization = d parallel timesteps
where d = depth of network

• Total additional space =
w = width of network

)( 2wdO



Issues

• Lazy versus pro-active stabilization

• Transient Behavior till stabilization might 
differ from “legal” behavior

• Tokens might be unevenly distributed till 
then



Summary

• Even if bitonic and periodic networks are not 
initialized, they are log smooth

• If only approximate smoothing is needed, then use 
(log w) depth uninitialized block network 

• Can be converted into 1-smooth behavior by self-
stabilization 
- overhead is small and analytically   bounded
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