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Abstract: 

Spiking neural networks are increasingly becoming popular as low-power alternatives to deep learning 

architectures. To make edge processing possible in resource-constrained embedded devices, there is a 

requirement of reconfigurable neuromorphic accelerators that can cater to various topologies and 

neural dynamics typical to these networks. Subsequently, they also must consolidate energy 

consumption in emulating these dynamics. Since spike processing is essentially memory-intensive in 

nature, majority of the system's power consumption can be reduced by eliminating redundant memory 

traffic to off-chip storage that holds the large synaptic data of the network. In this work, we first present 

a digital synchronous neuromorphic accelerator that can emulate different types of spiking neurons and 

network topologies for efficient inference. It is functionally verified on a set of benchmarks that vary 

significantly in topology and activity while solving the same underlying task. By studying the memory 

access patterns, locality of data and spiking activity, we establish the core factors that limit conventional 

cache replacement policies from performing well. We, then propose a domain-specific memory 

management scheme that exploits our use-case to attain visibility of future data-accesses in the event-

driven simulation framework. To make it even more robust to variations in network topology and 

activity of the benchmark, we further propose static and dynamic network-specific enhancements to 

adaptively equip the scheme with more insight. The strategy is explored and evaluated with the set of 

benchmarks using a software simulation of the accelerator and an in-house cache simulator. In 

comparison to conventional policies, up to 23% more reduction in net power consumption is observed. 


