Graduate Seminar with Muhammad Hamdan: Mass Estimation from Images using Deep Neural Network and Sparse Ground Truth

Date/Time
Date(s) - 25 Sep 2019
1:10 PM - 2:00 PM

Location
3043 ECpE Building Addition

Speaker: Muhammad Hamdan, ECpE Graduate Student

Adviser: Diane Rover

Title: Mass Estimation from Images using Deep Neural Network and Sparse Ground Truth

Abstract: Supervised learning is the workhorse for regression and classification tasks, but the standard approach presumes ground truth for every measurement. In real world applications, limitations due to expense or general in-feasibility due to the specific application are common. In the context of agriculture applications, yield monitoring is one such example where simple physics based measurements such as volume or force-impact have been used to quantify mass flow, which incur error due to sensor calibration. By utilizing semi-supervised deep learning with gradient aggregation and a sequence of images, in this work we can accurately estimate a physical quantity (mass) with complex data structures and sparse ground truth. Using a vision system capturing images of a sugarcane elevator and running bamboo under controlled testing as a surrogate material to harvesting sugarcane, mass is accurately predicted from images by training a DNN using only final load weights. The DNN succeeds in capturing the complex density physics of random stacking of slender rods internally as part of the mass prediction model, and surpasses older volumetric-based methods for mass prediction. Furthermore, by incorporating knowledge about the system physics through the DNN architecture and penalty terms, improvements in prediction accuracy and stability, as well as faster learning are obtained. It is shown that the classic nonlinear regression optimization can be reformulated with an aggregation term with some independence assumptions to achieve this feat. Since the number of images for any given run are too large to fit on typical GPU vRAM, an implementation is shown that compensates for the limited memory but still achieve fast training times. The same approach presented herein could be applied to other applications like yield monitoring on grain combines or other harvesters using vision or other instrumentation.

Download event reminder

back to Seminars list

Events Calendar

<< Nov 2019 >>
SMTWTFS
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Contact Information

Interested in giving a seminar? Contact Professor Namrata Vaswani.

Announcements and publicity by Kristin Clague, and scheduling by the department secretary.