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Abstract—We propose FLOWMINER, a tool for mining ex-
pressive, fine-grained data-flow summaries from Java library
bytecode. FLOWMINER captures enough information to enable
context, type, field, object and flow-sensitive partial program
analysis of applications using the library. FLOWMINER’s sum-
maries are compact- flow details of a library that are non-
critical for future partial program analysis of applications are
elided into simple edges between elements that are accuracy-
critical. Hence, summaries extracted by FLOWMINER are an
order of magnitude smaller than the original library. We present
(i) novel algorithms to extract expressive, fine-grained, compact
summary data-flows from a Java library, (ii) graph summarization
paradigm that uses a multi-attributed directed graph as the
mathematical abstraction to represent summaries, (iii) open-
source implementation (FLOWMINER) of the above that saves
summaries in a portable format usable by existing analysis
tools, and (iv) experiments with recent versions of Android
showing that FLOWMINER significantly advances the state-of-
the-art tooling in accuracy.
Website: http://powerofpi.github.io/FlowMiner/

I. INTRODUCTION

Static analysis has emerged as a powerful paradigm [1], [2],
[3] for the analysis of real world software, as evidenced by
the widespread use of static analysis tools in the government
and industry [4], [5]. Despite their success, static analysis
techniques share a common Achilles heel when it comes to
partial program analysis, i.e., the analysis of a proper subset
of a program’s implementation (as opposed to whole-program
analysis [6]). Real-world software applications are built on top
of reusable libraries and frameworks (see Figure 1) that are
often much larger than the applications which use them. For
example, Android [7], [8] applications are often three orders
of magnitude smaller than the Android framework itself. This
makes whole-program analysis, wherein such pieces would
be included, infeasible. Yet the alternative of excluding these
components leads to unsound and/or incomplete results in
practice, which is unacceptable for safety and security critical
analysis use cases (e.g., malware detection [9], [10], [11],
[12]). Prior work to summarize libraries by relating inputs
and outputs [13] provides a better alternative to excluding
libraries from analysis of an application altogether; however it
is inadequate as it may be too coarse (e.g., flows to or from a
field in a class are counted as flow to or from the object.) to be
used accurately in a future analysis. Hence, there is a pressing

*This material is based on research sponsored by DARPA under agreement
number FA8750-12-2-0126. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copy-
right notation thereon.
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Figure 1: Partial program analysis omits reusable libraries and
frameworks.

need for algorithms and tools that compute fine-grained and
application-agnostic summaries of a library’s semantics in a
way that can be reused in future analyses.

In this work we present FLOWMINER, a novel approach to
automatically reason about a library and extract fine-grained
yet compact data-flow summaries of a given library. We em-
ploy a graphical summarization paradigm wherein the library
summary is expressed as a multi-attributed directed graph,
which is more expressive than coarse, binary relationships be-
tween inputs and outputs. FLOWMINER extracts application-
agnostic summary data-flow graph semantics through a one-
time analysis of library bytecode. This summary is serialized
in a portable format, and can be reused by other analysis tools
to accurately and scalably analyze applications of interest.

Motivation. Our motivation for FLOWMINER comes from a
challenge we faced as participants of DARPA’s Automated
Program Analysis for Cybersecurity (APAC) program [14],
where we were tasked with creating partial program analyses
for Android apps to detect malware. The typical size of apps
we were asked to analyze was small (1kLOC - 100kLOC).
However, Android apps are effectively plugins to the much
larger Android framework – Android 4.4.4 (KitKat) [15]
contains over 2 million LOC, which is orders of magnitude
larger than the size of a typical app. Interaction between apps
and the framework is ubiquitous. For example, there are many
information flows that pass back and forth between the app
and framework, often asynchronously, that must be tracked to
uncover possible malicious behaviors. In this scenario, whole-
program analysis of the app (by including the entire Android
framework) solves the problem, but limits scalability.

Optimizing Expressiveness and Compactness. When sum-
marizing the data-flow semantics of a library, certain key arti-
facts in the library will be crucial to its data-flow. For example,
individual field definitions must be present if a summary is
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to be used in a field-sensitive way, and individual call sites
must be preserved if library callbacks are to be captured. We
find that more than 90% of summarized field flows will be
false positives if field definitions are not retained (we present
empirical results of our experiments that support this claim
in Section VII). Consequently, fields, method call sites, literal
values, and formal and informal method parameters and return
values are all key artifacts of a flow that must be preserved in
a summary data-flow.

On the other hand, non-key features such as uninteresting
def-use chains of assignments do not add value to the paths
in which they participate, and can be abstracted away in
the summary. FLOWMINER elides (replaces paths with direct
edges) uninteresting flow details to arrive at an abstract data-
flow graph that contains the key artifacts crucial to the data-
flow and reachability information between them, and is much
more compact than the original program graph. This allows us
to achieve significant savings and enhanced scalability versus
the original library, while preserving soundness, i.e., the flows
that are preserved in FLOWMINER’s summary are precisely
those that are actually possible at runtime. We find that our
summaries are compact, containing only about a third of the
nodes and a fifth of the edges of the original program graph
when tested on recent versions of Android.
Contributions. In summary, the following are the contribu-
tions of this paper.
• We develop a static analysis technique to automatically

generate fine-grained, expressive summary specifications
given the source or bytecode of any Java library.
– Our algorithms identify and retain key artifacts of the

program semantics necessary to allow context, object,
flow, field, and type-sensitive data-flow analyses in the
future when using our summaries.

– Our summaries use a rich, multi-attributed graph as the
mathematical abstraction to encode fine-grained sum-
maries, rather than coarse binary relations between the
inputs and outputs of library API.

– The generated summaries are compact and significantly
smaller than the original library, as non-key features in
the flows of the original library are elided into key paths.

• We provide FLOWMINER, an open-source reference imple-
mentation [16] of our algorithms that extracts summaries
given the source or bytecode of a library and exports them
to a portable, tool-agnostic format.

• We validate FLOWMINER by demonstrating that our sum-
maries of popular libraries are much smaller than the
original programs, yet more expressive and accurate than
other state-of-the-art summary techniques.

Organization. The rest of the paper is organized as follows.
Section II provides a motivating example of an Android
application whose malicious behavior cannot be detected with-
out data-flow semantics for the Android library. Section III
describes the program graph abstraction for representing pro-
gram semantics used by FLOWMINER to extract summaries.
Section IV outlines our approach, Section V provides algorith-

mic details, and Section VI discusses implementation details
of FLOWMINER. We evaluate and characterize our work in
Section VII, compare it with prior work in Section VIII, and
conclude in Section IX.

II. MOTIVATING EXAMPLE

We put forward a motivating example of an Android ap-
plication with a malicious behavior that cannot be detected
without including the data-flow semantics of the library (An-
droid) or its summary in an analysis. While we illustrate the
need to summarize data-flow semantics of libraries using an
Android example, it arises in many applications not limited
to malware detection, Android, or even the Java programming
language. The techniques we propose in this paper for data-
flow summarization are generic and widely-applicable.
Malicious App. Consider the Android app shown in Listing 1.
MainActivity is a subclass of Activity, so it defines an
application screen. It overrides two lifecycle methods; the
Android framework will call onCreate when MainActivity

is initialized for the first time, and it will call onPause when
MainActivity loses user focus. Therefore, at some point when
this app is run, there will be a call to onCreate followed by
a call to onPause. This triggers a latent malicious behavior.

Consider the onCreate method. On lines 8-9, the app re-
trieves the device ID and SIM card serial number, writing them
to member fields. Lines 10-20 define and instantiate an anony-
mous AsyncTask, which is a threading mechanism defined by
the Android library. A call to AsyncTask.execute(params)

causes Android to run the object’s doInBackground(params)

method in a new thread, passing along the same arguments.
Line 10 writes this anonymous AsyncTask object to a member
field.

If we examine onPause(), we see that the AsyncTask is
asynchronously executed with the device ID and SIM card
serial number as arguments. The doInBackground method
constructs a shady URL for a server operated by an attacker on

1 public class MainActivity extends Activity {
2 private String deviceID;
3 private String simSerial;
4 private AsyncTask<String,Void,Void> at;
5 @Override
6 protected void onCreate(Bundle savedInstanceState) {
7 TelephonyManager tm = (TelephonyManager) getSystemService

(Context.TELEPHONY_SERVICE);
8 deviceID = tm.getDeviceId();
9 simSerial = tm.getSimSerialNumber();

10 at = new AsyncTask<String,Void,Void>(){
11 @Override
12 protected Void doInBackground(String... params) {
13 try { String url = "http://evil.com/";
14 for(String s : params){ url += "&" + s; }
15 new URL(url).openConnection();
16 } catch (IOException e) {}
17 return null;
18 }
19 };
20 }
21 @Override
22 protected void onPause(){at.execute(deviceID, simSerial);}
23 }

Listing 1: Malicious Android app that uses Android’s
AsyncTask library class to leak data



lines 13-16, appending the sensitive information to the URL.
Line 15 opens a connection, causing an HTTP GET request
to be issued to the malicious server. This application behavior
clearly will leak sensitive device data to http://evil.com.

Analysis Without Summaries. Consider how an an-
alyst would hope to detect the malicious flow using
a state-of-the-art static analysis tool without including
the entire Android framework in the analysis. The ana-
lyst would first define TelephonyManager.getDeviceId and
TelephonyManager.getSimSerialNumber to be sensitive infor-
mation sources, and any constructor of URL to be a sensitive
information sink. The analyst would then run a static analysis
tool, hoping to detect data-flows from any of the sources
to any of the sinks. Observe that static analysis tools can
follow the data-flows from Android’s TelephonyManager into
the onCreate method, then through member field definitions,
leading to the parameters of a call to AsyncTask.execute

(defined by Android). The analyzer can follow the flow no
further, as it has no information about the internal (private)
implementation of AsyncTask. Thus static analysis fails to
detect the malicious data-flow because data-flow semantics for
the Android library are unavailable.

To solve this problem and identify the malicious flow
via static analysis, we either have to (a) resort to whole-
program analysis by including the entire Android implemen-
tation along with the app as input to the static analyzer,
which is prohibitively expensive; or (b) include summary data-
flow semantics for Android that precisely define the data-
flow information between Android components necessary to
track data-flow through Android. In this example, we require
a summary of how data passed to AsyncTask.execute flows
through the private implementation of Android and back into
the app via asynchronous callback.

In Section IV, we provide an overview of our solution for
computing precise summaries of a library. We perform an
automatic, one-time extraction of summary data-flow seman-
tics within a given library (such as Android). We demonstrate
how these summaries can be grafted into the partial program
analysis context, enabling us to detect the malicious program
behavior presented in the example above. The resolution of
this example is described in Section VI.

III. BACKGROUND: GRAPH SCHEMA TO REPRESENT
PROGRAM SEMANTICS

We first introduce the graph paradigm for representing and
reasoning with a program’s structure and semantics.

Program Graph. We represent the structure and semantics of
a program P as a rich multi-attributed software graph called
program graph, denoted G(P). The nodes of G(P) correspond
to artifacts of P such as variables, parameters to a method,
call sites, classes, methods, etc., and the edges correspond to
structural (e.g., contains, overrides, extends, etc.) and semantic
(e.g., data-flow, call, control flow, etc.) relationships between
those artifacts. To enable reasoning about several possible
runtime behaviors of P, we allow some information in G(P)

Nodes
• Project: Java project
• Library: Java library
• Type: Type definition

Primitive: Primitive type
Array Type: Array type
Annotation: Annotation type
Interface: Interface type
Class: Class type
Enum: Enum type

• Method: Method of a class
• Variable

Field: Field of a type
Parameter: Parameter of a method
Identity: Implicit "this" parameter
Return: Return value of a method
Enum Constant: Constant enum

value
Local: Local variable

Structural Edges
• Declares: Origin declares destination
• Overrides: Origin method overrides destination method
• Supertype: Destination is a supertype of origin

Extends: Origin extends destination
Implements: Origin implements destination

• Typeof : Origin is of type destination
• Returns: Origin method return type is destination
• Element type: Type of array components

Figure 2: Interpretation of nodes and edges in the eXtensi-
ble Common Software Graph (XCSG) for representing Java
programs.

to be a conservative estimate of the semantics of P; in
particular, call sites for dynamic dispatches are connected
by edges to all potential targets. The eXtensible Common
Software Graph (XCSG) [17] schema is an open standard
that defines several attributes and tags to represent G(P) in
XML. XCSG tags such as public, protected, private, abstract,
native, static, synchronized, transient and volatile are used
to represent keywords. XCSG attributes express multi-valued
properties of an element in G(P), such as name and a unique
identifier for each element, parameter index for each parameter
of a method, object alias for each object in the local context,
and array dimension of each array type. Some of the important
kinds of nodes and edges supported by XCSG1 are shown in
Figure 2. We use Atlas[18], a tool that implements the graph
paradigm to generate XCSG representation of G(P) from P.

Querying G(P). By specifying constraints on XCSG tags
and attributes, we can query the program graph G(P) to
obtain call graphs, control flow graphs, data-flow graphs, and
type hierarchies. For example, we can identify the parameters
named p of methods of local types (types declared within a
method) by selecting the nodes tagged as ‘methods’, traversing
forward on ‘contains’ edges to find local types and their
declarations, filtering to nodes tagged as ‘parameters’, then
filtering by those whose name is p. Atlas provides a language
to query G(P) with respect to constraints on XCSG tags and
attributes, which we will use to extract relevant information
needed for the data-flow summary of P (an example Atlas
script for the above example is shown in Listing 2).

The artifacts in G(P) that serve as raw material for our
summary extraction approach include:

• Program declarative structure
• Type hierarchy relationships (type points to a type it extends

1 XCSG is a programming language-agnostic generic representation standard
for program structure and semantics; for example, the semantics of programs
written in C as well as Java can be represented using XCSG tags.



1 Q u = Common.universe();
2 Q contains = u.edgesTaggedWithAny(XCSG.Contains);
3 Q methodDeclarations = contains.successors(u.

nodesTaggedWithAny(XCSG.Method));
4 Q localTypes = methodDeclarations.nodesTaggedWithAny(XCSG.

Type);
5 Q result = contains.forward(localTypes).nodesTaggedWithAny(

XCSG.Parameter).selectNode(XCSG.Name, "p");

Listing 2: Atlas script to find parameters named "p" of methods
of local types.

or implements)
• Method override relationships (method points to a method

definition that it overrides)
• Static type relationships (variable points to its declared type)
• Call site information: Method signature, Type to search,

Informal parameters
• Pre-computed data-flow relationships (variable points to its

flow destination): Field reads and writes, Local def-use
chains, Local array accesses
We finally represent the extracted summary information us-

ing an extension of the XCSG schema (to distinctly represent
summary flows). The details of this extension schema are
described later in Section VI-A.

IV. APPROACH

In this section we provide a high-level overview of our novel
approach to automatically-extract summary library data-flow
semantics. Our approach has the following desirable attributes:

• Targets JVM bytecode for wide applicability
• Automatically extracts summaries without manual effort
• Retains enough details to enable context, object, field, flow

and type-sensitive analysis of applications using the library
• Uses portable encoding to allow use by any analysis tool
• Summaries are much smaller than a library itself

Notation. We introduce the following notation and concepts
needed to explain the algorithmic aspects of our approach.
Let P be a program, and G(P) be its corresponding program
graph. Let M be the set of methods defined in P. For
each method mi ∈ M let the set Pi = {pi1, pi2 . . . pi|Pi|}
denote the formal parameters to mi, and ri its return. We
denote a method call site by c := 〈mj , tc,Pc, rc〉 with Pc

denoting the set of arguments (parameters passed) from the
call site c to mj and rc denoting the returned type from mj .
tc denotes either the Class where mj is defined (if c is a
static dispatch), or else the stated type of the reference on
which mj is invoked (if c is a dynamic dispatch). Statically-
dispatched call sites do not require runtime information to
calculate the target of the call. These include calls to static
methods and constructors. Dynamically-dispatched call sites
do require runtime information to calculate the destination, as
is the case for calls to general member methods.

Remark 1. An interesting case arises when an application
defines a subtype of a library type – this may introduce new
potential runtime targets in the application for dynamic dis-
patch call sites in the library (callbacks). For example, an ap-
plication may define implementations of the java.util.List

1 static int average(List<Integer> l)
2 { int lSum = sum(l); int lLength = l.size(); return lSum/

lLength; }
3 static int sum(List<Integer> l)
4 { int s = 0; for(Integer i : l) s += i; return s; }

Listing 3: Malicious Android app using AsyncTask library
class to leak data.
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Figure 3: Partial program graph for Listing 3 with key nodes
colored cyan

interface and pass instances of these types as parameters
of calls to the library. Hence, in order for the computed
data-flow summaries of the library to be strictly application-
agnostic and complete, they cannot pre-resolve a dynamically-
dispatched callsite a priori. Our approach to computing data-
flow summaries adheres to this principle, which we call the
open world assumption for computing summaries.

Illustration of Approach. To illustrate the approach taken to
extract summaries from G(P), consider the two methods, sum
and average, defined in Listing 3. A subset of the program
graph G(P) for the corresponding code is shown in Figure 3.
Our goal is to arrive at the data-flow summaries in Figure 4.
Observe that the summary graph is derived from the original
program graph G(P); undistinguished nodes from G(P) are
removed to simplify the summary flow semantics. However,
the summary graph retains critical features of the flows such
as literal values, call sites, method signature elements, which
we identify as key nodes in the program graph, and the flows
between them.

To get from G(P) in Figure 3 to GS(P) in Figure 4, we
perform the following high-level steps:

1) Compute the program graph G(P)
2) Identify key nodes in G(P) (colored cyan in Figure 3)
3) Compute flows between key nodes, eliding paths through

non-key nodes into simple edges.
4) Compute inter-procedural summary flows by analyzing

callsites
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Figure 4: Elided local flow summary GS(P) for Figure 3

There are important differences between the program graph
G(P) and the summary graph GS(P) obtained. Nodes in
G(P) that are important or key features of a data-flow,
such as formal method parameters, method return nodes, and
literal values, are all retained in GS(P). On the other hand,
intermediate nodes and edges in the program graph between
key nodes are elided in the summary. For Listing 3, the key
nodes in G(P) are colored cyan in Figure 3; these are the only
nodes retained in the summary graph (Figure 4).

When intermediate nodes along a flow from key node k1
to k2 are removed from the program graph, a summary edge
is introduced between k1 to k2 to convey the existence of
a summary data-flow. For example, in the summary of the
average method, the nodes corresponding to the variables
lSum, lLength, and the operator / are intermediate nodes in
Figure 3 that are elided in the summary in Figure 4. In their
place are direct summary flow edges from the callsites of sum
and List.size to the return value of the method.
Problem Statement. Given a program P, we formulate the
problem of summary extraction as the procedure of auto-
matically generating the summary graph GS(P). In the next
section, we describe algorithms for each high-level step listed
above to automatically compute the summaries from G(P).

V. AUTOMATIC SUMMARY EXTRACTION

Let P be a Java library for which we would like to
extract summary data-flows. We perform a one-time analysis
of P to construct the program graph G(P). We explain our
technique for summary computation in two parts. The first
subsection describes in detail our algorithm for computing
summaries of (local) data-flows within each method, and the
following subsection describes the corresponding algorithms
for summarizing interprocedural data-flows.

A. Mining Local Flows

Before describing the algorithm to mine summary data-
flows local to a method, we first identify key nodes in G(P).
Key Nodes. We define key nodes as precisely those nodes
in the G(P) that must be preserved in the summary graph
GS(P). For the language of Java, the nodes we consider key
include: (i) method signature elements (formal parameters,
formal implicit identity parameter, return node), (ii) call sites

(informal parameters, informal implicit identity parameter,
return value), (iii) fields, (iv) literal values, (v) definitions
written to and read from fields, (vi) array access operators and
operands (array reference operand, array index operand), (vii)
for-each loop iterables and receivers, (viii) array components.

Remark 2. The key nodes in G(P) will differ based on the
language of the library, and hence the notion of key nodes
must be well defined for the library’s language prior to using
our approach. For example, G(P) for a library written in the
C language may contain other key nodes such as pointers to
fields and functions.

The algorithm for extracting a summary of local data-
flows (i.e., within a method) is based on the idea of eliding
pre-processed def-use chains with respect to the set of key
nodes in the method. Given the program graph G(P), we
begin by identifying the set K of key nodes in the graph,
and then reduce G(P) by preserving only the nodes in K
and the reachability information among them. As a result, all
intermediate data-flow nodes and edges that occur on paths
between key nodes are elided for each method, resulting in
a summary graph GS(P) that is much smaller than G(P).
Def-use paths occurring between key nodes in a method are
merged into simple edges, but key nodes are never elided.

Extracting Summary Flows. Given the set K and the pre-
processed data-flow graph of def-use chains that can be de-
rived from G(P), Algorithm 1 computes elided summary data-
flows with respect to K. The procedure MineFlow iterates over
the key nodes in K. For each k ∈ K, MineFlow finds the set
K′ ⊆ K of other key nodes that are reachable along data-flow
paths that do not include other key nodes as intermediates,
using the procedure ElidedFlow (Line 3). For each such key
node k′ ∈ K′, MineFlow introduces a summary flow edge from
k to k′ (Lines 4-5).

Eliding Intermediate Nodes. The procedure ElidedFlow

computes the set of nearest-reachable key nodes K ′ for a given
key node k by exploring the data-flow graph breadth-first start-
ing from k. The procedure maintains a frontier containing
the set of nodes that have to be processed, initialized to {k}.
In each iteration, it adds each node f ′ in the frontier that
has a key node successor to the return value (Lines 14-16);
and otherwise, it is added to the frontier so that further key
nodes potentially reachable from k via f ′ can be searched in a
future iteration (Lines 14,17-18). ElidedFlow terminates when
all nodes in the frontier have been processed (Line 12). The
set of nodes returned by ElidedFlow is exactly the set of key
nodes reachable from k via non-key intermediate nodes.

Remark 3. The attributes labeling each summary edge are
determined based on the kind of summary relationship being
represented. For instance, if the origin or destination is a
field definition, then the edge will be labeled with attributes
indicating that it is a data-flow from or to a field.

Our summary schema, described in Section VI-A, defines
other kinds of relationships as well, including array accesses,



Algorithm 1 Mining summary data-flows
procedure MINEFLOW(K, G(P))

2: for all k ∈ K do
K′ ← ElidedFlow(k, K, G(P))

4: for all k′ ∈ K′ do
Add summary flow edge from k to k′

6: end for
end for

8: end procedure

procedure ELIDEDFLOW(k, K, G(P))
10: frontier ← {k}

result ← {∅}
12: for all f ∈ frontier do

frontier ← frontier - f
14: for all f ′ s.t. (f, f ′) is a data-flow edge in G(P) do

if f ′ ∈ K then
16: result ← result ∪f ′

else if f ′ /∈ frontier then
18: frontier ← frontier ∪f ′

end if
20: end for

end for
return result

22: end procedure

dynamic callsite information information, for-each iteration,
and resolved flows to methods. Mining these relationships is
straightforward, as they can be taken directly from G(P) for
inclusion in GS(P).

B. Mining Interprocedural Flows

The task of mining interprocedural flows involved in method
calls, as well as dynamic call site information, is somewhat
more complex. First, we must decide which call sites to resolve
at present (during summary generation) and which cannot be
resolved until summaries are applied in the context of an
analysis. If a potential target of a call site may lay outside of
the library after an application is introduced into the analysis
context, then we must not resolve targets of the call site at this
time. Clearly static dispatches can be resolved during summary
generation, because the targets are unambiguous even with
an open-world assumption about future analysis contexts (see
Remark 1).

Resolvable and Unresolvable Call Sites. It is important to
distinguish between call sites that can be statically-resolved
and those which cannot at the time of summary generation.
By pre-resolving those which are statically-resolvable to their
targets, we generate sound data-flow relationships that a client
can use, and prevent future rework by clients. Additionally,
direct interprocedural flows are more compact to express
than leaving a callsite description in the summaries. Thus,
it is preferable to identify and resolve statically-dispatchable
callsites at the time of summary generation.

Although dynamic dispatches are not statically-resolvable
in general, they become so under certain circumstances. For
instance, a call to a member method marked final or private
cannot possibly have polymorphic behavior, even under an
open-world assumption. Similarly, a call to a member method
within a type that is marked final or anonymous is also unable
to result in polymorphism.

The algorithm to mine interprocedural summary

1 public final class Integer extends Number implements
Comparable<Integer> {

2 private final int value;
3 public Integer(int value) { this.value = value; }
4 public byte byteValue() { return (byte) value; }
5 public int compareTo(Integer object) { return compare(

value,object.value); }
6 public static int compare(int lhs, int rhs) {
7 return lhs < rhs ? -1 : (lhs == rhs ? 0 : 1); } ...
8 }

Listing 4: Partial implementation of Integer from the Java
standard library

flows is shown in Algorithm 2. The procedure
MineCallsiteSummaries in Algorithm 2 calls the procedure
ClassifyCallsites to partition the set C of call sites as
described above and returns (a) R+ containing call sites for
which targets may be unambiguously resolved even in the
face of an open-world assumption at the time of summary
generation, and (b) R− containing call sites for which
multiple targets (presently, or in a future analysis context),
may be resolved.

Next, the procedure MineMethodFlows is called for R+.
For each call site, this procedure resolves the target using a
dispatch calculation2 (line 23) and adds summary flow edges
in GS(P) connecting the informal call site parameters Pc
to the corresponding formal parameters Pj in the (resolved)
target method mj’s definition (lines 24-27). MineMethodFlows
concludes by connecting the return flows from the return value
in the resolved method mj to the receiving variable at the call
site (line 29). Finally, the procedure MineDynamicDispatch is
called for R−, wherein the dynamic dispatch information for
each call site in the G(P) is retained in the summary GS(P)
(lines 34-37) so that a client can resolve them in a future
analysis context.
Summary Extraction Example Consider the Integer class
from the Java standard library, a subset of which we show in
Listing 4. Its summaries are shown in Figure 5, where elements
of GS(P) are colored magenta. Note that due to Algorithm 1,
e.g., the conditional operators and intermediate definitions in
the compare method have been elided; and due to Algorithm 2
compareTo method has a statically-resolvable call to compare.
FLOWMINER has resolved the call automatically, showing
the flow of the two informal parameters in compareTo to the
formal parameter and identity parameters of compare, and the
corresponding flow of the return value back to compareTo.
This example also illustrates field reads and writes, which were
imported directly to GS(P) from G(P) during mining. This
summary graph enables accurate tracking of flows through the
Integer class.

VI. IMPLEMENTATION

In this section we describe the implementation details of
our approach for statically-extracting, expressing, and subse-
quently employing data-flow summaries of Java libraries.
Architecture. FLOWMINER is implemented as a plugin for the
popular Eclipse IDE. As shown in the architectural diagram of

2 Recall that each call site in R+ can be resolved to a single target.



Algorithm 2 Mining method flows and dynamic callsite
information relationships

procedure MINECALLSITESUMMARIES(C)
2: 〈R+,R−〉 = CLASSIFYCALLSITES(C)

MINEMETHODFLOWS(R+)
4: MINEDYNAMICDISPATCH(R−)

end procedure

6: procedure CLASSIFYCALLSITES(C)
R+ ← ∅

8: R− ← ∅
for all c ∈ C do

10: if c is a static dispatch then
R+ ← R+ ∪ c

12: else if mi is final ∨ private ∨ constructor then
R+ ← R+ ∪ c

14: else if t is final ∨ private ∨ anonymous ∨ array then
R+ = R+ ∪ c

16: else
R− = R− ∪ c

18: end if
end for

return 〈R+,R−〉
20: end procedure

procedure MINEMETHODFLOWS(C)
22: for all c := 〈mi, Pc, rc, tc〉 ∈ C do

mj ← dispatch(c) . Unambiguous resolution of c to mj

24: Pc ← {pc1, pc2 . . . pc|Pc|} . Arguments passed at callsite c

Pj ← {pj1, pj2 . . . pj|Pj |
} . Formal parameters to mj

26: for all pck ∈ Pc do
Add method flow summary edge (pck, pjk) to GS(P)

28: end for
Add return flow summary edge (rj , rc) to GS(P)

30: end for
end procedure

32: procedure MINEDYNAMICDISPATCH(C)
for all c := 〈mi, Pc, rc, tc〉 ∈ C do

34: Add dynamic callsite method edge (c, mi) to GS(P)
Add dynamic callsite type edge (c, t) to GS(P)

36: for all pck ∈ Pc do
Add dynamic callsite param edge (pck, c) to GS(P)

38: end for
end for

40: end procedure

Figure 6, FLOWMINER takes Java library bytecode as input,
typically in the form of a JAR archive. This is passed to Atlas
that constructs an XCSG representation of the program graph
(see Section III) for the library. FLOWMINER then runs the
algorithms described in Section V to extract a summarized
version of the library’s data-flow semantics from the library’s
program graph. This summary data-flow graph is packaged
into a portable XML format according to a schema that extends
the XCSG schema (described in the following subsection),
which can be used to parse and import summaries into existing
tools.

A. A Summary Graph Schema Extension

To represent the summary data-flow semantics, we propose
an extension to the XCSG schema from Figure 2. To represent
the summary program graph GS(P), we introduce several new
kinds of local variables (nodes), as well as new relationships
(edges), shown in Figure 7. This schema extension allows us to
express the semantics of data-flows within methods, flows to
and from fields, as well as flows involved in static and virtual
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calls between methods. Our schema extension is organized
hierarchically and expressed via the use of tags for kinds and
subkinds of nodes and edges in the program graph.
Important Features. There are several important features to
note about our summary schema extension. First, it is strictly
an extension of the XCSG. The node types we introduce are
specialized subtypes of local variables. These specializations
represent literal values, array components and access opera-
tors, method call sites, and other important local definitions.
The edge types we introduce represent summary data-flows,
array accesses, for-each iteration, and call site information.

Second, our summaries pertain only to data-flow. While a



Summary Nodes
• Array Component: Array components (on heap) of a referenced array
• Array Index Op: Array access operator, takes array reference and idx as

operands and selects a component
• Call Site: Represents a method call, as well as the value returned.

– Call Site Resolved: Statically-resolved call site
– Call Site Unresolved: Dynamic call site
• Literal: Literal primitive or String value

Summary Edges
• Array Access: Connects array index operator to array component node
• Dynamic Callsite: Describes an aspect of a dynamic dispatch call site

– Dynamic Callsite Param: Origin stack param is informal parameter for
destination call site

– Dynamic Callsite This: Origin object reference is implicit identity
parameter for destination call site

– Dynamic Callsite Signature: Call site points to its invoked method
signature

– Dynamic Callsite Type: Call site points to its stated identity param type
• Flow: data-flow relationship

– Array Flow: Flow to or from array component
– Field Flow: Flow to or from a field
– Local Flow: Flow between local variables
– Resolved Method Flow: Flow to method parameters or from a method

return
• For Each: Iteration over Iterable or array type to local receiver variable

Figure 7: Summary nodes and edges in FLOWMINER’s XCSG
schema extension

flow edge (A, B) implies the existence of a control flow path
along which this flow happens, we do not retain control flow
nodes and edges from G(P). This allows GS(P) to be much
more compact than the library itself.

Third, our summaries retain sufficient information to be used
with context, type, field, object, and flow sensitivity. The client
using the summaries for subsequent analysis is able to decide
which categories of sensitivity to employ in order to achieve
the desired level of accuracy and speed. One consequence
of this philosophy is that we only resolve flows for method
call sites when the target can be unambiguously resolved to
a single possibility with an open-world assumption, i.e., no
matter what other types and methods are introduced into an
analysis context by an application, the resolution decision for
the call site cannot be changed. We leave dynamic dispatch
call sites to be resolved when summaries are applied to an
analysis context, since we cannot know ahead of time if that
context may introduce new possibilities for the target of the
call site. However, we do provide the signature of the call site,
as well as the informal stack parameters involved in the call,
so that clients may resolve it later.

A Portable XML Schema FLOWMINER serializes the com-
puted GS(P) for the library into a portable XML format, so
that the summary data-flow semantics can be subsequently
parsed and imported by other static analysis tools for a partial
program analysis of an application that uses the library. An
XML schema document (XSD) defining the grammar for
expressing software graphs is provided with the open source
reference implementation of FLOWMINER [16].

B. Using Summaries.

Existing static analyzers can apply summaries generated by
FLOWMINER to perform a complete and accurate program

analysis. What it means to apply summaries will differ based
on the tooling used by the analyzer. For instance, an analyzer
implemented on top of the Atlas platform would ‘apply’ sum-
maries by translating the portable XML summary document
into additional nodes and edges from GS(P) for insertion into
the program graph G(P) of an application. Once inserted,
these supplementary data-flow semantics will be included in
any subsequent analysis.

Recall the example malicious Android app from Section II,
for which a static analyzer was unable to detect the malicious
behavior. The application asynchronously leaks the user’s
device ID and SIM card number to an attacker. We defined the
values returned by TelephonyManager.getSimSerialNumber

and TelephonyManager.getDeviceId to be sensitive informa-
tion, and asked our analyzer to track forward data-flows from
these artifacts. The result ran into a dead end as soon as the
flow disappeared into the private implementation of Android’s
AsyncTask.execute API.

After applying the summary GS(P) extracted from a one-
time analysis of Android 4.4.4 using FLOWMINER, we are
able to obtain the result in Figure 8 on Atlas. Summary nodes
and edges (GS(P)) are highlighted in magenta to distinguish
them from elements of the original program graph (G(P)).
By employing GS(P), our static analyzer is able to detect the
entirety of the malicious flow. Observe that after the sensitive
information enters AsyncTask.execute, our summaries of An-
droid track the asynchronous data-flow involving local flows, a
method call, a write and read of a field, and finally a callback
into the application (MainActivity$1.doInBackground) on a
new thread. From there, our analyzer uses G(P) to follow the
flow through an enhanced for loop, string concatenation, and
ultimately to the URL constructor, completing the leak.

VII. EVALUATION

Experiments. With the goal of evaluating FLOWMINER’s
accuracy and compactness, we summarized recent versions
of the Android operating system listed in column 1 of Ta-
ble I3. We ran our experiments on a multi-core computer
with 64 GB RAM, and Eclipse Luna installed with Atlas and
FLOWMINER. We created a simple Atlas analyzer to gather
the summary statistics listed in Table I.
Expressiveness. The data-flow summaries extracted by
FLOWMINER are fine-grained and expressive. For example,
the coarse information flow specifications at the granularity
of object tainting generated by Clapp et al. [13] can be
directly inferred from our summaries – When information in
a FLOWMINER summary reaches a member field definition,
the corresponding "taint" on the object is implied; and when
information flows from a member field to a method return, it
is implied that the object "taints" the method return. Hence,
FLOWMINER summaries are strictly more expressive than the
most closely-related prior work. The presence of registra-
tion/callback pairs identified by EdgeMiner [19] can also be

3 For each version, we downloaded the Android framework from the build
for the aosp_arm-user device configuration and then generated corresponding
JVM bytecode that can be analyzed with Atlas.
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Listing 1 with FLOWMINER summaries of Android

inferred from FLOWMINER summaries using details of virtual
callsites (for which multiple runtime targets may exist) stored
in GS(P). More importantly, our summaries can be used more
accurately. Figure 9 shows how coarse specifications that taint
entire objects can lead to an exponential number of implied
false positive flows. The figure shows three types with two
fields each. Dashed arrows represent transfer of taint at the
granularity of objects, while solid arrows represent transfer of
taint with field granularity. While a subset of the flows implied
by object granularity are true positives (black), the majority of
flows will be false positives (red). In general, a flow involving
object-granularity summaries that traverses through N classes
(with K unrelated fields each) will produce on the order of

False Positive
True Positive
Field Taint
Object Taint

Figure 9: Coarse flow specifications that taint entire objects
rather than fields lead to false positive flows.

KN false positive flows!
Table I shows the number of data-flow edges induced in the

summary by FLOWMINER (fine-grained approach that tracks
data-flows at field level granularity), which is just over 7%
of that induced by the coarse-grained approach (that tracks
data-flows at object level granularity). This means that over
92% of the flows induced by coarse-grained approach are false
positives compared to those produced by FLOWMINER.
Soundness and Completeness. We observe that the data-
flow summaries produced by FLOWMINER are sound, i.e.,
there is never a false positive; if a flow is indicated, it can
actually occur at runtime. In other words, the removal of any
summary flow edge would remove critical information needed
later to compute a data-flow in some partial program analysis
context. This follows from the way in which our summaries are
generated (see Section IV for details). FLOWMINER provides
complete summaries of data-flow semantics, i.e., does not miss
any true flows, except those induced (i) as side effects of
reflective calls, and (ii) by mixed-language library code (e.g.,
Java library calling native C code). This follows from the
facts that (i) Atlas fully supports the features of the Java 7
programming language, and hence captures all local, field, and
method flows between Java program elements in the program
graph it constructs; and (ii) the program graph that is used
by FLOWMINER for extracting summary information contains
all the possible edges from call sites to potential targets for
dynamic dispatches (see Section III).

We also empirically verified the correctness of our
FLOWMINER implementation for the Android versions via an
Atlas script as follows. We first computed both the program
graph G(P) and the summary graph GS(P), and then suc-
cessfully verified the property that there is a data-flow path
from one key node k to another k′ in GS(P) if and only if
there is a corresponding data-flow path from k to k′ in G(P).
Compactness. The compactness of extracted summary arti-
facts is important for practical use. As an example of the
significant compaction achieved by FLOWMINER, GS(P) for
Android 4.4.4 contains only 36.98% of the nodes and 20.06%
of the edges of G(P) (other versions follow this trend). Hence,
our summaries provide an order-of-magnitude savings versus a
fully-detailed program graph of a library, yet retain the critical
details for use in a partial-program data-flow analysis.
Scalability. The Android framework serves as an adequate
test of FLOWMINER’s scalability due to its large size. For
example, Android 4.4.4 (KitKat) contains roughly 2 million



Library |V | |E| |V S | |ES | |V S |/|V |
(%)

|ES |/|E|
(%)

Field
Flows

Object
Flows

% False
Positives∗
avoided

Android 4.2.2 6651277 33964070 2467991 7664280 37.11% 22.57% 1129523 16053060 92.96%
Android 4.3.1 6867245 35165616 2547558 7915450 37.10% 22.51% 1206542 16816490 92.83%
Android 4.4.4 7707688 44150241 2850104 8855585 36.98% 20.06% 1216178 17069468 92.88%
Android 5.0.2 8684208 45649066 3217476 10010647 37.05% 21.93% 1556027 21874691 92.89%

Table I: Experimental results showing the performance of FLOWMINER on four recent versions of Android in terms of
compactness and accuracy. (∗ Percentage of object-granularity flows that are false positives compared to those produced by
FLOWMINER)

lines of Java code, omitting comments and white space. At
this scale, FLOWMINER completes its one-time analysis and
export of data-flow summary semantics within an additional
45 minutes after constructing the original program graph.

VIII. RELATED WORK

Summarizing Call Graphs. There has been a lot of interest
in summarizing control flow transitions within a software
library. Such control-flow summaries are useful for routine
static analysis tasks such as call graph generation [20], [21],
[22], [23], tracking of non-trivial calling relationships between
application and the library (e.g., asynchronous callbacks in
Android) [19] and visualization of control flows from the
application to the library and vice-versa [24].
Summarizing Data Flow Graphs. Mining data flows from
object-oriented software libraries is an important problem, and
is particularly crucial for security-critical analyses. Malware
detection in Android apps [14], for example, requires tracking
the flow of sensitive information (source, e.g, IMEI number)
from the mobile device to potentially harmful destinations
(sinks, e.g., a location on the internet).

Callahan first proposed the program summary graph as
implemented in PTOOL [25] as a way to compactly represent
the inter-procedural call and data flow semantics of the whole
program. Rountev et al. [26] pointed out the need to use
summaries of data flow semantics when analyzing applications
that are dependent on large libraries. They proposed a general
theoretical framework for summarizing data flow semantics
of large libraries, using pre-computed summary functions per
library component and building on the work of Pnueli [27].

Similarly to Rountev et al., Chatterjee et al.[28] compute
a summary function for each procedure in the bottom up
traversal order of the call graph such that the summary of
a caller is expressed in terms of the summary of the callee
component(s). More recently, Rountev et al. [29] described an
approach called interprocedural distributive environment (IDE)
data-flow analysis for summarizing object-oriented libraries
that subsumes the class of interprocedural, finite, distributive
subset (IFDS) problems [30] by using a graph representation
of the data-flow summary functions; their approach abstracts
away redundant data-flow facts that are internal to the library,
in a similar vein to our concept of eliding flows.

Some approaches compute summary information for a soft-
ware component independently of the callers and callees of
that component. For example, Ali et al. developed a tool,
AVERROES[31], to generate a placeholder that overapproxi-
mates the behaviour of a given library. Their overapproxima-

tion may be too coarse to be useful in some scenarios such as
malware detection, where we need summaries to retain enough
information for various kinds of sensitive analyses.

Summarizing Android Flows. To the best of our knowledge,
the most closely related work in summarizing libraries in the
context of Android is by Clapp et al. [13], who employ a
dynamic analysis approach to mine information flows from
Android. Their approach successfully recovers 96% of a set
of hand-written information flow specifications. In contrast,
FLOWMINER uses static analysis instead of dynamic analysis
to identify possible flows within the library, hence avoiding
the possibility that some execution paths are not covered. Fur-
thermore, the flow specifications extracted by FLOWMINER
track and preserve data flows at the granularity of individual
variables and definitions (rather objects) within methods and
objects, so we avoid falsely merging unrelated flows. Also, our
flow specifications express flows among program elements that
are not necessarily on the library API. This allows subsequent
analyses to be context, field, type, object, and flow-sensitive.
We retain the details of virtual call sites so that flows involving
potential callbacks into an application are captured.

IX. CONCLUSION

We presented FLOWMINER [16], a novel solution that
uses static analysis techniques to automatically generate an
expressive, fine-grained summary of a Java library that can
be used for accurate data-flow analyses of applications that
use the library. FLOWMINER identifies and retains key ar-
tifacts of the program semantics in the summary that are
necessary to allow context, object, flow, field, and type-
sensitive data-flow analyses of programs using the summarized
library. FLOWMINER uses a rich, multi-attributed graph as the
mathematical abstraction to store summaries. FLOWMINER’s
summaries are compact, containing only about a third of
the nodes and a fifth of the edges of the original program
graph when tested on recent versions of Android, as non-
key features in the flows of the original library are elided
into key paths. Because FLOWMINER retains individual flows
through individual field definitions, in contrast to existing
coarse-grained methods that taint entire objects, over 92% of
the false positive flows indicated by tainting entire objects are
avoided (for the Android framework). FLOWMINER extracts
summaries given the bytecode of a library and exports them
to a portable, tool-agnostic format. We validate FLOWMINER
by demonstrating that our summaries of recent versions of
Android are much smaller than the original library, yet more
expressive and accurate than other state-of-the-art techniques.
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