
Iowa State University FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner: Automatic Summarization of Library
Data-Flow for Malware Analysis

December 19, 2015

Tom Deering, Ganesh Ram Santhanam, Suresh Kothari
Knowledge Centric Software Laboratory

Iowa State University, Ames, Iowa 50014 USA

This material is based on research sponsored by DARPA under agreement number FA8750-12-2-0126. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

1

Iowa State University FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis 2

Need for Summarizing Libraries

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Need for Summarizing Libraries

3

Modern software uses large, reusable library components
Static Analysis including entire library does not scale
Analysis of an application without library is inaccurate
Summaries - Scalably include relevant parts of library in analysis

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Need for Summarizing Libraries

4

uses L A
Partial Program Analysis:
Analyzing a proper subset of a
software

Often, A is available in source or
binary, but not L

Or, L is too large to be analyzed with
A

Application Library

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

uses

uses

Need for Summarizing Libraries

5

L A

L
S A2

A3

Solution: Analyze A+LS instead of
A+L

 LS: Summary of L must be

Expressive (fine-grained) for
accurate subsequent analysis

More compact than library for
scalability

Sound

Independent of specific analysis
tools

Independent of app that uses L

Capture callbacks

summarize

Iowa State University FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis 6

Role of Summaries in Malware Detection

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Detecting consumer malware is a well-studied problem.

Detecting novel, sophisticated, domain-specific
malware is not.

Crafted specifically to disrupt one aspect of one organization
Payload is customized for target
Domain knowledge is used to camouflage malicious behavior

within benign mechanisms
Responds to a specific trigger from adversary or environment

All very different characteristics from consumer malware!

7

The Rise of Domain-Specific
Malware

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

STUXNET: Example of Real-World
Targeted Malware

Targets Seimens uranium
centrifuge PLCs in Iran

Undiscovered for years

Centrifuges began breaking
in 2008

Authors gradually made it more
conventional (wanting to get
caught)

Discovered in 2010 by
conventional means

http://limn.it/the-morris-worm/

8

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis 9

A Malware Example without
Summaries

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Human-in-the-loop Malware
Detection

10

Human analyst is indispensable in detecting targeted malware

Automated tools must aid human analyst to devise, test and
validate hypotheses about the existence of malware

Summaries are especially critical
for detecting targeted malware

+  Aids quick what-if
experiments

+  Reuse of summaries

+  Enables scalability
without entire library

+  Allows accurate
detection of malware

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis 11

A Malware Example with
Summaries

Iowa State University FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis 12

FlowMiner:
Summarization using Graph-based Program Analysis

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Polynomial-time analyzers pre-process the AST
Optimized in-memory graph database is populated
Powerful query API (select, traverse, combine)
Multiple ways to interact with graph artifacts

Atlas: Graph-Based Program
Analysis Platform

Language
AST

Provider

Structural Analysis

Control Flow Analysis

Data Flow Analysis

Call Resolution

Software
Graph

Database
(XCSG)

A
P
I

Interactive Shell View

Interactive Smart View

Graph w/Src Corresp.

Custom Analyzer

13

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

XCSG - Viewing Software as Directed
Property Multigraph

Nodes and edges of program graph have properties
ID, Name, Kind, Keywords, etc.
Binary properties are expressed as “tags”

The eXtensible Common Software Graph provides:
A hierarchical structure of node and edges kinds
Proper abstraction of common semantic meaning (even

across languages)
Well-defined semantics for each node or edge kind

14

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner: Research Question

How can expressive, compact information flow
summaries be mined from a library for accurate and

scalable partial program analysis?

15

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner: Goals

16

uses

uses L A

L
S A2

A3

One-time, automatic static analysis of
L to produce summaries LS that:

Are expressive enough to be used with
context, field, type, flow, and object
sensitivity

Are compacted to elide uninteresting
details of flows

Are sound (indicated flows actually occur)

Are portable for use by existing tools

Are independent of Ai

Capture callbacks from the library back
into the application

FlowMiner

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Preserve key pieces of information,
discard the rest

Control-flow details are discarded
Cannot use summaries for path-sensitivity
Retaining control flow does not scale anyway in practice

Statically-resolvable call sites are pre-resolved

No need to retain signature of the call site

Unimportant data-flow details elided with respect to key nodes

17

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Preserve “Key” Nodes

Key nodes (for Java) includes

Field Definitions
Method Signature Elements

Parameters, return values
Definitions read/written to fields
Call Sites

Parameters, return, invoked signature, invoked type
Literal Values
Array components, accesses

18

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Computing Summaries with Fine
Granularity
FlowMiner summaries support

Context Sensitivity
Individual methods, call sites from the original library are preserved

Flow Sensitivity
Preserved from Atlas data flow graph by eliding algorithm

Field Sensitivity
Individual field definitions are tracked

Object Sensitivity
Field access paths preserved for use in points-to analyses

Type Sensitivity
Call sites that cannot be statically-resolved under open-world assumption are

left to be resolved in the context of a client application

Array / Array Index Sensitivity
Array components, access operands are preserved

19

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Summarizing Intra-Procedural Data
Flow

20

package	com.example;	
	
	
class	ProblemStatement{	
	
		static	int	average(List<Integer>	l){	

	int	lSum	=	sum(l);	
	int	lLength	=	l.size();	
	return	lSum	/	lLength;	

		}	
	
		static	int	sum(List<Integer>	l){	

	int	s	=	0;	
	for(Integer	i	:	l)	s	+=	i;	
	return	s;	

		}	
	
}	
	
	
	

Atlas Flow
Miner

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Intra-procedural Flow - Elided
Local Flow Algorithm

21

Elided in the
summary

Preserved in
the summary

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Inter-procedural Flow -
Summarizing Call Sites

Classification

Statically-
Unresolvable

Call Sites

All
Call
Sites

Statically-
Resolvable
Call Sites

Resolution &
Method Flow

Creation

Call Site
Signature
Summary

Resolved
Method Flows

Summarized
Signatures

Open World Assumption: Client applications may introduce new
virtual dispatch targets when the library is used.

Should not pre-resolve open-world virtual call sites in the summary!
All possibilities may not be captured
Must be able to capture callbacks into the target application

22

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner: Compaction

23

Argument: FlowMiner summaries cannot be further compacted
without information loss

Removing any summary node removes a key program artifact

Parameter, Identity, Return, Field, Array Component, Literal Value, Call Site

Removing any summary edge (A, B) disconnects at least one
possible flow between key artifacts

Can construct a client application such that this leads to a false negative

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner Implementation
Architecture

Targets arbitrary Java library
bytecode (JAR)

One-time static analysis
Expressed as extension to XCSG

graph schema (Atlas)
Portable XML packaging of

summaries
Existing analyzers can leverage

summary file

24

Iowa State University FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis 25

FlowMiner:
Evaluation on Android

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner on Android: Evaluation
Results

|V|, |E| - # Nodes, # Edges in the original program graph
|V|S, |E|S - # Nodes, # Edges in the summary program graph
Field Flows - Data-flow edges in FlowMiner’s summary that

tracks flows at field level granularity
Object Flows - Data-flow edges if object level flows are tracked

26

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner on Android:
Correctness

4 Recent versions of Android

Sound: No spurious flows added (no false positives)

Complete: All flows covered (no false negatives)

27

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner on Android:
Compactness

Summary Graph GS=(VS,ES) retained from the original graph
only ~37% Nodes

20% - 23% Edges

Considerably smaller than original program graphs

28

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner on Android:
Expressiveness

*False Positives comparison
Field-sensitive vs Object-sensitive flow tracking

Comparison to Clapp et al.

~93% fewer false positive flows

29

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis 30

Malware Example with Summaries

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

FlowMiner: Related Work
Component-Level Data-flow Analysis (Rountev et al.)

Theoretical framework for summarizing an Interprocedural Control Flow Graph
(ICFG)

Captures virtual calls (callbacks), elides uninteresting details
Incomplete handling of fields
Lacking concrete implementation

Mining Information Flow Specifications From Concrete
Executions (Clapp et al.)

Instrument Android and create a special emulation environment
Dynamically exercise Android APIs to produce execution traces
Post-process traces to infer coarse information flow summaries.
Coarse object tainting is inaccurate, misses callbacks
Incomplete path coverage

31

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Summary
FlowMiner

One-time, automatic static extraction of data flow summaries
Expressive & fine-grained

 Can be used with context, field, type, flow, and object
sensitivity

Compact
 Elides uninteresting details of flows

Sound
 Indicated flows actually occur

Portable for use by existing tools
Captures callbacks from the library back into the application
Practically Efficient open source tool

 Validated on recent versions of Android

32

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Tom Deering, Suresh Kothari, Jeremias Sauceda, and Jon Mathews.
May 2014. Atlas: a new way to explore software, build analysis tools. In
Companion Proceedings of the 36th International Conference on Software
Engineering (ICSE Companion 2014). ACM, New York, NY, USA, 588-591.

Benjamin Holland, Tom Deering, and Suresh Kothari. May 2015.
Security Toolbox for Detecting Novel and Sophisticated Malware. In
Companion Proceedings of the 37th International Conference on Software
Engineering (ICSE Companion 2015). ACM, New York, NY, USA.

Related Publications

33

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

EnSoft Team Jon Mathews, Jeremias Sauceda, Nikhil
 Ranade, Kevin Korslund,

Theodore Murdock

DARPA APAC &
STAC programs

Thank You!

34

Iowa State University FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis 35

XCSG/Atlas Additional Slides

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Atlas: XCSG Directed Property
Multigraph
private	void	method1(){	method2();	}	
public	static	void	method2(){}	

XCSG.ModelElement.name=“method1”
XCSG.InstanceMethod
XCSG.Visibility.private
XCSG.Language.Java

XCSG.ModelElement.name=“method2”
XCSG.ClassMethod
XCSG.Visibility.public
XCSG.Language.Java

XCSG.Call
XCSG.Language.Ja
va

36

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Atlas: XCSG Directed Property
Multigraph
Edge Kind Meaning
Contains Destination is nested within origin.

Element Type Origin array contains destination element kind.

Overrides Origin method overrides the destination method.

Supertype Destination is a supertype of the origin type.

Type Of Destination type is static type of origin.

Control Flow Dest block follows origin block.

Call Origin calls destination method.

Data Flow Origin def flows to destination use.

37

Deering, Santhanam & Kothari · kothari@iastate.edu FlowMiner: Automatic Summarization of Library Data-Flow for Malware Analysis

Atlas: API for Automated Analyzers
Analysis results can be built using low-level graph or convenience
select, traverse, and combine operations on the XCSG-compliant
graph.
	
Q	someType	=	types(“AnInterestingType”);	
Q	supertypeHierarchy	=	edges(XCSG.Supertype).forward(someType);	
	
Q	someMethod	=	methods(“anInterestingMethod”);	
Q	reverseCallGraph	=	edges(XCSG.Call).reverse(someMethod);	
Q	combinedResult	=	supertypeHierarchy.union(reverseCallGraph);	

38

