IOWA STATE UNIVERSITY

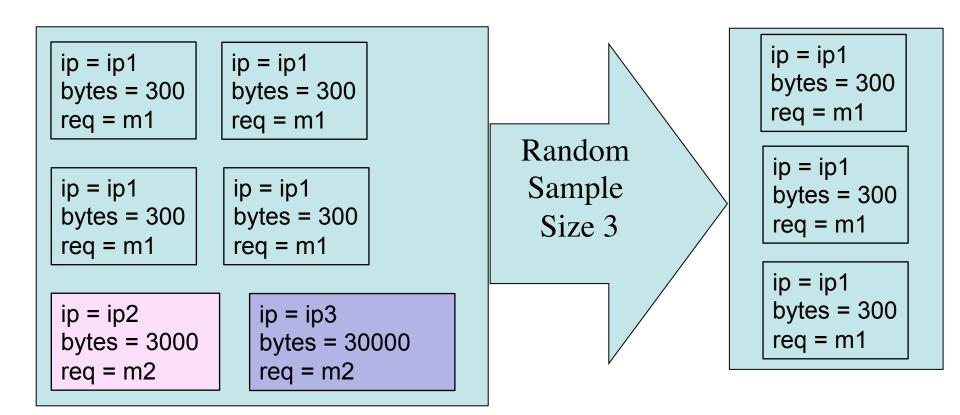
Department of Electrical and Computer Engineering

Distinct Random Sampling from a Distributed Stream

Yung-Yu Chung, Srikanta Tirthapura

Electrical and Computer Engineering
Iowa Sate University

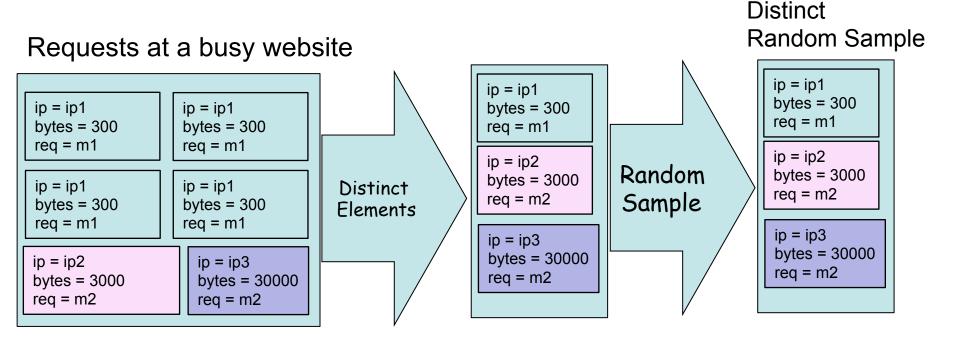
Random Sampling from Data



Requests at a busy website

Distinct Random Sampling

Sample from the Set of Distinct Elements within data



Conceptual View

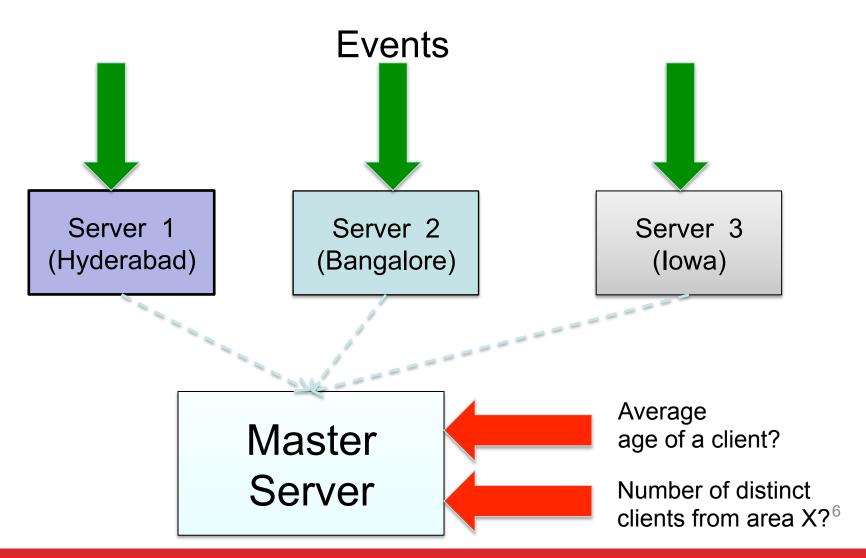
Problem at a High Level

Continuously maintain a distinct random sample from a data source whose elements are arriving as continuous stream of updates at multiple geographically distributed sites.

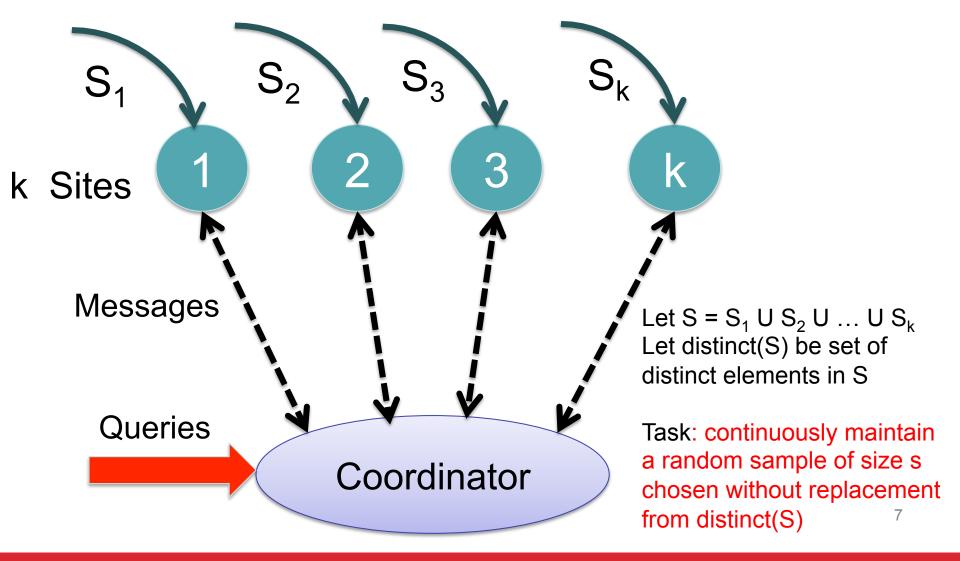
Importance of Distinct Random Sampling

- Network Anomaly Detection (Venkataraman et al. NDSS 2005)
- Database Query Optimization (Ganguly et al. VLDB 2005, Poddar 2011, Gibbons VLDB 2001)
- Sampling Operators a core part of Streaming Systems
 - Sampling Algorithms in a Stream Operator (Johnson et al. SIGMOD 2005)
 - IBM Infosphere Streams
- BlinkDB "Big Data" database is based on random sampling for approximate answers (Agarwal et al. Eurosys 2013)

Distributed Streams



Distinct Sampling Problem Definition (1)



Distinct Sampling Problem Definition (2)

- Cost: Number of messages transmitted between sites and coordinator
- Synchronous Model
 - Execution proceeds in rounds
 - In each round, each site observes one or more items, and can send a message to coordinator, receive a response
- Two Versions:
 - Infinite Window: Sample drawn from all items seen so far
 - Sliding Window: Sample drawn from items seen in recent rounds

Our Results (Upper Bound)

An algorithm that continuously maintains a distinct sample from a distributed stream S, with the following performance guarantees

- Expected total messages for processing all of S is 2ks ln (de/s)
- O(s) memory consumption per site
- O(s) memory at the coordinator, and
- O(1) processing time per element

```
k = number of sites
```

```
d = size of distinct(S)
```

s = sample size desired

Our Results (Lower Bound)

For any algorithm A and parameter d, there exists an input distributed stream, I_A with d distinct elements such that the expected number of messages sent by the algorithm upon receiving I_A is at least (ks/2) ln (de/s)

```
k = number of sites
```

d = size of distinct(S)

s = sample size desired

Results Summary

	Our Algorithm	Lower Bound
Number of Messages	2ks ln (de/s)	(ks/2) ln (de/s)
Memory at Coordinator (in words)	O(s)	$\Omega(\mathrm{s})$

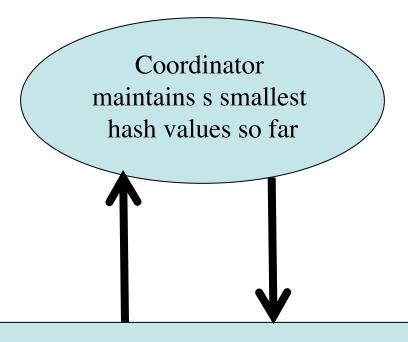
Prior and Related Work

- Distinct Sampling on a Stream and Applications (Gibbons and Tirthapura SPAA 2001, Gibbons VLDB 2001)
- Continuous Distributed Streaming Model (Cormode et al. SODA 2008, and many other works)
- Continuous Random Sampling on Dist. Streams
 - Cormode, Muthu, Yi, Zhang, JACM 2011
 - Tirthapura and Woodruff, DISC 2011
- Stream Sampling has a rich history starting from the reservoir sampling algorithm

Sampling Algorithm Basics

- U be the universe of all elements in S
- Algorithm first chooses h: $U \rightarrow [0,1]$, a hash function that assigns a real number in [0,1] to each element in U
 - On same input v, h always yields same output h(v)
 - On distinct inputs, outputs of h are mutually independent random variables
- Random Sample of size s from S is the set of elements R that have the s smallest hash values in $\{h(x) \mid x \text{ in } S\}$

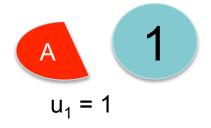
Distributed Maintenance of Sample



Site i:

- 1. Maintain view of current sample
- 2. if sees an element with smaller hash value, then inform coordinator

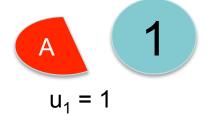
Algorithm: Element Arrives at Site 1 (maintain a sample of size 1)



u = Smallest hash value so far = 1

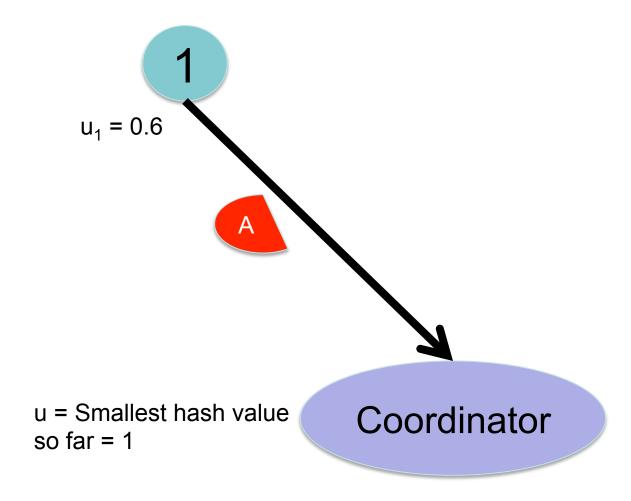
Coordinator

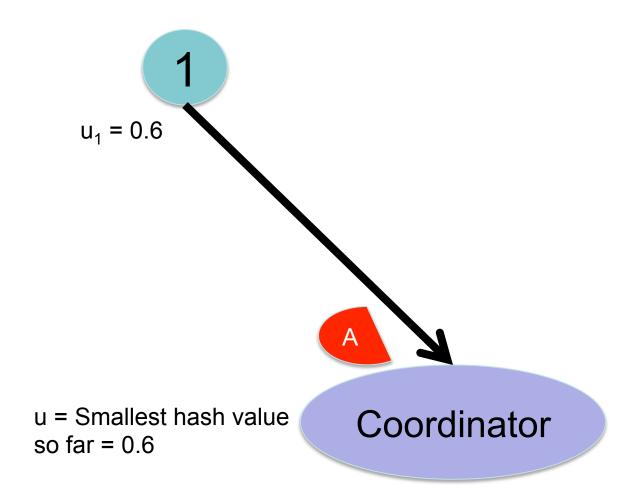
Weight = h(A) = 0.6



u = Smallest hash value so far = 1

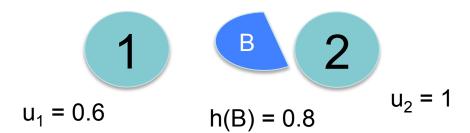
Coordinator





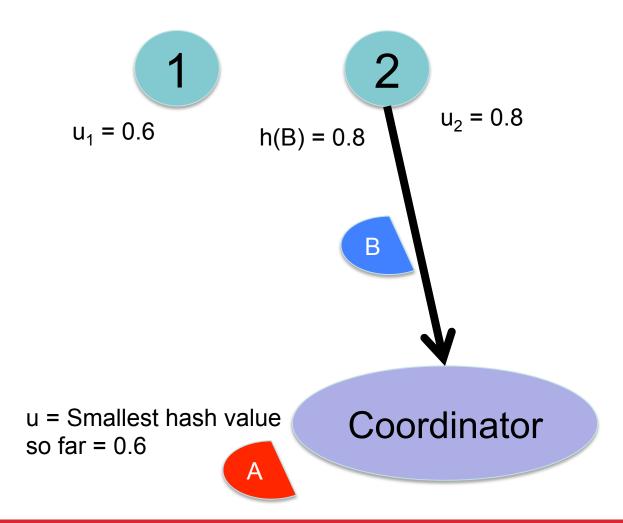
u = Smallest hash value so far = 0.6

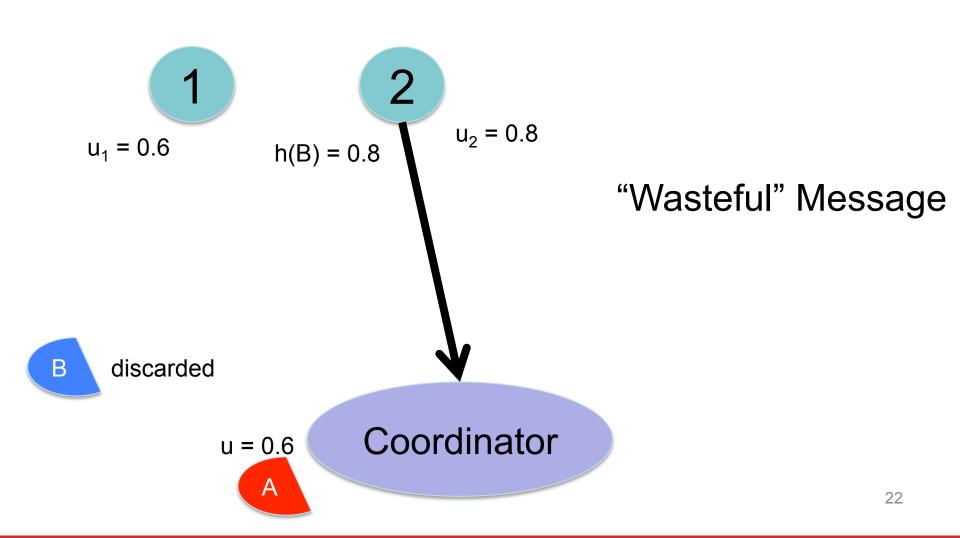
Coordinator

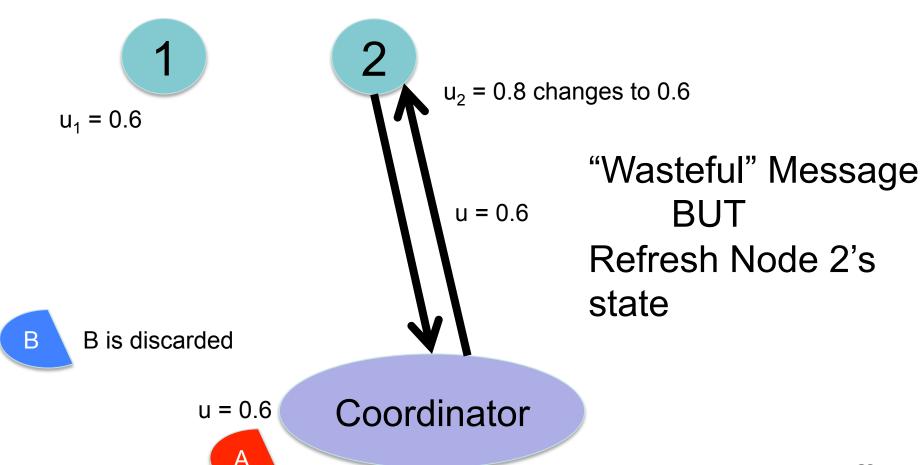


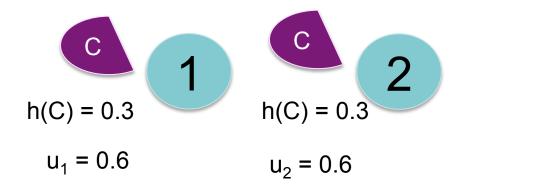
u = Smallest hash value so far = 0.6

Coordinator



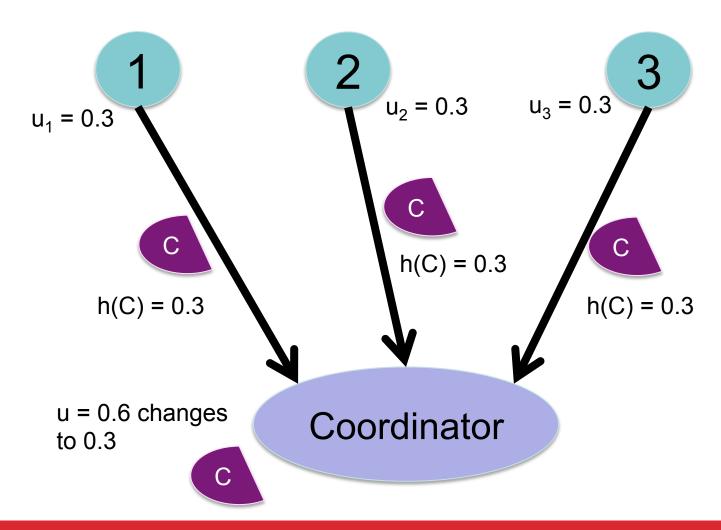






$$h(C) = 0.3$$
 $u_3 = 1$

u = 0.6 Coordinator



Distributed Algorithm Notes

- 1. State of coordinator is always current
- 2. State of site maybe out of sync, but is "safe"
- 3. A message from site either updates coordinator or results in an update to the state of the site
- 4. Each site maintains a view of current sample, to prevent sending the same element repeatedly to the coordinator

Algorithm at Site i

```
Init: Receive h from coordinator, set u_i \leftarrow 1, P_i \leftarrow phi
Repeat forever
     If receive element e in stream S<sub>i</sub>
           If (h(e) \le u_i) and (e \text{ not in } P_i)
                 Insert e into P<sub>i</sub>
                 Send e to coordinator
     If receive value u from coordinator
           u_i \leftarrow u
           Discard all elements e from pi such that h(e) \ge u_i
```

Algorithm at Coordinator

```
Init: P \leftarrow empty, u \leftarrow 1. Send hash function h to all sites
```

```
Repeat Forever

If receive e from site i

If h(e) < u:

If e not in P, add it

If |P| > s

Discard element with largest hash value from P

u \leftarrow \max\{h(e) \mid e \text{ in P}\}

Send u to site i
```

If receive query for random sample, then Return P

Analysis of Algorithm

- 1. Analyze communication from site i to coordinator
- 2. Multiply by two (coordinator feedback)
- 3. Sum over all sites

We sketch an analysis parameterized by the number of distinct elements d

Analysis of Algorithm (Upper Bound)

Lemma: The expected number of messages transmitted by site $1 \le s \log (d_1e/s)$ where d_1 is number of distinct elements observed at site 1

Proof. Consider distinct element arrivals $j=1,2,3,d_1$ at site 1 Let Y = total number of messages transmitted by site

For
$$j = 1$$
 to d_1 , let $Y_j = 1$ if j^{th} arrival causes a message , 0 otherwise
$$Y = Y_1 + Y_2 + \dots Y_{d1}$$
$$E[Y] = E[Y_1] + E[Y_2] + \dots E[Y_{d1}]$$

$$E[Y_j] = Pr[arrival \text{ of } j^{th} \text{ distinct element causes a message to be sent}]$$

= 1 for j=1 to s,
= s/j for $j > s$

Summation over all j leads to the lemma

Analysis Notes

- Analysis does not assume any specific input distribution, hence worst-case
- Can achieve better bounds when more is known about input distribution
- Can a different algorithm do better in general?

Lower Bound

- For any algorithm A and parameter d, there exists an input distributed stream, I_A with d distinct elements such that the expected number of messages sent by the algorithm upon receiving I_A is at least (ks/2) ln (de/s)
- Probability space is one from which the random sample is chosen

Lower Bound (1)

е

1

2

3

k

Coordinator

Sample of D

Suppose we have seen set of distinct elements D so far

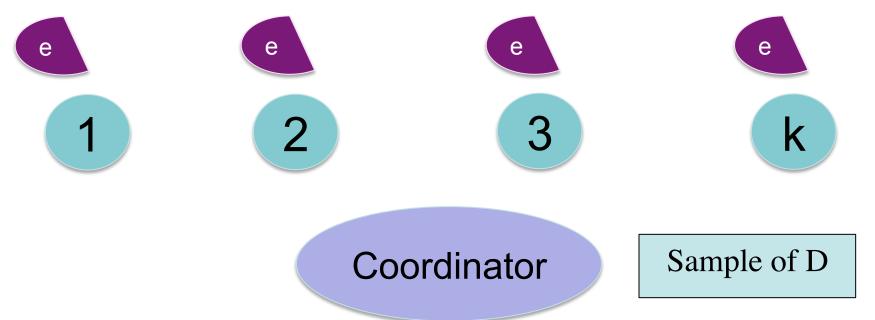
Supply an element e to site 1 that does not belong to D

e will belong to sample with probability s/(|D|+1)

Site 1 will send a message to Coordinator with probability at least s/2(|D|+1)

34

Lower Bound (2)



Suppose we have seen set of distinct elements D

Supply same element e (outside of D) to all sites 1,2,..,k

e will belong to sample with probability s/(|D|+1)

Site 1 will send a message to Coordinator with probability s/2(|D|+1) So will every other site.

35

Lower Bound (3)

Round 1: All sites see element e₁

Round 2: All sites see element e₂

Round j: All sites see element e_i

Expected number of messages sent in a round $\geq sk/2(|D|+1)$

Continue this process in rounds 1,2,3,...,d Expected number of messages sent \geq sk/2 {1/2 + 1/3 + ..+ 1/(d+1)}

Comparison with Simple Random Sampling

k= number of sites, s = sample size n= number of elements d = number of distinct elements	Number of Messages Over Entire Execution
Distributed Simple Random Sampling	max {k,s} log(n/s) (T, Woodruff & Cormode et al.)
Distributed Distinct Random Sampling	k s log (d/s)

Sampling With Replacement

- Requirement: Each element in sample chosen uniformly from entire population
- Solution: Repeat s copies of single element sampling algorithm, in parallel
- Improvement: Combine messages of different copies of algorithm, reducing duplication

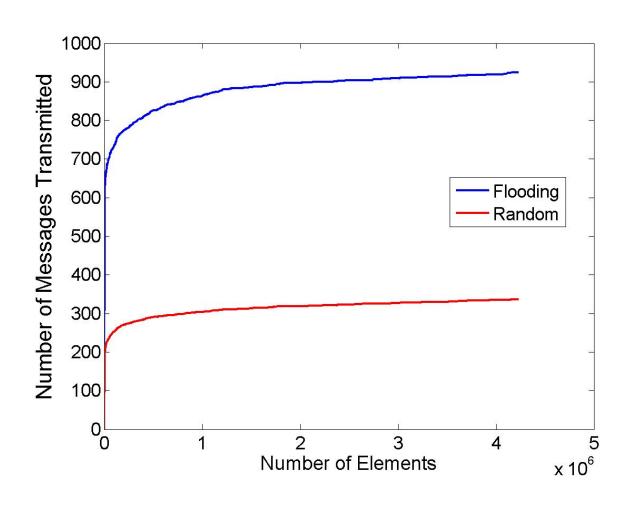
Sliding Window

- Random sample chosen from set of all elements observed in the w most recent time steps
- Idea: choose the elements with the smallest hash values from among the w most recent time steps
- Problem: maintaining minimum weight element within a sliding window is hard (communication wise)
- Idea: Use the fact that these are not arbitrary weights, but randomly chosen weights

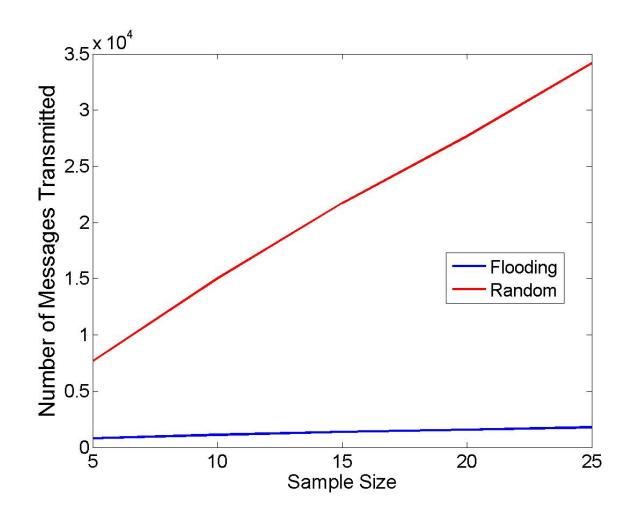
Experiments: Datasets

	# Elements	# Distinct
OC48 Network Trace	42 mil	4.3 mil
Enron Email	1.5 mil	0.37 mil

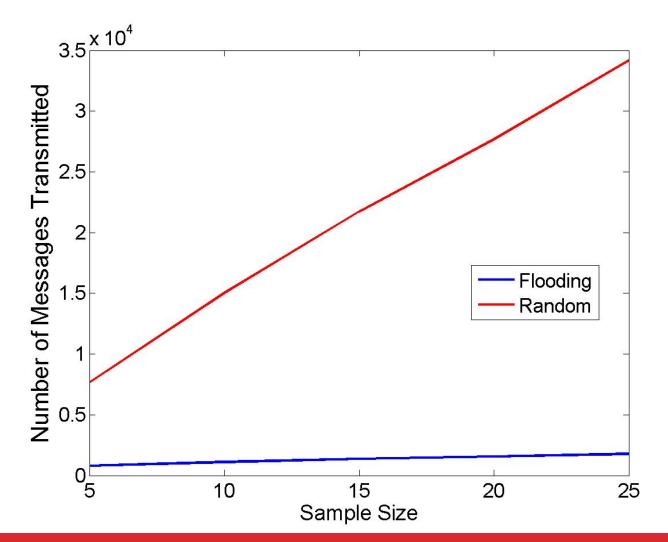
Number of Messages vs Stream Size (OC48) k (number of sites) = 10, s (sample size) = 5



Number of messages vs sample size (OC48) Number of sites = 50

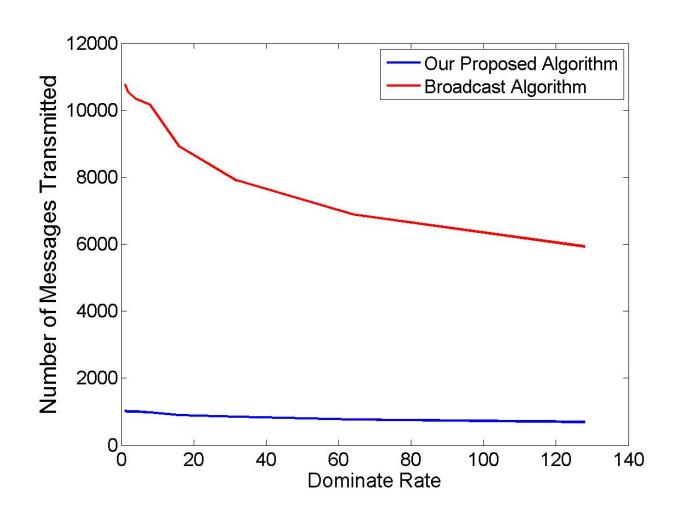


Number of messages vs Number of sites (OC48) Sample size = 20



43

Messages vs skew in data (OC48) sites = 20, sample size = 20



Conclusion

- Message Optimal Algorithm for Continuous Distributed Distinct Sampling
- Easy to implement, good practical performance
- Message complexity of distinct sampling inherently greater than simple random sampling
- Sampling Without and With Replacement, Sliding Windows
- Works in Asynchronous Model

Future Work

- Better Lower Bounds for Sliding Windows
- Other properties in a continuous distributed streaming model, including properties on graphs