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Abstract. Massive data sets often arise as physically distributed, parallel data
streams, and it is important to estimate various aggregates and statistics on the
union of these streams. This paper presents algorithms for estimating aggregate
functions over a “sliding window” of the N most recent data items in one or more
streams. Our results include:

1. Forasingle stream, we present the first e-approximation scheme for the number
of 1’s in a sliding window that is optimal in both worst case time and space.
We also present the first e-approximation scheme for the sum of integers in
[0..R] in a sliding window that is optimal in both worst case time and space
(assuming R is at most polynomial in N). Both algorithms are deterministic
and use only logarithmic memory words.

2. In contrast, we show that any deterministic algorithm that estimates, to within
a small constant relative error, the number of 1’s (or the sum of integers) in a
sliding window on the union of distributed streams requires 2 (N) space.

3. We present the first (randomized) (e, §)-approximation scheme for the number
of 1’s in a sliding window on the union of distributed streams that uses only
logarithmic memory words. We also present the first (e, §)-approximation
scheme for the number of distinct values in a sliding window on distributed
streams that uses only logarithmic memory words.

Our results are obtained using a novel family of synopsis data structures called
waves.

* A preliminary version of this paper appeared in the Proceedings of the 14th ACM Symposium on Parallel
Algorithms and Architectures [19].



OF2 P. B. Gibbons and S. Tirthapura

stream 0 1 e 0 1 0 0 0 0 1 1 0 1 1
position 1 2 e 61 62 63 64 65 66 67 68 69 70 71
1-rank 1 e 31 32 33 34 35
stream 1 1 1 1 1 1 0 1 1 0 0 0 1 1
position 72 73 74 75 76 77 78 79 80 81 82 83 84 85
1-rank 36 37 38 39 40 41 42 43 44 45

stream 1 0 0 1 0 1 0 0 1 0 0 0 0 1
position 86 87 88 89 90 91 92 93 94 95 96 97 98 99
1-rank 46 47 48 49 50

Fig. 1. An example data stream, through m = 99 bits. The position in the stream (position) and the rank
among the 1-bits (1-rank) are computed as the stream is processed.

1. Introduction

There has been a flurry of recent work on designing effective algorithms for estimating
aggregates and statistics over data streams [1]-[11], [13], [15], [17], [20]-[24], [28],
[31], motivated by their importance in network monitoring, data warehousing, telecom-
munications, etc. This work has focused almost entirely on the sequential context of a
data stream observed by a single party. Figure 1 depicts an example data stream, where
each data item is a bit, either O or 1. Shown are the first 99 data items in the stream, each
item’s position in the stream, and for the 1-bits, its rank among the 1-bits (1-rank). The
main challenge in data stream algorithms is to carry out the computation in a single pass
over the data using only limited workspace memory.

Although previous work has focused on the sequential data stream context, for many
of the above applications there are multiple concurrent data sources, each generating its
own data stream. In network monitoring and telecommunications, for example, each
node/person in the network is a potential source for new streaming data. In a large retail
data warehouse each retail store produces its own stream of items sold. To model these
scenarios we previously proposed a distributed streams model [18], in which there are a
number of data streams, each stream is observed by a single party, and the aggregate is
computed over the union of these streams.

Moreover, in many real-world scenarios only the most recent data is important. For
example, in telecommunications, call records are generated continuously by customers,
but most processing is done only on recent call records, after which the records are
archived and not used again [9]. To model such scenarios, recent work [9], [14], [20] has
studied a sliding windows setting for data streams, in which aggregates and statistics are
computed over a “sliding window” of the N most recent items in the stream.

This paper studies the sliding windows setting in both the single stream and dis-
tributed stream models, improving upon previous results in both models. We next describe
the models, the previous results, and our new results in greater detail.

1.1.  Data Stream Computations

An algorithm for a data stream has to perform its computations in only one pass over
the input, and has limited workspace. The goal in a (sequential or distributed) streams
algorithm is to estimate a function on the input while minimizing (1) the total workspace
(memory) used by all the parties, (2) the time taken by a party to process each data
item, and (3) the time to produce an estimate (i.e., the query time). Many functions
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on (sequential and distributed) data streams require linear space to compute exactly,
and hence attention is focused on finding either an (e, §)-approximation scheme or an
g-approximation scheme, defined next.

Definition 1. An (e, §)-approximation scheme for a quantity X is a randomized pro-
cedure that, given any positive ¢ < 1 and § < 1, computes an estimate X that is within a
relative error of ¢ of X with probability at least 1 — 4§, i.e., Pr{|}A( —X|<eX}>=1-56.
An e-approximation scheme is a deterministic procedure that, given any positive ¢ < 1,
computes an estimate for X whose worst case relative error is at most ¢.

1.2.  Algorithms for a Sliding Window on a Single Stream

In the sliding windows model the computations have to be performed only on the N most
recent data items in the stream, and the goal is to use << N workspace. With limited
workspace, one cannot keep track of all the items in the window. Consider the problem
of estimating the number of 1’s in a sliding window (called Basic Counting in [9]). In the
stream in Figure 1, for example, the number of 1’s in the current window of the N = 39
most recent items (i.e., items 61-99) is 20. Datar et al. [9] present an e-approximation
scheme for Basic Counting that uses O((1/¢) logz(eN )) bits of workspace memory,
processes each data item in O (1) amortized and O (log N) worst case time, and can
produce an estimate over the current window in O (1) time. They also prove a matching
lower bound for the space. They demonstrate the importance of this problem by using
their algorithm as a building block for a number of other functions, such as the sum of
bounded integers and the L, norms (in a restricted model).

We improve on the results in [9] by presenting an e-approximation scheme for
Basic Counting that matches the space and query time bounds, while improving the per-
item processing time to O (1) worst case. Moreover, we also present an g-approximation
scheme for the sum of bounded integers in a sliding window that again matches the space
and query times, while improving the per-item processing time from O (1) amortized
and O (log N) worst case time to O (1) worst case.

Our algorithms use a family of small space data structures, which we call waves.
An example wave for Basic Counting is given in Figure 2, for the data stream in Figure 1.
The x-axis is the 1-rank, and extends to the right as new 1-bits arrive. The wave contains
the positions of the recent 1-bits in the stream, arranged at different levels. Each level
of the wave stores a fixed number of positions in the stream, with level i storing the
most recent 1-bits whose 1-ranks are a multiple of 2/. (Waves are described in detail in
Section 3.) As we shall see, as additional stream bits arrive, the wave retains this basic
shape while “moving” to the right so that the crest of the wave is always over the largest
1-rank thus far.

1

1.3.  Algorithms for a Sliding Window on Distributed Streams

Previous work on distributed streams did not consider sliding windows. There are several
ways one can define a sliding window on distributed streams: we propose three ways,
and show that while two of the definitions can be solved by straightforward applications

! The name arises because its basic shape is suggestive of an ocean wave about to break.
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of single stream algorithms, the third (based on positionwise union) is more challenging.
We present an 2 (N) lower bound on the space required by any deterministic algorithm
that guarantees a small constant relative error for estimating the number of 1’s (or the sum
of bounded integers) on the positionwise union of distributed streams. The lower bound
holds even when there are only two parties and sliding windows are not considered (in
which case N is the current length of the stream). This motivates the study of randomized
approximation schemes.

We present an (¢, §)-approximation scheme for the number of 1’s in a sliding window
on the positionwise union of distributed streams. We use this as a building block in
constructing an (g, §)-approximation scheme for the number of distinct values in sliding
windows on both single and distributed streams. Each scheme uses only logarithmic
memory words per party. The key idea is to use randomized waves. In contrast with a
deterministic wave (discussed above), where a 1-bit’s position is selected into level i if its
1-rank is a multiple of 2/, in a randomized wave each 1-bit’s position is selected into level
i with probability 2~'. Each party uses the same pseudorandom hash function (applied
to the position number) as its source of randomness, in order to ensure a “positionwise
coordination” among the choices made for each stream.

1.4.  Summary of Contributions
The contributions of this paper are as follows:

1. We introduce a family of synopsis data structures called waves, and demonstrate
their utility for data stream processing in the sliding windows setting.

2. For a sliding window of size N on a single stream, we present the first e-approx-
imation schemes for the number of 1’s and for the sum of integers in [0..R] that
are optimal in worst case space,” processing time, and query time.

3. For a sliding window of size N on the union of distributed streams, we present
an Q(N) lower bound on the space used by any deterministic algorithm that
estimates the number of 1’°s within a small constant relative error. In contrast, we
present the first randomized (e, §)-approximation schemes for the number of 1’s
and for the number of distinct values that use only logarithmic memory words.

The remainder of the paper is organized as follows. Section 2 presents background
and further comparisons with previous related work. Sections 3 and 4 present results
using the deterministic (randomized, resp.) wave synopsis. Finally, Section 5 shows how
the techniques can be used for various other problems such as distinct values counting
and nth most recent 1.

2. Background and Related Work

There have been many papers on data streams algorithms (e.g., [1]-[11], [13], [15], [17],
[20]-[24], [28], and [31]). In this section we restrict our attention to work related to
distributed streams, sliding windows, and distinct values counting.

The distributed streams model used in this paper was introduced in [18]. In the model

2 For the integer sum problem, the space matches the lower bound when R is at most polynomial in N.
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each party observes only its own stream, has limited workspace, and communicates with
the other parties only when an estimate is requested. The estimate, however is computed
on the union of all the streams seen by all the parties. Specifically, when asked for an
estimate, each party sends a message to a Referee who computes the estimate. This
model reflects the set-up used by commercial network monitoring products, where the
data analysis front-end serves the role of the Referee. Among the results in [18] were
() an (e, §)-approximation scheme for the number of 1’s in the union of distributed
streams (i.e., in the bitwise OR of the streams), using O ((1/&2) log(1/8) log n) memory
bits per party, where n is the length of the stream, and (ii) an (e, §)-approximation
scheme for the number of distinct values in a collection of distributed streams, using
0((1/£?)10og(1/8) log R) memory bits, where the values are in [0..R]. Both algorithms
use a technique the authors call coordinated sampling: each stream is sampled at the
same random positions, for a given sampling rate. Each party stores the positions of
(only) the 1-bits in its sample. When the stored 1-bits exceed the target space bound, the
sampling probability is reduced, so that the sample fits in smaller space. Sliding windows
were not considered.

The distributed streams model can be contrasted with well-studied communication
complexity models [27], where the parties have unlimited time and space to process their
respective inputs. As observed in [18], simultaneous 1-round communication complexity
results can often be related to the distributed streams model. The lower bounds from 1-
round communication complexity certainly carry over directly. The distributed streams
algorithms in this paper and in [18] are designed for the stored coins setting, where all
parties can share a string of unbiased and fully independent random bits, but these bits
must be stored prior to observing the streams, and the space to store these bits must be
accounted for in the workspace bound. Previous work on streaming models (e.g., [1],
[10], [11], [13], [23], and [24]) have studied settings with stored coins. Stored coins
differ from private coins studied in communication complexity [26], [29], [30]. In the
stored coins model the same random string can be stored at all parties, whereas in the
private coins model the parties are forbidden from sharing any information prior to the
start of the computation.

The approximation scheme due to Datar et al. [9] for Basic Counting mentioned
in Section 1.2 uses an exponential histogram (EH). An EH maintains more information
about recently seen items, less about old items, and none at all about items outside
the “window” of the last N items. Specifically, the ko most recent 1’s are assigned to
individual buckets, the k| next most recent 1’s are assigned to buckets of size 2, the k;
next most recent 1’s are assigned to buckets of size 4, and so on, until all the 1’s within
the last N items are assigned to some bucket. For each bucket, an EH stores only its size
(a power of 2) and the position of its most recent 1. Each k; (up to the last bucket) is
either 1/2¢ or 1/2¢ + 1. Upon receiving a new item, the last bucket is discarded if its
position no longer falls within the window. Then, if the new item is a 1, it is assigned to
a new bucket of size 1. If this makes ko = 1/2¢ + 2, then the two least recent buckets of
size 1 are merged to form a bucket of size 2. If k; is now too large, the two least recent
buckets of size 2 are merged, and so on, resulting in a cascading of up to log N bucket
merges in the worst case. As we show, our approach using waves avoids this cascading.

More recently, Babcock et al. [3], [4] presented sliding windows algorithms for
maintaining a uniform random sample of a specified size, the variance, and a k-median
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clustering on a single stream. Cohen and Strauss [7] showed how sliding windows
algorithms can be used to estimate more general time-decaying aggregates on a single
stream.

Distinct values counting has been studied in a number of papers (e.g., [1], [5], [6],
[8], [9], [12], [18], and [31]). The seminal algorithm by Flajolet and Martin [12] and its
variant due to Alon et al. [1] estimate the number of distinct values in a stream (and also
the number of 1’s in a bit stream) up to a relative error of ¢ > 1. The algorithm works
in the distributed streams model too, and can be adapted to sliding windows [9]. There
are two results we know of that extend this algorithm to work for arbitrary relative error,
by Trevisan [31] and by Bar-Yossef et al. [6].3 Trevisan’s algorithm can be extended to
distributed streams quite easily, but the cost of extending it to sliding windows is not clear.
There are O(log(1/68)) instances of the algorithm, using different hash functions, and
each must maintain the O(1/&?) smallest distinct hashed values in the sliding window
of N values. Assuming the hashed values are random, maintaining just the minimum
value over a sliding window takes O (log N) expected time [9]. We do not know how
to extend the algorithm in [6] to sliding windows, and, in addition, its space and time
bounds for single streams are worse than ours (however, their algorithm can be made /ist
efficient [6]). In work that has appeared since the publication of the preliminary version
of this paper [19], Bar-Yossef et al. [5] improve the space complexity of distinct values
counting on a single stream, and Cormode et al. [8] show how to compute the number of
distinct values in a single stream in the presence of additions and deletions of items in the
stream. Neither paper considers sliding windows. In this paper we show how the (¢, §)-
approximation scheme in [18] for distinct values counting on distributed streams can be
extended to the sliding windows setting, by combining coordinated sampling with waves.

3. Deterministic Waves

We begin by introducing the wave data structure, and then describe our ¢-approximation
scheme for Basic Counting on a single stream. Next, we describe our g-approximation
scheme for estimating the sum of integers in [0..R] in a sliding window on a single
stream. Finally, we consider e-approximation schemes on distributed streams.

3.1. The Basic Wave

Recall the Basic Counting problem: given a stream of bits, maintain the number of 1’s
in a sliding window of the N most recent bits of the stream. We solve a slightly more
general problem; our data structure can be used to estimate the number of 1’s in any
sliding window up to a prespecified maximum window size N. The basic wave that we
describe here is somewhat wasteful in terms of its space bound, processing time, and
query time; these are improved in Section 3.2.

Consider a data stream of bits, and a desired bound on the relative accuracy,0 <& < 1.
To simplify the notation, we assume throughout that 1/¢ is an integer. We maintain two

3 Datar et al. [9] also reported an extension to arbitrary relative error for a sliding window over a single
stream, using the Trevisan approach [25].
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B e — window — =

by 1 89) 91‘ 94 94
by2 84 (86 |91 |99
by 4 72 76 84 91
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by 8 44 67 76 91
by 16]0 25 67 91
0 16 2% 32 36 40 44 4647484950

Fig. 2. A deterministic wave for the data stream in Figure 1, and an example window query (n = 39).

counters: pos, which is the current length of the stream, and rank, which is the current
number of 1’s in the stream.

e The wave contains the positions of the recent 1’s in the stream, arranged at different
“levels.” There are £ = [log,(2¢ N)] levels, numbered O to £ — 1.

e Fori =0,1,...,¢—1,level i contains the positions of the 1/¢ + 1 most recent
1-bits whose 1-rank is a multiple of 2. If there are fewer than 1/& + 1 such 1-bits,
level i stores all of them as well as a dummy position O.

Figure 2 depicts the basic wave for the data stream in Figure 1, for ¢ = % and
N = 48. The wave has five levels, with level i labeled as “by 2'” because it contains
the positions of the 1/& + 1 = 4 most recent 1-bits whose 1-ranks are 0 modulo 2/. The
1-ranks are given on the x-axis. Level 4 has fewer than four 1-bits, so it stores a dummy
position 0 with dummy 1-rank O.

Given this wave, we estimate the number of 1’s in a window of size n < N using

the following steps:

1. If n > pos, return x := rank as the exact answer. Otherwise, let s = pos —n + 1.
(We are estimating the number of 1’s in stream positions [s, pos].) Let p; be
the maximum position stored in the wave that is less than s, and let p, be the
minimum position stored in the wave that is greater than or equal to s. (If no such
D> exists, return x := 0 as the exact answer.)

2. Let ry and r; be the 1-ranks of p; and p,, respectively. If s = p,, return x :=
rank 4+ 1 — r, as the exact answer. Otherwise, return x := rank+ 1 — (r; +r2)/2.

For example, given the window query depicted in Figure 2, we have n = 39,
pos = 99, rank = 50, s = 61, p; = 44, p, = 67, r; = 24, and r, = 32, and hence
X = 23. As noted earlier, the actual number of 1’s in this window is 20, and indeed
Fel(l—e)-20,(1+e) 20 =[2,%].

Lemma 1. For any window of size n < N, the above estimation procedure returns an
estimate X that is within a relative error of € of the actual number of 1’s in the window.

Proof. If n > pos, then the window includes the entire stream, so rank is the exact
answer. If p, does not exist, then since level O does not skip over any 1-bits, it follows
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that no 1-bits occur in the window. If s = p,, then again the wave returns the exact
answer. So consider the general case where none of these three conditions hold.

First, we show that p; exists. Note that each level i contains either the dummy
position 0 or the positions of exactly (1/& + 1) 1’s whose 1-ranks are 2 apart. Thus the
smallest 1-rank, r, at level i is either O or

r§rank—l-2i. 60
e
If level £ — 1 contains the position 0, then clearly p; exists. Otherwise, the difference
between rank and the smallest 1-rank in level £ — 1 is at least 2¢~! /& = N > n. Since
the difference in 1-ranks is at least as large as the difference in position, it follows that
p1 exists. Let j be the smallest numbered level containing position p;.

Next, we bound the absolute error. We can deduce from the wave that the num-
ber of 1’s in the window is in [rank — r, + 1, rank — r;]. For example, it is between
[50 — 3241, 50 — 24] in Figure 2. By returning the midpoint of the range, we guarantee
that the absolute error is at most (r, — r;)/2. By construction, there is at most a 2/ gap
between r; and its next larger 1-rank r,. Thus the absolute error in our estimate is at most
2/~ (Because s < pa, the gap is at least 2, so j > 0.)

Finally, to bound the relative error, we show that there are at least 2J-1 /& 1’sin the
window. Let r3 be the smallest 1-rank at level j — 1. Position p; is not in level j — 1,
sory > ry; > 0. Thus by (1), r3 < rank — 2f’1/8. Moreover, because r is the smallest
1-rank in the wave larger than r|, we have r, < r3. Thus the number of 1’s in the window
isatleastrank —r, + 1 >rank —r; + 1 > 2j_1/8. Therefore, the relative error is less
than 1/e. O

3.2.  Improvements

We now show how to improve the basic wave to get an optimal deterministic wave for
a sliding window of size N. Let N’ be the smallest power of 2 greater than or equal to
2N. First, we use modulo N’ counters for pos and rank, and store the positions in the
wave as modulo N’ numbers, so that each takes only log N' bits, regardless of the length
of the stream. Next, we discard or expire any positions that are more than N from pos,
as these will never be used, and would create ambiguity in the modulo N’ arithmetic.
We keep track of both the largest 1-rank discarded (r|, initialized to 0) and the smallest
1-rank still in the wave (r,), so that the number of 1’s in a sliding window of size N
can be answered in O(1) time. Processing a 0-bit takes constant time, while processing
a 1-bit takes O (log(e¢N)) worst case time and O (1) amortized time, as a 1-bit whose
I-rank is a multiple of 2/ is stored in i + 1 levels. Each of these improvements is used
for the EH synopsis discussed in Section 2, to obtain the same bounds [9]. However, the
steps used to implement these improvements differ because of the differences between
deterministic wave synopses and EH synopses.

More significantly, with our waves approach, we can decrease the per-item process-
ing time to O (1) worst case, as follows. Instead of storing a single position in multiple
levels, we store each position only at its maximum level, as shown in Figure 3.* For

4 1In the figure we have not explicitly discarded positions outside the size N = 48 window, in order to
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by 1 89 |94
by 2 86 99
by 4 7 84
—

by 8 44 76
by 16]0 25 67 91

0 16 24 k) 36 40 44 4647484950
Fig. 3. An optimal deterministic wave for the data stream in Figure 1.
levelsi =0, ..., ¢ — 2, we store (%(l/e + 1)] positions, and for level £ — 1, we store

[1/e 4+ 17 positions. At all levels, we may store fewer positions, because we discard
expired positions and also because initially fewer positions exist.

The positions at each level are stored in a fixed length queue, called a level queue,
so that each time a new position is added for the level, the position at the tail of the
queue is removed (assuming the queue is full). For example, using a circular buffer for
each queue, the new head position simply overwrites the next buffer slot. We maintain a
doubly linked list of the positions in the wave in increasing order. Positions evicted from
the tail of a level queue are spliced out of this list. As each new stream item arrives, we
check the head of this sorted list to see if the head needs to be expired.

Finally, as observed in [9], the set of positions is a sorted sequence of numbers
between 0 and N’, so by storing the difference (modulo N') between consecutive positions
instead of the absolute positions, we can reduce the space from O ((1/¢) log(e N) log N)
bits to O((1/¢) log2 (eN)) bits.

Figure 4 depicts the high-level steps of the deterministic wave algorithm (for sim-
plicity, it omits some of the optimizations discussed above).

Summarizing the results of this subsection, we have:

Theorem 1. Our algorithm maintains a deterministic wave, which can give an estimate

for the Basic Counting problem for a sliding window of size N, with relative error at
most €, using O((1/¢) log2 (eN)) bits. Each item is processed in O (1) worst case time.
At each time instant, the wave can provide a count estimate in O (1) time.

Proof. The wave level in step 3(a) is the position of the least-significant 1-bit in rank
(numbering from 0). Assuming this is a constant time operation, the time bounds follow
from the above discussion.> As for the space bound, because the level queues are updated
in place, the same block of memory is used throughout, and hence the linked list pointers
are offsets into this block and not full-sized pointers. Thus the space bound follows from
the above discussion.

show the full levels. All positions less than pos — N = 51 have expired, and r; = 24 is the largest expired
1-rank.

5 Below, we show how to determine the wave level in constant time even on a weaker machine model
that does not explicitly support this operation in constant time.
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Upon receiving a bit b:

1. Increment pos. // All additions and comparisons are done modulo N’.
2. If the head (p, r) of the linked list L has expired (i.e., p < pos — N), then discard it from
L and from (the tail of) its queue, and store r as the largest 1-rank discarded.
3. If b =1, then do:
(a) Increment rank, and determine the corresponding level j, i.e., the largest j such that
rank is a multiple of 2/.
(b) If the level j queue is full, then discard the tail of the queue and splice it out of L.
(c) Add (pos, rank) to the head of the level j queue and the tail of L.

Answering a query over a sliding window of size N:

1. If N > pos, return x := rank as the exact answer. Otherwise, let r; be the largest 1-rank
discarded (or O if no 1-rank has been discarded). Let (p,, r,) be the pair at the head of the
linked list L. (If L is empty, return x := 0 as the exact answer.)

2. If p, = pos — N + 1, return x := rank + 1 — r; as the exact answer. Otherwise, return
X:=rank+1—(r; +r)/2.

Fig. 4. A deterministic wave algorithm for Basic Counting on a single stream.

The proof of ¢ relative error follows from the proof of Lemma 1. This can be seen
by considering executions of the algorithm and the Basic Wave algorithm on the same
data stream, and then considering a query ¢g. Let B be the set of positions in the Basic
Wave that lie within ¢’s window, together with the position p; used to answer g. The
error bound follows because the set of positions in the improved wave (including the
position corresponding to ;) is the same or a superset of B. O

Optimality of Bounds. The time bounds are optimal because they are constant worst
case bounds. The space bound is optimal because it matches the lower bound by Datar
et al. [9] for both randomized and deterministic algorithms. We state their deterministic
lower bound theorem below; they obtain similar bounds for randomized algorithms.

Theorem 2 (from [9]). Any deterministic algorithm that provides an estimate for the
Basic Counting problem at every time instant with relative error less than 1/ k for some
integer k < 4~/ N requires at least (k/16) log? (N /k) bits of memory.

Computing the Wave Level on a Weaker Machine Model. Step 3(a) of Figure 4 requires
computing the least-significant 1-bit in a given number (rank). On a machine model that
does not explicitly support this operation in constant time, a naive approach would be
to examine each bit of rank one at a time until the desired position is found. However,
this takes ® (log N) worst case time, because rank has log(N’) bits. Instead, we store
the log(N’) — 1 level numbers associated with the sequence 1, ...,log(N’) — 1 in an
array (e.g., {0,1,0,2,0,1,0,3,0,1,0,2,0, 1, 0} if log(N’) = 16). This takes less than
log(N')-loglog(N’) bits. We also store a counter d of log(N’) —log log(N’) bits, initially
1. As 1-bits are received, the desired wave level is the next element in this array. The first
1-bit after reaching the end of the array has the property that the last log log(N’) bits of
rank are 0, and the desired level is loglog(N’) plus the position of the least-significant



Distributed Streams Algorithms for Sliding Windows OF11

1-bit in d (numbering from 0). We then increment d and return to cycling through the
array, starting at the beginning of the array with the arrival of the next 1-bit. This correctly
computes the wave level at each step. Moreover, note that while we are cycling through
the array, we have log(N") steps until we need to know the least-significant 1-bit in d.
Thus by interleaving (i) the cycling and (ii) the search through the bits of d, we can
determine the wave level in O (1) worst case time.

Basic Counting for any Window of Size n < N. The algorithm in Figure 4 achieves
constant worst case query time for a sliding window of size N. For a sliding window
of size n < N, this single wave can be used to give an estimate for the Basic Counting
problem that is within an ¢ relative error, by following the two steps outlined for the Basic
Wave (Section 3.1). The query time for window sizes less than N is O ((1/¢) log(eN))
in the worst case, because we must search through the linked list L in order to determine
p1 and p;. This matches the query time bound for the EH algorithm [9]. The precise
statement of the bounds obtained by our algorithm will be given after we consider a
further generalization, described next.

Sliding Windows with Duplicated Positions. A simple generalization of the Basic
Counting problem permits multiple stream items with the same “position.” That is,
each stream item is a (position, bit-value) pair such that the positions are consecutive
integers with possible repetitions, arriving in nondecreasing order. An example of such
a stream is

(1,0,2,1,2,0,2,D,2,1),3,1),(4,0), 4,0, ....

This scenario can arise when “positions” are increasing time units, and we target a sliding
window over the last N time units.

The algorithms of this section can easily be adapted to handle this scenario, as long
as we have an upper bound, U, on the number of stream items that can occur in any
sliding window. Specifically, we make the following changes. We have [log,(2eU)]
levels, and let N’ be the smallest power of 2 greater than or equal to 2U. We let r (r2) be
the largest (smallest) 1-rank among those with position p; (p», respectively). We add and
maintain a doubly linked list between the first items for each position in the linked list L.
This enables all the items for an expiring position to be discarded in O (1) time in step 2
of Figure 4. Note that the largest 1-rank being discarded is the 1-rank of the expiring
item that was adjacent to what becomes the new head of L; thus it can be determined in
O (1) time prior to discarding. Moreover, this additional linked list is easily maintained
in O (1) time when items are spliced out of L in step 3(b). The bounds obtained by this
algorithm are given in the following corollary.

Corollary 1. Consider a stream where duplicate positions are permitted, and let U be
an upper bound on the number of stream items that can occur in any sliding window of
N positions. The algorithm maintains a deterministic wave, which can give an estimate
for the Basic Counting problem for any window of n < N positions, with relative error
at most ¢, using O((1/¢) logz(sU)) bits. Each item is processed in O(1) worst case
time. Each estimate takes O (1) worst case time for the special case when n = N, and
O((1/e)log(eN)) worst case time for generaln < N.
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Proof. The time and space bounds are immediate, given the above discussion. The
proof of ¢ relative error follows along the lines of the proofs of Lemma 1 and Theorem 1.
The one subtlety for the duplicated positions scenario is to show that the desired p;
exists in the wave, as this is the only aspect of the proofs that crucially depends on the
correspondence between positions and 1-ranks. (Other cases where position is important,
such as when the exact answer can be returned, are immediate given the definitions of
p2 and rp.) To see that p; exists, observe that having [log,(2¢U)] levels ensures that
level £ — 1 either contains the dummy position O or spans at least U 1-bits. Hence, the
window is contained within level £ — 1 because by definition the sliding window can
have at most U stream items. O

Note that the bounds for the scenario without duplicates are obtained by setting U = N.

3.3.  Sum of Bounded Integers

The deterministic wave scheme can be extended to handle the problem of maintaining
the sum of the last N items in a data stream, where each item is an integer in [0.. R]. Datar
et al. [9] showed how to extend their EH approach to obtain an e-approximation scheme
for this problem, using O ((1/¢)(log N +log R)) buckets of log N +log(log N +log R)
bits each, O (1) query time, and O (log R/log N) amortized and O (log N +log R) worst
case per-item processing time. (They also presented a matching asymptotic lower bound
on the number of bits.®) We show how to achieve constant worst case per-item processing
time, while using the same number of memory words and the same query time.’

Our algorithm is depicted in Figure 5. The sum over a sliding window can range
from O to N - R. Let N’ be the smallest power of 2 greater than or equal to 2N R. We
maintain two modulo N’ counters: pos, the current length, and total, the running sum.
There are £ = [log(2e NR)] levels. A level is full if it has [1/e 4+ 17 positions. The
algorithm follows the same general steps as the algorithm in Figure 4. Instead of storing
pairs (p, r), we store triples (p, v, z) where v is the value for the data item (not needed
before because the value for a stored item was always 1) and z is the partial sum through
this item (the equivalent of the 1-rank for sums). When answering a query, we know that
the window sum is in [total — z, + v,, total — z;], where (p, vy, z») is the triple at the
head of the linked list L and z; is the largest partial sum discarded, and we return the
midpoint of this interval.

The key insight in this algorithm is that it suffices to store an item (only) at a level j
such that 2/ is the largest power of 2 that divides a number in (total, total 4+ v]. Naively,
one would mimic the Basic Counting wave by viewing a value v as v items of value 1.
However, this would lead to O(R) worst case processing time per item. Datar et al. [9]
reduced the time to O(log N + log R) by directly computing the EH resulting from v
insertions of value 1. However, a single item is stored in up to O (log N + log R) EH
buckets. In contrast, we store the item just once, which enables our O (1) time bound.

6 The lower bound assumes that if R > N, then logR = O(N?®) for some § < 1.
7 Measured in bits instead of words, our bound of O ((1/¢)(log N + log R)?) bits is slightly worse than
theirs when R is superpolynomial in N.
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Upon receiving an item with value v € [0..R]:

1. Increment pos. // All additions and comparisons are done modulo N’
2. If the head (p, v', z) of the linked list L has expired (i.e., p < pos — N), then discard it
from L and from (the tail of) its queue, and store z as the largest partial sum discarded.

3. If v > 0, then do:

(a) Determine the wave level, i.e., the largest j such that some number in (total, total 4 v]

is a multiple of 2/. Add v to total.
(b) If the level j queue is full, then discard the tail of the queue and splice it out of L.
(c) Add (pos, v, total) to the head of the level j queue and the tail of L.

Answering a query over a sliding window of size V:

1. If N > pos, return x := total as the exact answer. Otherwise, let z; be the largest partial
sum discarded from L (or O if no partial sum has been discarded). Let (p, v,, z») be the
triple at the head of the linked list L. (If L is empty, return X := 0 as the exact answer.)

2. If p = pos — N + 1, return x := total — z, + v, as the exact answer. Otherwise, return
x ;= total — (Z] + 2 — Uz)/z.

Fig. 5. A deterministic wave algorithm for the sum in a sliding window on a single stream.

The challenge is to compute the wave level in step 3(a) quickly; we show how to
do this in O(1) time. First observe that the desired wave level is the largest position j
(numbering from 0) such that some number y in the interval (total, total+ v] has 0’s in all
bit positions less than j (and hence is a multiple of 2/). Second, observe that y — 1 and y
differ in bit position j, and if this bit changes from 1 to O at any point in [total, total 4 v],
then j is not the largest. Thus, j is the position of the most-significant bit that is 0 in
total and 1 in total + v. Accordingly, let f be the bitwise complement of total, and let
g =total+v.Leth = f A g, the bitwise AND of f and g. Then the desired wave level
is the position of the most-significant 1-bit in £, i.e., [logh].?

Summarizing the results of this subsection, we have:

Theorem 3. The algorithm in Figure 5 is an e-approximation scheme for the sum
of the last N items in a data stream, where each item is an integer in [0..R]. It uses
O((1/e)(log N +1log R)) memory words, where each memory word is O (log N +1og R)
bits (i.e., large enough to hold an item or a window size). Each item is processed in O (1)
worst case time. At each time instant, it can provide an estimate in O(1) time.

Proof. To prove the approximation guarantee, we first define a basic wave correspond-
ing to the input stream for the sums of integers algorithm, and show how the sum wave
constructed by the algorithm simulates this basic wave. The approximation guarantee
follows from the approximation guarantee provided by the basic wave.

The basic wave is defined as follows. For each triple (p, v, z) that is input to the
algorithm (where p is the position, v is the value of the integer, and z is the current

8 On a weaker machine model that does not support this operation on 4 in constant time, we can use
binary search to find the desired position in O (log(log N + log R)) time, as follows. Let w be the word size,
and let M be a bit mask comprising of w/2 1’s followed by w/2 0’s. We begin by checking if 2 A M equals 0.
If so, we left shift M by w/4 positions and recurse. Otherwise, we right shift M by w/4 positions and recurse.
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running total inclusive of v), we have a pair (p, i) input to the basic wave for each
i € [z— v+ 1,z]. Thus we have the stream model discussed at the end of Section 3.2
where duplicated positions are permitted. Note that the basic wave stores an item (p, r)
in every level  such that r is a multiple of 2'.

Let N < pos and s = pos — N + 1; we are interested in the interval [s, pos]. Let
X be the estimate returned by this basic wave for the number of 1-bits in the window
[s, pos]. We know from Corollary 1 (taking U = N - R) that the relative error between
X and the actual value is at most €. By construction, the number of 1-bits input to the
basic wave in the interval [s, pos] exactly equals the sum of the integers in the interval
[s, pos] that the sum wave is trying to estimate. Thus the relative error between X and
the sum of integers in the window [s, pos] is at most ¢.

Suppose p; is the maximum position in the basic wave less than s, p; is the minimum
position in the basic wave greater than or equal to s, r; is the largest 1-rank with position
p1, and r; is the smallest 1-rank with position p,. The absolute error of the basic wave
can be as much as (r, — ry)/2, and this is sufficient for the approximation guarantee. We
now show that the absolute error of the sum wave in estimating the sum of integers in
[s, pos] is not greater than (r, — r;)/2, and this will complete the proof.

Suppose the integers that gave rise to (py, r;) and (py, r2) were (py, v, z;) and
(p2, v2, 22), respectively. We now show that (p», v,, 22) expires from the sum wave at the
same time or later than when (p,, r») expires from the basic wave. Suppose (p», v2, 22)
entered the sum wave at level /g, and (p,, r») entered the basic wave at level /. Firstly,
Iy > 1Ip, since [ is the largest power of 2 that divides a number in [z, — vy + 1, z2], while
Iy 1s the largest power of 2 that divides r,, where r, € [z, — v + 1, z2]. We next show
that for every tuple entering the sum wave at level [, there is at least one tuple (perhaps
more) entering the basic wave at level [,. To see this, suppose tuple (p, v, z) entered the
sum wave at level [; after (p», va, z2) did. Then tuple (p, r) enters the basic wave at level
l; for some r € [z — v+ 1, z]. Since [, < I, (p, r) also enters the basic wave at level
Iy. The above argument shows that (p,, v,, z2) expires from the sums wave at the same
time or later than when (p», r;) expires from the basic wave.

By a similar argument, we can also show that (py, v;, z1) expires from the sum wave
at the same time or later than when (p;, ;) expires from the sum wave. The absolute
error made by the sum wave is thus not greater than (z; — v, — z;)/2 which is less than
or equal to (r, — r)/2, since r, > zp — v and ry < z;.

The space and time bounds are immediate, given the above discussion of how to
perform step 3(a) in constant time. O

3.4. Distributed Streams

Recall the distributed streams model. There are ¢ > 2 parties, and each party observes
only its own stream. When an estimate is requested, each party sends a message to a
Referee who computes the estimate over the union of all the streams. Below, we consider
three natural definitions for a sliding window over the union of distributed streams, as
illustrated for the Basic Counting problem:

Scenario 1: We seek the total number of 1’s in the last N items of each of the ¢ streams
(t - N items in total).
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Scenario 2: A single logical stream has been split arbitrarily among the parties. Each
party receives items that include an overall sequence number and the value of the
bit, and we seek the total number of 1’s in the last N items of the logical stream.

Scenario 3: We seek the total number of 1’s in the last N items over the positionwise
union (logical OR) of the ¢ streams.

For the first and the second scenarios, the deterministic wave can be used to answer
sliding windows queries over a collection of distributed streams. For the first scenario,
we apply the single stream algorithm to each stream. To answer a query, each party sends
its count to the Referee, who simply sums the answers. Since each individual count is
within ¢ relative error of the actual, so is the total.

In the second scenario we assume that when the estimate is requested from the
parties, each party is sent the current overall sequence number, pos, in the logical stream.
Then each party separately estimates the number of items in its stream whose overall
sequence numbers lie in the interval [pos — N + 1, pos] using the deterministic wave.
Note that this interval is not necessarily the last N items in the stream observed by the
party. Instead, it is guaranteed to lie within the window of the last N items observed
by the party. By Corollary 1, each party can separately estimate the number of relevant
items in its stream to within a relative error of €. Each individual count is within ¢ relative
error of the actual, and hence so is the total.

However, the third scenario is more problematic. Denote as the Union Counting
problem the problem of counting the number of 1’s in the positionwise union of ¢
distributed data streams. (If each stream represents the characteristic vector for a set,
then this is the size of the union of these sets.) We show the following lower bound
on any deterministic algorithm for this problem, even for the case not involving sliding
windows.

Theorem 4. Any deterministic algorithm that guarantees a constant relative error
e < é for the Union Counting problem requires S2(n) space for n-bit streams, even for
t = 2 parties (and no sliding window).

Proof. The proof is by contradiction. Suppose that an algorithm existed for approxi-
mating Union Counting to within a relative error of ¢ = é using space less than an,
where o = %. (We have not attempted to maximize the constants ¢ or «.)

Let A and B be the two parties, and let C be the Referee. Let X be the data stream
seen by A and let Y be the stream seen by B. Data streams X and Y are of length n (n
even), and a query request occurs only after both streams have been observed. Suppose
that both X and Y have exactly n/2 1’s and 0’s. For this restricted scenario, the exact

answer for the Union Counting problem is

" axy 2
5ty HX.Y), 2)
where H (X, Y) is the Hamming distance between X and Y.

For each possible message m from A to C, let S,, denote the set of all inputs to A
which cause A to transmit m. Since A’s workspace is only an bits, the number of distinct
messages that A could send C is 2*". The number of possible inputs to A is (n'}z). Using
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the pigeonhole principle, we conclude that there exists a message m that A sends to C
such that

|S |> (nl;Z)
ml — Qan *

3

Because the relative error is at most € and the exact answer is at most n, the absolute
error of any estimate produced by the algorithm is at most ne. We claim that no two inputs
in §,, can be at a Hamming distance greater than 4ne. The proof is by contradiction.
Suppose that there are two inputs X and X» in S,, such that H (X, X;) > 4ne. Consider
two runs of the algorithm: in the first, X = X; and Y = X», and in the second, X = X;
and Y = X,. Inbothruns the Referee C gets the same pair of messages, and hence outputs
the same estimate z. Because the absolute error in both cases is at most ne, we have by (2)
thatz > n/2+3H (X, X2)—ne > n/2+neandz < n/24+3H(X>, Xo)+ne = n/2+ne,
a contradiction.

For a given n-bit string s with exactly n/2 1’s, the number of n-bit strings with
exactly n/2 1’s at a Hamming distance of k from s (k an even number) is (%)2 —
all combinations of k/2 out of n/2 0’s in s flipped to 1’s and k/2 out of n/2 1I’s in s
flipped to 0’s. (There are no such inputs at odd distances.) Thus the number of such

. . . . 2 . .
strings at Hamming distance at most k is Zfi 20 (”jz) , which, for k < n/2, is at most

1+k/2) (2@2 Setting k = 4ne in the above claim, for all messages m that A sends to

C, we have

n/2\>
[Sm| < (14 2ne) one) 4)

L

By choosing o = 3¢

n
2
|S | > (”/2) > & :2711/16
mi— Qan  — Dan :

in (3) we get

By choosing ¢ = 61—4 and n suitably large, it follows from (4) that

e 4ne
S| < (1 4 2ne) (4_) < D24n/64+log(14n/32) _ 5Tn/16
£
We obtain the contradiction, which completes the proof. O

For the sum of bounded integers problem on distributed streams, scenario 1 is a
straightforward application of the single stream algorithm. For scenario 2, we again use
the fact that our deterministic stream algorithm for window size N can provide estimates
for any window size n such that n < N, and this scenario can also be solved by each
stream separately executing the single stream algorithm at each party. For scenario 3,
if “union” means to take the positionwise sum, the problem reduces to scenario 1. If
“union” means to take the positionwise maximum, then the lower bound in Theorem 4
applies, as the number of 1’s in the union is a special case of the sum of the positionwise
maximum.
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The linear space lower bound for deterministic algorithms in Theorem 4 is the
motivation for considering randomized waves, which are introduced in the next section.

4. Randomized Waves

This section describes the randomized wave data structure for the Union Counting prob-
lem. Like the deterministic wave, the randomized wave consists of the 1-bits (more
accurately, the positions of the 1-bits) in the data stream stored at different levels. Each
level contains the positions of some of the most recently selected 1-bits, where a position
is selected into level i with probability 27/, Thus the difference between the deterministic
and randomized waves is that for each level i, the deterministic wave selects one out
of every 2 1-bits at regular intervals, whereas a randomized wave selects an expected
one out of every 2! 1-bits at random intervals. Also, the randomized wave retains more
positions per level than does the deterministic wave.

4.1. The Randomized Wave

‘We now describe the data structure, show how it yields an (e, §)-approximation scheme
for Union Counting over any sliding window up to a prespecified maximum window
size N, and then present an analysis of the time and space complexity.

Let N’ be the minimum power of 2 that is at least 2N; letd = log N'. Let ¢ < 1 be
the desired bound for relative error, and let § < 1 be the upper bound on the probability
that the algorithm fails to achieve this bound. The randomized wave for party j consists
of d + 1 queues, Q;(0), ..., Q;(d), one for each level l = 0 - - - d. Each queue can hold
c/€? items, for a constant ¢ determined by the analysis.

Hash Function. We use a pseudorandom hash function 4 to map positions to levels,
according to an exponential distribution. The input to 4 is a position modulo N’, i.e.,
{0---N'—1}.Forl =0, 1,...,d—1,Pr{h(p) =1} =1/2" and Pr{h(p) = d} = 1/2°.
The hash function () is computed as follows.

We consider the numbers {0 - - N’ — 1} as members of the field G = GF(2%).Ina
preprocessing step we choose g and r uniformly and independently at random from G
and store them with each party. In order to compute /(p), a party computes x = g-p+r
(all operations being performed in G). We represent x as a d-bit vector and then i (p) is
the largest i such that the i most-significant bits of x are 0 (i.e., h(p) = d — [logx ] — 1).
Clearly, h(p) € [0..d]. The two properties of & that we use are:

1. x is distributed uniformly over G. Hence, for [ < d, Pr{h(p) =1} = 1/2/*".
2. The mapping is pairwise independent, i.e., for distinct p; and po,
Pr{(h(p1) = ki) A (h(p2) = k2)} = Pr{h(p1) = ki} - Pr{h(p2) = k2}.

This is the same hash function used by Alon et al. [1], except that the domain and
range sizes now depend only on the maximum window size N and not on the entire
stream length.



OF18 P. B. Gibbons and S. Tirthapura

Party P;, upon receiving a stream bit b:

1. Increment pos. (Note: All additions and comparisons are done modulo N'.)

2. Discard any position p in the tail of a queue that has expired (i.e., p < pos — N).

3. If b =1,thenfor/ :=0,..., h(pos) do: (Note: All parties use the same function /.)
(a) If the level [ queue Q;(!) is full, then discard the tail of Q; (/).
(b) Add pos to the head of Q;(I).

Answering a query for a sliding window of size n < N, after each party has observed pos
bits:

1. Lets := max(0, pos —n + 1). ([s, pos] is the desired window.) Each party j determines
the smallest numbered level, /;, such that the tail of Q;(/;) is a position p < s, and sends
l; and Q;(l;) to the Referee.

2. The Referee computes [* := max;—;,_,[;. For j =1, ..., t,let U; be the set of positions
pin Q;(l;) such that h(p) > [* and p > 5.

3. The Referee returns % := 2/ - | U;:l Ujl.

Fig. 6. A randomized wave algorithm for Union Counting in a sliding window (¢ streams).

Updating the Randomized Wave. The steps for maintaining the randomized wave are
summarized in the top half of Figure 6. A 1-bit arriving at position p is selected into
levels O, ..., h(p). The sample for each level, stored in a queue, contains the ¢/ &2 most
recent positions selected into that level. (c = 36 is a constant determined by the analysis.)
Consider a queue Q;(/), whose tail (earliest element) is at position i. Then Q; (/) contains
all the 1-bits in the interval [i, pos] whose positions hash to a value greater than or equal
to /. We call this interval [i, pos] the range of Q; (/). As we move from level / to/+1, the
range may increase, but it will never decrease. The reason is as follows. Every bit that is
selected into level / + 1 is also selected into level . Since the queue at a level contains the
c¢/&* most recent positions selected into that level, it is possible that Q (I + 1) contains
earlier positions than Q; (/) but never vice versa. We assume that each level is initialized
with a “dummy” position 0.

Handling a Query. The bottom half of Figure 6 summarizes the steps for answering a
query. We receive a query for the number of 1’s in the interval W = [max(0, pos —n +
1), pos]. In step 1 each party j selects the lowest numbered level /; such that the range
of Q;(l;) contains W, and sends /; and Q;(l;) to the Referee. Let [* be the maximum of
these levels over all the parties. Each queue Q;(/;) contains the positions, U;, of all the
1-bits in W in its stream that hash to a value at least [* (along with any other positions
outside of W or that hash to values in [/;..[*)). In step 2 the Referee computes /* and
extracts the U;. Finally, in step 3, the Referee takes the union of the positions in the ¢
queues, and returns the number of positions in this union, scaled up by a factor of 2/".

4.2.  Proof of Correctness

We use the following lemma which has been proved in [18].

Lemma 2 (from [18]). Consider x items {1, 2, 3, ..., x} which are sampled into levels
starting from level 0 as follows. Item i is placed in levels from O through h(i) (Where
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h has been defined above). Denote the number of items at level j by x;. Let £ be the
smallest numbered level such that x; < c/ &2, where ¢ = 36, and ¢ > 0. The estimate
for x using level j is X; = xi2j. Then, for any level j < £, we have

Pr{|%; — x| < ex} > 3.

Lemma 3. The Randomized Wave Algorithm returns an estimate X for Union Counting
over a sliding window of size n < N that is within a relative error of € with probability
greater than 2/3.

Proof. Consider party j. For each level [, define S;(I) = {i|[(l < h(@) A (b; =
1 in stream j)}. The queue at level [, Q;(/), contains the positions of the c/&* most
recent 1-bits in S;(/). Consider the size of S;(/) N W. This is large for small / and de-
creases as [ increases. If |S;(/) N W| > ¢/ &2, then the range of Q (/) does not contain
W, and vice versa.

Thus, the level selected at party j, [;, is the smallest value of / such that |S; ()N W| <
c/ £2. In other words, [ ; is the smallest value of / such that the number of relevant 1-bits
(those in window W) that were selected into [ is less than ¢/&? for stream j, and [* is
the lowest numbered level that satisfies the property for every stream. Our estimate is
2=2" 1S U SIH)U---US, ()N W].

Now, consider the stream formed by the (bitwise) union of all the streams observed
by the various parties. We are interested in estimating x, the number of 1-bits in this
union stream that lie in the window W. The 1-bits in the union stream are being sampled
into different levels by the same process as described in Lemma 2. Let £* be the smallest
numbered level such that the number of bits in the union that lie in W and have been
sampled into £* is less than c/&2. Our algorithm finally estimates x using the sample at
level [*, and clearly [* < £*. By applying Lemma 2 the proof is complete. |

Note that the above approximation guarantee holds independent of the number of
parties. By taking the median of O (log(1/§)) independent instances of the algorithm,
we get our desired (&, §)-approximation scheme:

Theorem 5. The above estimation procedure is an (g, 8)-approximation scheme
for Union Counting over any sliding window of size not greater than N, using
O((log(1/8) log? N)/€?) bits per party. The time to process an item is dominated by
the time for an expected O (log(1/8)) finite field operation. The query time is
Ot log(1/8)(log log(N) + 1/8%)).

Proof. For each of the O (log(1/8)) instances, we have O (log N) queues of O(1/e?)
positions, and each position is O (log N) bits. Also, for each instance, we have the hash
function parameters, g and r, which are O (log N) bits each. This shows the space bound.

The per-item processing is O (1) expected time per instance because the expected
number of levels to which the new position is added is bounded by 2 (step 3), and likewise
the expected number of levels that position p = pos — n was ever in, where n is the
size of the sliding window, is bounded by 2. Thus scanning the tails of the queues at
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levels O, ..., h(p) looking for p (step 2) takes constant expected time. Since there are
O (log(1/4)) instances, the time bound follows.

As for the query time, each party j can determine /; for one of its instances in
O(loglog(N')) time using binary search. Each party sends O (log(1/8)/e%) memory
words, which the Referee receives and processes. O

5. Extensions

Number of Distinct Values. With minor modifications, the randomized wave algorithm
can be used to estimate the number of distinct values in a sliding window over the
union of distributed streams. Each element of the sample (wave) is now an ordered pair
(p, v) where v is a value that was seen in the stream and p is the position of the most
recent occurrence of the value. This is updated every time the value appears again in the
stream. A wave at level [ stores the c/s? elements with the most recent positions that
were sampled into that level. Note that the hash function now hashes the value of the
element, rather than its position (as was the case in Union Counting).

Each party maintains pos, the length of its observed stream. It also maintains a
(doubly linked) list of all the elements in its wave, ordered by position. This list lets the
party discard expired elements.

When an element v arrives, we insert it into levels O - - - 2(v), storing pos alongside.
Since the expected value of A (v) is less than 2, it is inserted into an expected constant
number (in this case, two) of levels. If v is already present in the wave, we update its
position. To determine the presence of a value in the wave, we use an additional hash
table (hashed by an item’s value) that contains a pointer to the occurrence of the element
in the doubly linked list. Updating an element’s position requires moving the element
from its current position to the tail of the list, and this can be done in constant time. The
element’s position has to be updated in each of the levels to which it belongs. All this
can be done in constant expected time, because each element belongs to an expected
constant number of levels.

To produce an estimate, each party passes its wave to the Referee. The Referee
constructs a wave of the union by computing a levelwise union of all the waves that it re-
ceives. This resulting wave is used for the estimation. As before, we perform O (log(1/5))
independent instances of the algorithm, and take the median. The space bound and proof
of correctness are identical to the randomized wave for Union Counting. Summarizing
the result, we have:

Theorem 6. The above estimation procedure is an (g, §)-approximation scheme for
the number of distinct values in a sliding window of size N over distributed streams. It
uses O((log(1/8)log N log R)/e?) bits per party, where the values are in [0..R], and
the per-item processing time is dominated by the time for an expected O (log(1/6)) finite
field operation. The query time is O(t log(1/8)(loglog(N) + 1/&%)).

Handling Predicates. Note that our algorithm for the number of distinct values stores
arandom sample of the distinct values. This sample can be used to answer queries about
predicates on the distinct values (e.g., how many even distinct values are there?). In order
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to provide an (e, §)-approximation scheme for any predicate of selectivity at least « (i.e.,
at least an « fraction of the distinct values satisfy the predicate), where the predicate is
not known until query time, we store a sample of size O (1/ae?) at each level, increasing
our space bound by a factor of 1 /«. Such problems without sliding windows were studied
in [16].

Nth Most Recent 1. We can use the wave synopsis to obtain an (g, §)-approximation
scheme for the position of the Nth most recent 1 in the stream, as follows. Instead of
storing only the 1-bits in the wave, we store both 0’s and 1’s. Thus, items in level [ are
2! positions apart, not 2/ 1’s apart. In addition, we keep track of the 1-rank of the 1-bit
closest to each item in the wave. The rest of the algorithm is similar to our Basic Counting
scheme. Note that we need O((1/¢)log?(em)) bits, where m is an upper bound on the
size of the window needed in order to contain the N most recent 1’s.

Other Problems. Our improved time bounds for distinct counting for a single stream
lead to improved time bounds for all problems which reduce to distinct counting, as
described in [9]. These include L, norms, averages, histogramming, etc. For example,
an g-approximation scheme for the sliding average is readily obtained by running our
sum and count algorithms (each targeting a relative error of /(2 + ¢)).
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