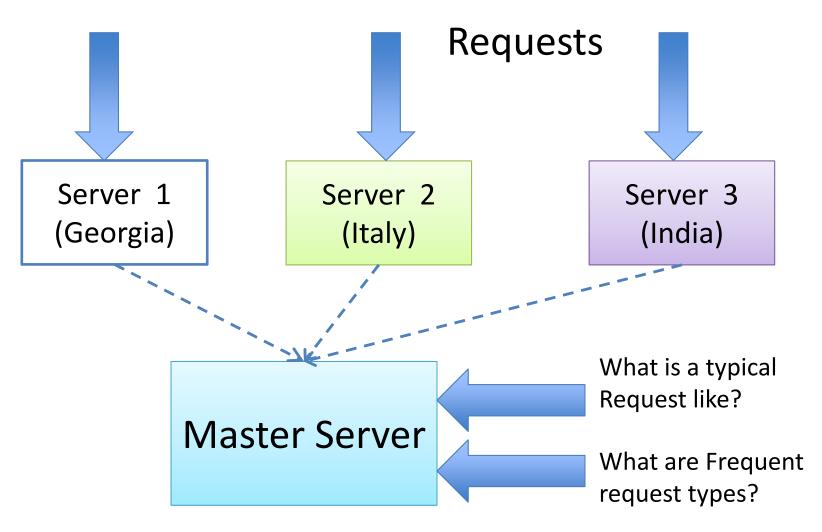
Optimal Sampling from Distributed Streams Revisited

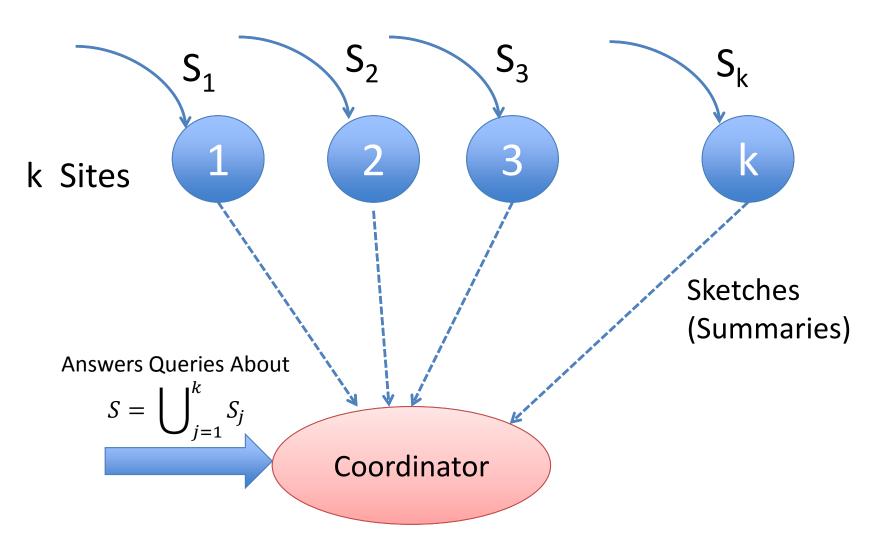
Srikanta Tirthapura (Iowa State University)
David Woodruff (IBM Almaden)

Presentation at DISC 2011

Distributed Streams



Distributed Streams



Continuous Distributed Streaming Model

- Multiple geographically distributed streams
 - Data is a sequence of updates
- Task: A central coordinator continuously maintains a global property over the union of all streams

Cost Metric: Number of messages transmitted

Problem Definition (1)

• *k* sites numbered 1,2,3,...,*k*

- At any point in time, site i has observed stream S_i $S = \bigcup_{i=1}^k S_i$
- Task: At all times, the central coordinator must maintain a random sample of size s from S

Problem Definition (2)

- Synchronous Model
 - Execution proceeds in rounds
 - In each round, each site observes one or more items, and can send a message, receive a response
- Only Site <---> Coordinator communication
 - does not lose generality
- Cost Metric: Total number of messages sent by the protocol over the entire execution of observing n elements

Random Sampling

Given a data set *P* of size *n*, a random sample *S* is defined as the result of a process.

- 1. Sample Without Replacement of Size s ($1 \le s \le n$)
 - Repeat s times
 - 1. $e \leftarrow \{a \text{ randomly chosen element from } P\}$
 - 2. $P \leftarrow P \{e\}$
 - 3. $S \leftarrow S \cup \{e\}$
- 2. Sample With Replacement of size s ($1 \le s$)
 - Repeat s times
 - 1. $e \leftarrow \{a \text{ randomly chosen element from } P\}$
 - 2. $S \leftarrow S \cup \{e\}$

Our Results: Upper Bound

 An algorithm for continuously maintaining a random sample of S with message complexity.

$$O\left(\frac{k\log\frac{n}{s}}{\log\left(1+\frac{k}{s}\right)}\right)$$

- k = number of sites
 - n = Total size of stream
 - s = desired sample size

Our Results: Matching Lower Bound

• Any algorithm for continuously maintaining a random sample of S must have message complexity: $\binom{n}{k \log \frac{n}{n}}$

$$\Omega \left(\frac{k \log \frac{n}{s}}{\log \left(1 + \frac{k}{s} \right)} \right)$$

- k = number of sites
 - n = Total size of stream
 - s = desired sample size

Prior Work

- Single Stream: Reservoir Sampling Algorithm
 - Waterman (1960s)
 - Vitter: Random sampling with a reservoir. ACM
 Transactions on Mathematical Software, 11(1):37–57, 1985.
- Random Sampling on Distributed Streams
 - Cormode, Muthukrishnan, Yi, and Zhang: Optimal sampling from distributed streams. ACM PODS, pages 77–86, 2010

Related Work

- "Reactive" Distributed Streams:
 - Gibbons and Tirthapura, Distributed streams algorithms for sliding windows, SPAA 2002, pages 63-72
 - Coordinator can contact the sites during query processing
- Frequency Moments, Distinct Elements in Distributed Streams
 - Cormode, Muthukrishnan, and Yi. Algorithms for distributed functional monitoring. SODA, pages 1076–1085, 2008
 - Introduced the continuous distributed streaming model
- Entropy on Distributed Streams
 - Arackaparambil, Brody, and Chakrabarti. Functional monitoring without monotonicity. ICALP (1), pages 95–106, 2009
 - Study non-monotonic functions, unlike [Cormode et al. 2008]

Prior Work

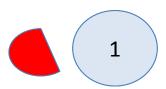
k = number of sites

n = Total size of streams

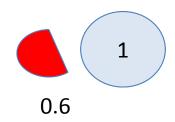
s = desired sample size

	Upper Bound		Lower Bound	
	Our Result	Cormode et al.	Our Result	Cormode et al.
s < k/8	$O\left(\frac{k\log(n/s)}{\log(k/s)}\right)$	O(k log n)	$O\left(\frac{k\log(n/s)}{\log(k/s)}\right)$	$\Omega(k + s \log n)$
s ≥ k/8	O(s log (n/s))	O(s log n)	Ω(s log (n/s))	Ω(s log (n/s))

Algorithm: Element arrives at 1

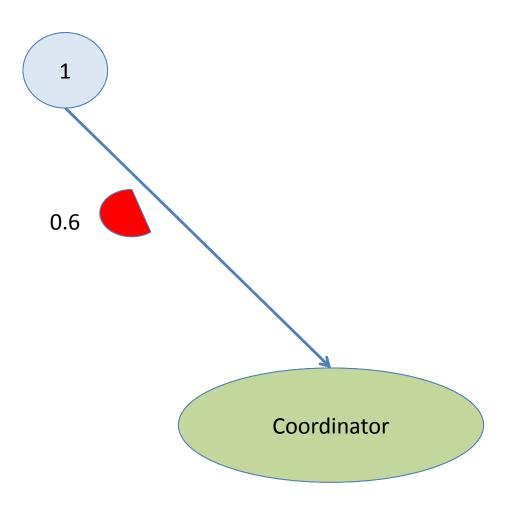


Weight for each element

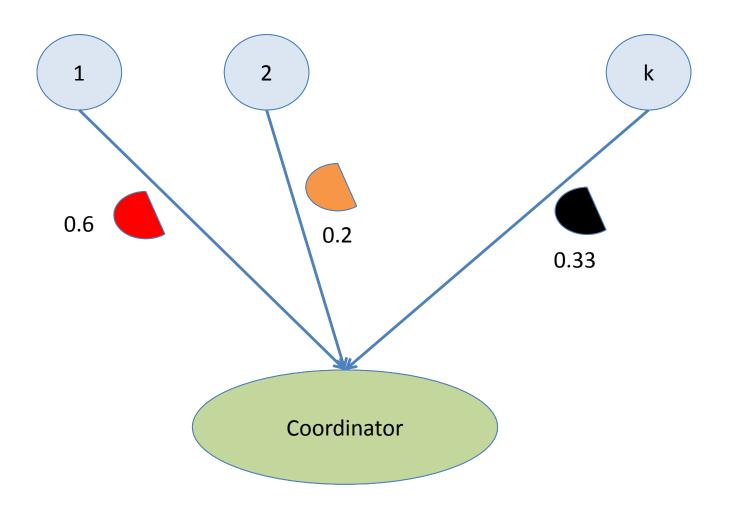


Weight of each element = random number in [0,1]

Weight for each element



Algorithm

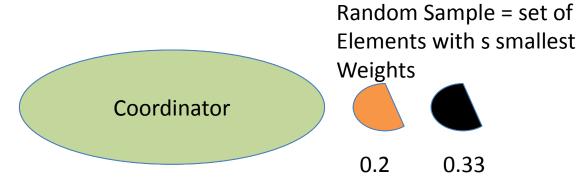


Algorithm: Random Sample

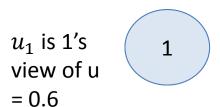
1

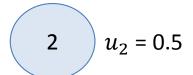
k

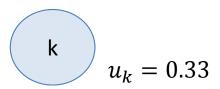
u = 0.33s-th smallestweight seen so far

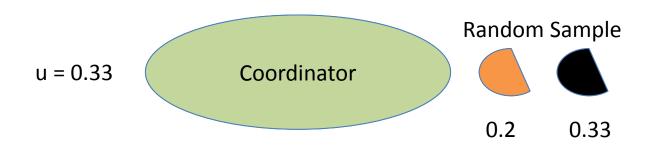


Algorithm: Sites "Cache" value of u

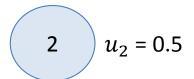


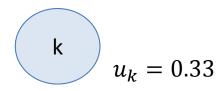




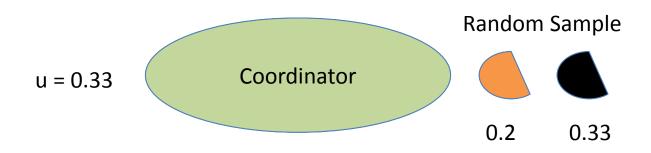


Algorithm: Effect of Caching

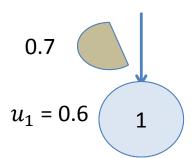




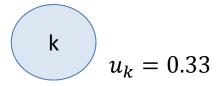
 u_1, u_2, \dots , are all at least u So, elements that belong to The sample are definitely sent

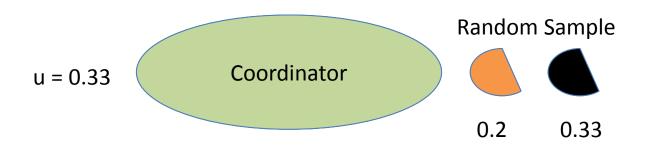


Element at 1

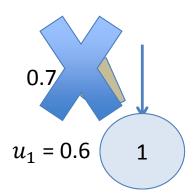


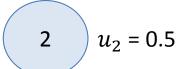
$$u_2 = 0.5$$

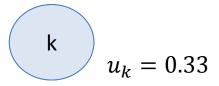


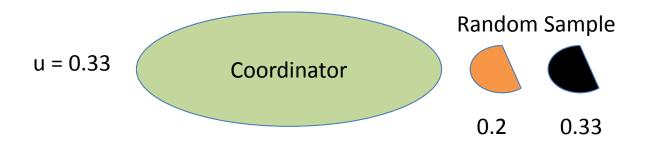


Discarded Locally

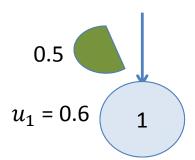




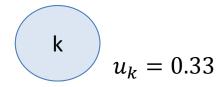




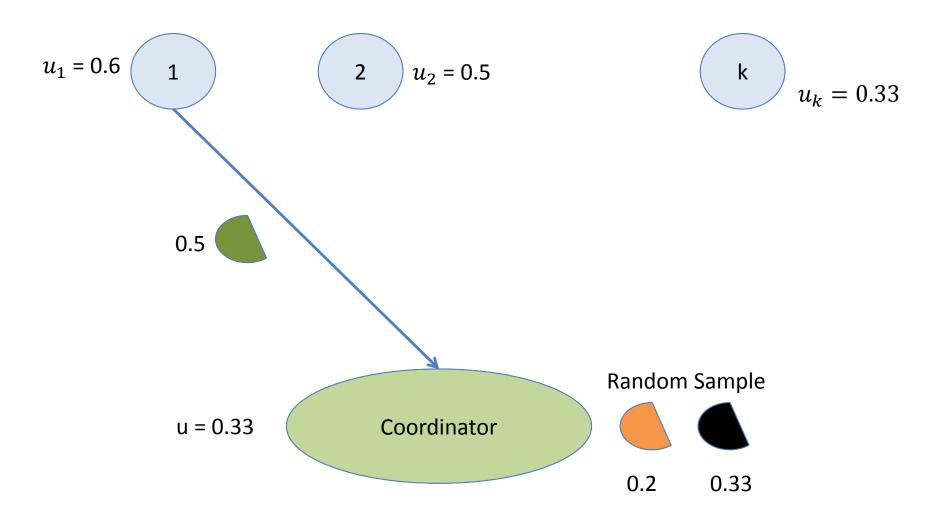
Element at 1



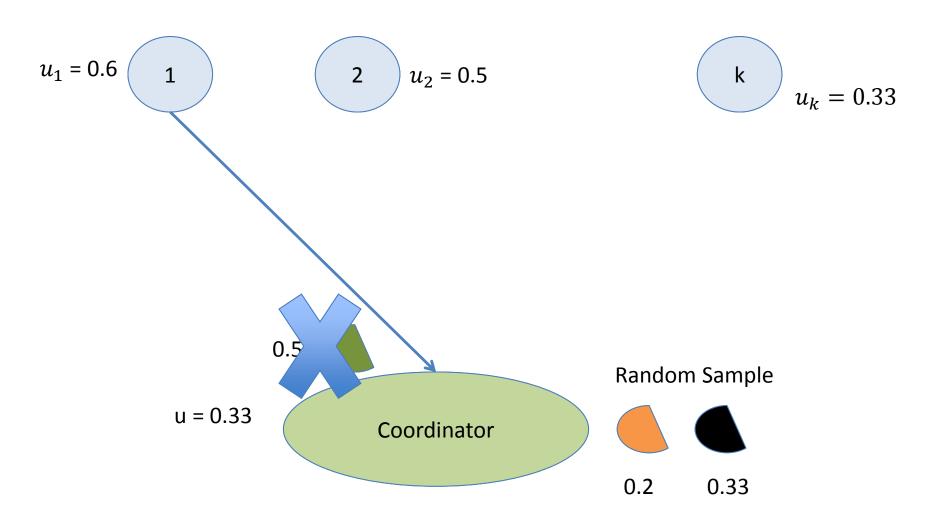
$$u_2 = 0.5$$



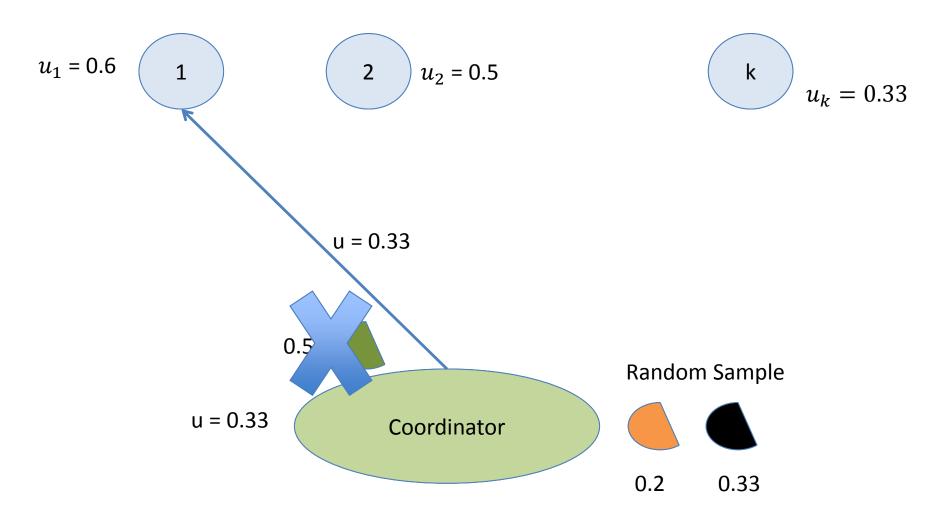
"Wasteful" Send



Discarded by Coordinator



But: Coordinator Refreshes Site's View

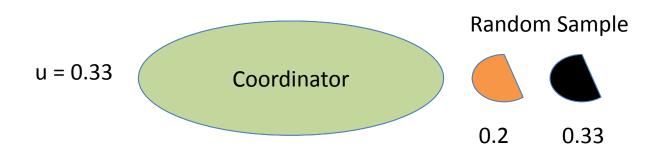


Site's View is Refreshed

$$u_1 = 0.33$$
 1

$$u_2 = 0.5$$

$$\begin{array}{|c|c|} \hline & \\ & \\ & \\ u_k = 0.33 \\ \hline \end{array}$$



Algorithm Notes

- A message from site to coordinator either
 - Changes the coordinator's state
 - Or Refreshes the client's view

Algorithm at Site *i* when it receives element *e*

// u_i is i's view of the minimum weight so far in the system // u_i is initialized to ∞

1. Let w(e) be a random number between 0 and 1

- 2. If $(w(e) < u_i)$ then
 - 1. Send (e, w(e)) to the coordinator, and receive u' in return
 - 2. *u_i* ← *u'*

Algorithm at Coordinator

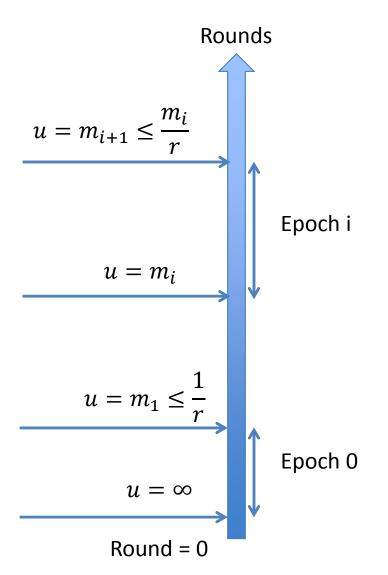
1. Coordinator maintains *u*, the *s-th* smallest weight seen in the system so far

- 2. If it receives a message (e,w(e)) from site i,
 - 1. If (u > w(e)), then update u and add e to the sample
 - 2. Send u back to i

Analysis: High Level View

- An execution divided into a few "Epochs"
- Bound the number of epochs
- Bound the number of messages per epoch

Analysis: Epochs



u is the s-th smallest weight seen in the system, so far.

- Epoch 0: all rounds until u is 1/r or smaller
- Epoch i: all rounds after epoch
 (i-1) till u has further reduced
 by a factor r
- Epochs are not known by the algorithm, only used for analysis

Bound on Number of Epochs

Let ξ denote the number of epochs in an execution

Lemma:
$$E[\xi] \le \left(\frac{\log\left(\frac{n}{s}\right)}{\log r}\right) + 2$$

n = stream size

s = desired sample size

r = a parameter

Proof:
$$E[\xi] = \sum_{i \ge 0} \Pr[\xi \ge i]$$

At the end of *i* epochs,
$$u \leq \frac{1}{r^i}$$

At the end of
$$\left(\frac{\log\left(\frac{n}{s}\right)}{\log r}\right)$$
 + j epochs, $u \leq \left(\frac{s}{n}\right)\frac{1}{r^j}$

We can show using Markov rule,
$$\Pr\left[\xi \geq \left(\frac{\log\left(\frac{n}{s}\right)}{\log r}\right) + j\right] \leq \frac{1}{r^j}$$

Algorithm B versus A

- Suppose our algorithm is "A". We define an algorithm "B" that is the same as A, except:
 - At the beginning of each epoch, coordinator broadcasts u (the current s-th minimum) to all sites
 - B easier to analyze since the states of all sites are synchronized at the beginning of each epoch
- Random sample maintained by "B" is the same as that maintained by A
- Lemma: The number of messages sent by A is no more than twice the number sent by B
 - Henceforth, we will analyze B

Analysis of B: Bound on Messages Per Epoch

- μ = total number of messages
- μ_i : number of messages in epoch j
- X_i : number messages sent to coordinator in epoch j
- ξ : number of epochs

$$\bullet \quad \mu = \sum_{j=0}^{\xi-1} \mu_j$$

$$\bullet \ \mu_j = k + 2X_j$$

•
$$\mu = \xi k + 2 \sum_{j=0}^{\xi - 1} X_j$$

Now, only need to bound X_j , the number of messages to coordinator in epoch j

Bound on X_j

• Lemma: For each epoch j, $E[X_j] \le 1 + 2rs$

Proof:

- First compute $E[X_j]$ conditioned on n_j and m_j
- Remove the conditioning on n_j (the number of elements in epoch j)
- Remove the conditioning on m_j (the value of u at the beginning of epoch j)

Upper Bound

Theorem: The expected message complexity is as follows

• If
$$s \ge \frac{k}{8}$$
 then $E[\mu] = O\left(s \log\left(\frac{n}{s}\right)\right)$

• If
$$s < \frac{k}{8}$$
 then $E[\mu] = O\left(\frac{k\log(\frac{n}{s})}{\log\frac{k}{s}}\right)$

k = number of sites

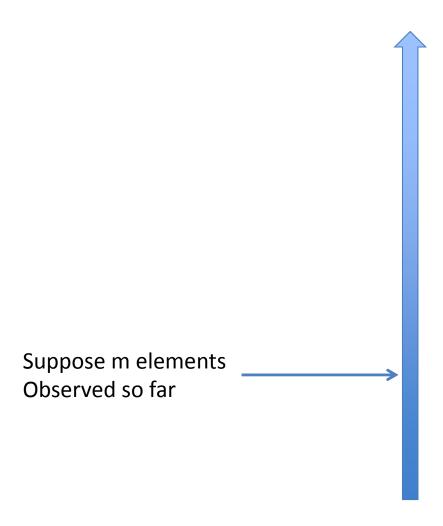
n = Total size of stream

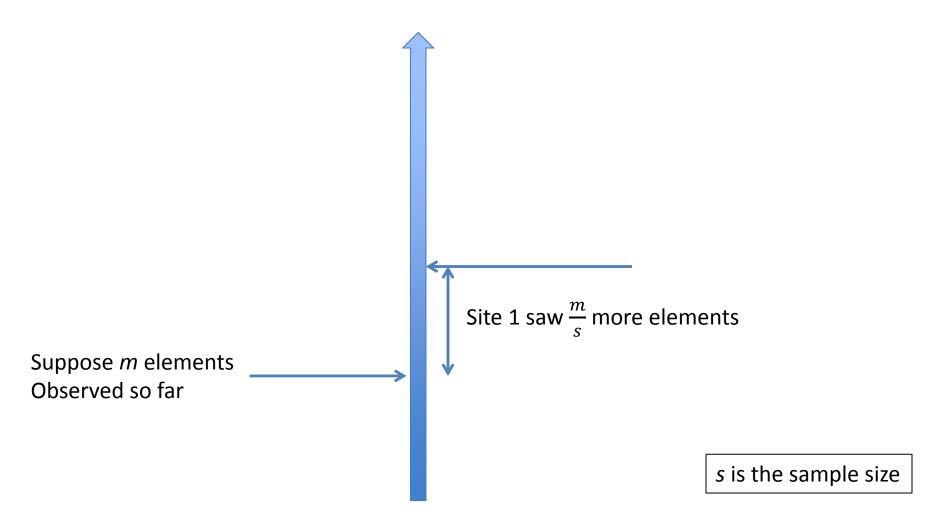
s = desired sample size

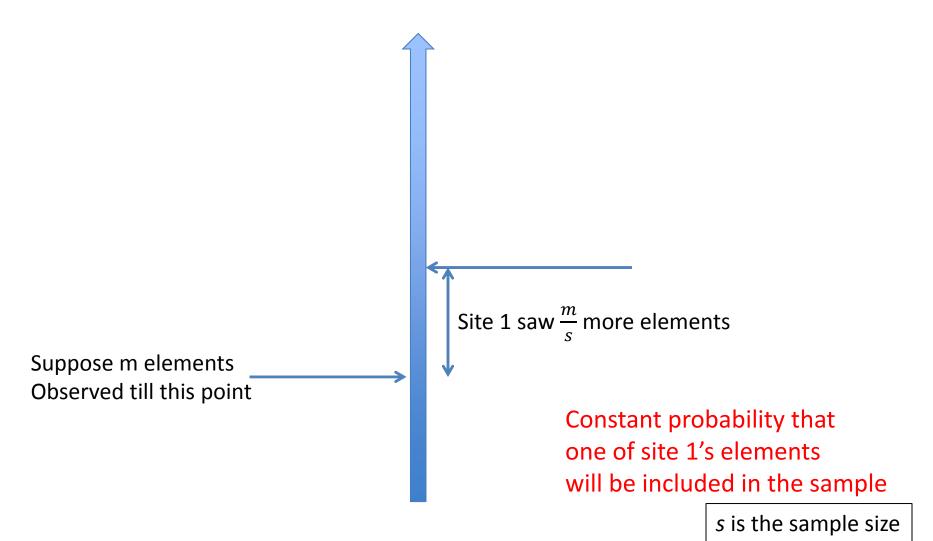
 μ = message complexity

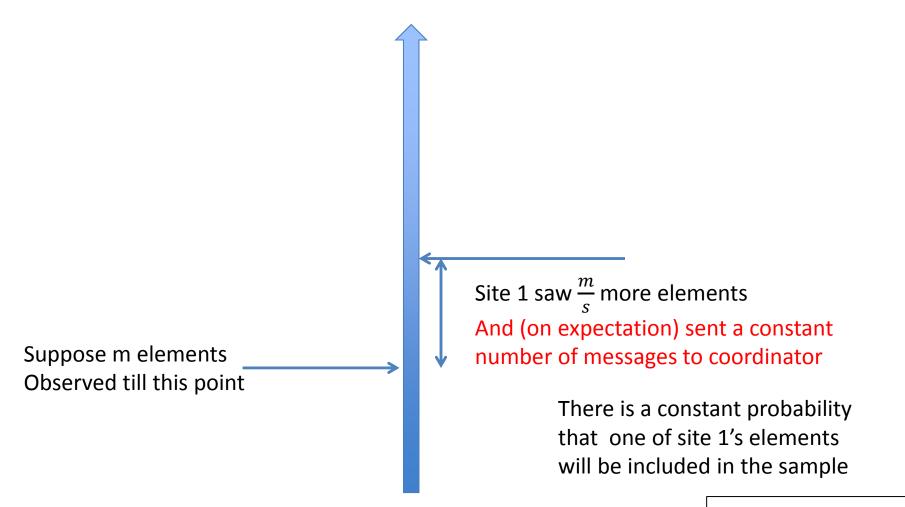
Proof: $E[\mu]$ is a function of r. Minimize with respect to r, to get the desired result.

Lower Bound

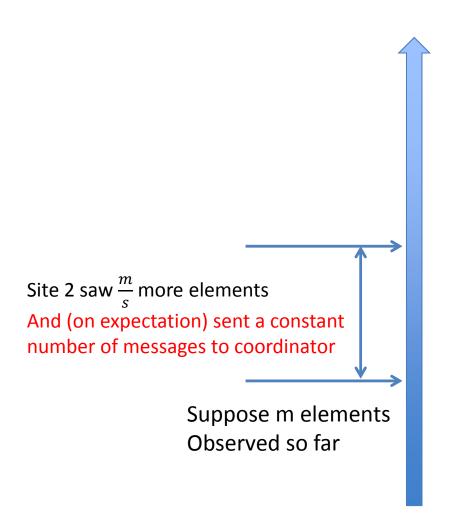




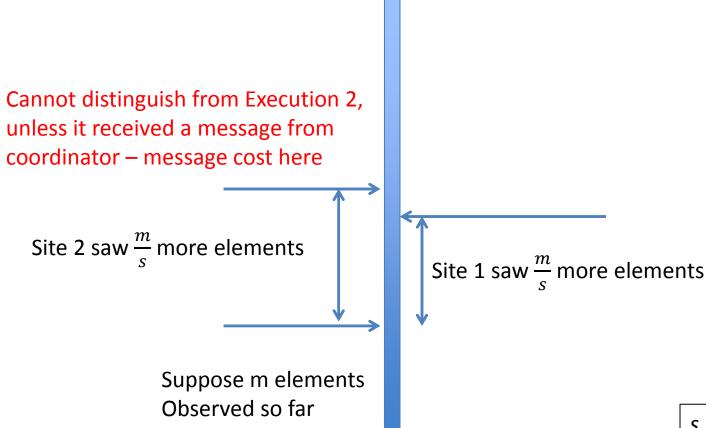




s is the sample size



s is the sample size



s is the sample size

Cannot distinguish from Execution 2, unless it received a message from coordinator – message cost here

Site 2 saw $\frac{m}{s}$ more elements

Suppose m elements Observed so far Site 1 saw $\frac{m}{s}$ more elements

Cannot distinguish from Execution 1, unless it received a message from coordinator – message cost here

Lower Bound

Theorem: For any constant q, 0 < q < 1, any

correct protocol must send
$$\Omega\left(\frac{k\log\left(\frac{n}{s}\right)}{\log\left(1+\frac{k}{s}\right)}\right)$$

messages with probability at least 1–q, where the probability is taken over the protocol's internal randomness.

k = number of sites

n = Total size of stream

s = desired sample size

Conclusion

- Random Sampling without replacement on distributed streams
- Optimal message complexity, within constant factors
- Through a reduction, also leads to the best known message complexity for heavy-hitters over continuous distributed streams
- Algorithm for Random Sampling with Replacement

Open Problems

- Tight Lower Bounds for other Problems
 - Estimating Number of Distinct Elements
 - Heavy-Hitters (Frequent Elements)
 - Random Sampling With Replacement
- Fault Tolerance
 - Need definition of fault models