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Abstract

First-order methods of solving large scale nonconvex problem have been
applied in many machine learning area, such as matrix factorization, dictionary
learning, matrix sensing/completion, deep neural networks, etc. Take matrix
factorization as an example. They have lots of important applications in
data analytics problems such as document clustering, community detection
and image segmentation. In this disseration, we study some novel nonconvex
variable splitting methods for solving some matrix factorization problems,
such as symmetric non-negative matrix factorization (SymNMF) and stochastic
SymNMF.

In the problem of SymNMF, the proposed algorithm, called nonconvex
splitting SymNMF (NS-SymNMF), is guaranteed to converge to the set
of Karush-Kuhn-Tucker (KKT) points of the nonconvex SymNMF problem.
Furthermore, it achieves a global sublinear convergence rate. We also show
that the algorithm can be efficiently implemented in a distributed manner.
Further, sufficient conditions are provided which guarantee the global and local
optimality of the obtained solutions. Extensive numerical results performed on
both synthetic and real data sets suggest that the proposed algorithm converges
quickly to a local minimum solution.

Furthermore, we consider a stochastic SymNMF problem in which the
observation matrix is generated in a random and sequential manner. The propose
stochastic nonconvex splitting method not only guarantees convergence to the
set of stationary points of the problem (in the mean-square sense), but further
achieves a sublinear convergence rate. Numerical results show that for clustering
problems over both synthetic and real world datasets, the proposed algorithm
converges quickly to the set of stationary points.

When the objective function is nonconvex, it is well-known the most of the
first-order algorithms converge to the first-order stationary solution (SS1) with
a global sublinear rate. Whether the first-order algorithm can converge to the
second-order stationary points (SS2) with some provable rate attracts a lot of
attention recently. In particular, we study the alternating gradient descent
(AGD) algorithm as an example, which is a simple but popular algorithm and
has been applied to problems in optimization, machine learning, data mining,
and signal processing, etc. The algorithm updates two blocks of variables in an
alternating manner, in which a gradient step is taken on one block, while keeping
the remaining block fixed.

In this work, we show that a variant of AGD-type algorithms will not be
trapped by “bad” stationary solutions such as saddle points and local maximum
points. In particular, we consider a smooth unconstrained optimization problem,
and propose a perturbed AGD (PA-GD) which converges (with high probability)
to the set of SS2 with a global sublinear rate. To the best of our knowledge, this is
the first alternating type algorithm which takes O(polylog(d)/ϵ7/3) iterations to
achieve SS2 with high probability [where polylog(d) is polynomial of the logarithm
of dimension d of the problem].
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