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Overview	
  of	
  Our	
  Research	
  

•  Big	
  data	
  for	
  security	
  and	
  privacy	
  
– Secure	
  and	
  privacy-­‐preserving	
  online	
  social	
  
networks	
  

– Secure	
  and	
  usable	
  authenLcaLon	
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Overview	
  of	
  Our	
  Research	
  

•  Trustworthy	
  machine	
  learning/data	
  mining	
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What	
  are	
  Social	
  Web	
  Services?	
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Security:	
  Fake	
  Account	
  DetecLon	
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Privacy	
  Issues	
  

•  Private	
  informaLon	
  
– User	
  idenLty	
  
– Demographics	
  
–  Interests	
  	
  

•  ProtecLng	
  user	
  privacy-­‐-­‐current	
  paradigm	
  
– Privacy	
  seVngs	
  
– Users	
  not	
  disclose	
  

•  How	
  about	
  machine	
  learning	
  techniques?	
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Outline	
  

I.  Fake	
  account	
  detecLon	
  via	
  probabilisLc	
  
graphical	
  model	
  techniques	
  

II.  Private	
  informaLon	
  inference:	
  machine	
  
learning	
  as	
  new	
  privacy	
  a[acks	
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Risks	
  Brought	
  by	
  Fake	
  Accounts	
  

•  DisrupLng	
  presidenLal	
  elecLon	
  
•  Influencing	
  financial	
  market	
  
•  Subvert	
  personal	
  security	
  and	
  privacy	
  

– Distribute	
  malware	
  or	
  spam	
  
– Carry	
  out	
  phishing	
  a[acks	
  
– Steal	
  users’	
  private	
  informaLon	
  

•  Manipulate	
  data	
  analyLcs	
  
– Manipulate	
  Google	
  search	
  via	
  fake	
  “+1”	
  clicks	
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Social	
  Structure	
  based	
  DetecLon	
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ExisLng	
  Approaches	
  

•  MathemaLcal	
  foundaLon	
  
– Random	
  walks	
  
– Community	
  detecLon	
  

•  One-­‐class	
  classificaLon	
  
– Either	
  labeled	
  benign	
  or	
  labeled	
  fake	
  accounts	
  in	
  
the	
  training	
  dataset	
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Our	
  Approach	
  

•  SybilBelief:	
  A	
  scalable	
  semi-­‐supervised	
  
learning	
  framework	
  
– Leverage	
  both	
  labeled	
  benign	
  and	
  labeled	
  fake	
  
accounts	
  in	
  the	
  training	
  dataset	
  

•  MathemaLcal	
  foundaLon	
  
– Pairwise	
  Markov	
  Random	
  Fields	
  
– Loopy	
  Belief	
  PropagaLon	
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N. Z. Gong, M. Frank, P. Mittal. “SybilBelief: A Semi-supervised Learning Approach for Structure-based Sybil Detection”. 
In IEEE Transactions on Information Forensics and Security, 2014 



Key	
  ObservaLon:	
  Homophily	
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Benign Fake/Sybil 

Two connected accounts tend to have the same label 

Attack edge 



Modeling	
  Homophily	
  for	
  One	
  Account	
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Generalizing	
  to	
  the	
  EnLre	
  Social	
  Structure	
  

16	
  

  

€ 

Pr(x0, x1,, xn−1) =
1
Z

φ (xi)
ui∈V
∏ ϕ (xi , x j )

(ui , uj )∈E
∏€ 

Given G = (V,E)

Normalize the probabilities 

Encode prior knowledge 

€ 

φ (xi) =
(1 + exp(-hi))

-1       if xi = +1

1− (1 + exp(-hi))
-1  if xi = −1

$ 
% 
& 

' & Encode homophily 

€ 

ϕ (xi , x j ) =
(1 + exp(-wij ))

-1       if xix j = +1

1− (1 + exp(-wij ))
-1  if xix j = −1

$ 
% 
& 

' & 

Pairwise Markov Random Fields: 



DetecLng	
  Fake	
  Accounts	
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G=(V,E) 
Pairwise Markov  
Random Fields 

Conditional 
Probability  
Distribution 

Classification 

Ranking 

Training dataset: labeled  
benign and fake accounts 

Classification: An account has the label that has  
the higher conditional probability  

Ranking: Ranking accounts using their conditional  
probability of being benign 
  



Inferring	
  CondiLonal	
  Probability	
  via	
  
Loopy	
  Belief	
  PropagaLon	
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Benign Fake/Sybil Attack edge 
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Comparison	
  with	
  ClassificaLon	
  Methods	
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SybilBelief performs orders of magnitude better than previous methods 



Comparison	
  with	
  Ranking	
  Methods	
  

•  Twi[er	
  dataset	
  
– 10K	
  benign	
  accounts	
  
– 1K	
  fake	
  accounts	
  (spammers)	
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Ranking	
  Results	
  on	
  Twi[er	
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SybilBelief detects significantly more fake accounts than SybilRank 
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Outline	
  

I.  Fake	
  account	
  detecLon	
  via	
  probabilisLc	
  
graphical	
  model	
  techniques	
  

II.  Private	
  informaLon	
  inference:	
  machine	
  
learning	
  as	
  new	
  privacy	
  a[acks	
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N. Z. Gong, B. Liu. “You are Who You Know and How You Behave:  
Attribute Inference Attacks via Users' Social Friends and Behaviors”.  
In Usenix Security Symposium, 2016 



Mixture	
  of	
  public	
  and	
  private	
  
informaLon	
  

•  Public	
  informaLon	
  
– Friends	
  
– User	
  behaviors	
  

•  Like/share/review	
  webpages	
  and	
  apps	
  	

– Self-­‐reported	
  a[ributes	
  

•  EducaLon,	
  employment,	
  interests,	
  locaLon	
  

•  Private	
  informaLon	
  
– Sexual	
  orientaLon	
  
– Drug	
  usage	
  
– Religious	
  view	
  
– …	
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A[ribute	
  Inference	
  A[acks	
  

•  Given	
  public	
  informaLon	
  of	
  some	
  users	
  
– Friends	
  
– Behaviors	
  
– A[ributes	
  	
  

•  Infer	
  private	
  a[ributes	
  of	
  some	
  target	
  users	
  
	
  

24	
  



An	
  Example	
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Alice

Bob
Carol

David
Eva

Social1graph Attributes

User Alice Bob Carol David Eva Page1
A

Page1
B

Page1
C

Page1
D

Sexual1
Orientation

Alice � � � � � � � =
Bob � � � hetersexual
Carol � � � � � homosexual
David � � � bisexual
Eva � � � � � homosexual

Behaviors1(Page1 likes)Friend1lists
Public'data



Roadmap	
  

•  Threat	
  model	
  

•  Our	
  a[ack	
  algorithm	
  

•  EvaluaLon	
  

•  Conclusion	
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Threat	
  Model	
  

•  A[ackers	
  
–  Cyber criminal,	

–  OSN provider, 
–  Advertiser 
–  Data broker 

•  A[ack	
  procedure	
  
– A[acker	
  collects	
  publicly	
  available	
  friends,	
  user	
  
a[ributes,	
  and	
  behaviors	
  

– Use	
  our	
  algorithm	
  to	
  infer	
  private	
  a[ributes	
  of	
  
target	
  users	
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Threat	
  Model	
  

•  ImplicaLon/ApplicaLon	
  of	
  a[ribute	
  inference	
  
a[acks	
  
– Privacy	
  threat	
  
– Targeted	
  phishing	
  a[acks	
  
– Breaking	
  “security	
  quesLon”	
  based	
  user	
  
authenLcaLon	
  

– Targeted	
  adverLsement	
  

•  Perform	
  further	
  a[acks	
  
– Help	
  profile	
  users	
  across	
  social	
  networks	
  
– Help	
  combine	
  online	
  profile	
  with	
  offline	
  data	
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Our	
  A[ack	
  Algorithm,	
  High-­‐Level	
  
Overview	
  

•  Construct	
  a	
  Social-­‐Behavior-­‐A[ribute	
  (SBA)	
  
network	
  to	
  unify	
  friends,	
  a[ributes,	
  and	
  
behavior	
  informaLon	
  

•  For	
  a	
  target	
  user,	
  find	
  the	
  most	
  “similar”	
  
a[ributes	
  on	
  the	
  SBA	
  network	
  based	
  on	
  
homophily	
  
– Homophily:	
  users	
  that	
  have	
  similar	
  a[ributes	
  
share	
  similar	
  friends	
  and	
  behaviors	
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Social-­‐Behavior-­‐A[ribute	
  (SBA)	
  
Network	
  

social node attribute node
social link attribute link

u1 u2 u6u5u4u3

behavior node
behavior link

WhatsApp Messager Facebook PinterestAngry Birds

Computer Science Male Biology Google Inc.
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Vote	
  DistribuLon	
  A[ack	
  (VIAL)	
  
Algorithm	
  

•  Phase	
  I:	
  	
  
–  IteraLvely	
  distribute	
  a	
  fixed	
  vote	
  capacity	
  from	
  
the	
  targeted	
  user	
  v	
  to	
  the	
  rest	
  of	
  users	
  

	
  	


•  Phase	
  II:	
  	
  
– Each	
  user	
  votes	
  his/her	
  own	
  a[ributes	
  using	
  his/
her	
  vote	
  capacity	
  

– The	
  target	
  user	
  is	
  predicted	
  to	
  have	
  the	
  a[ribute	
  
values	
  that	
  receive	
  the	
  highest	
  votes	
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Phase	
  I-­‐	
  DistribuLng	
  Vote	
  
Capacity	
  

•  A	
  user	
  receives	
  a	
  high	
  vote	
  capacity	
  if	
  the	
  user	
  
and	
  the	
  targeted	
  user	
  are	
  structurally	
  similar	


•  DistribuLon	
  via	
  three	
  local	
  rules	
  
– Dividing	
  
– Backtracking	
  
– AggregaLng	
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Local	
  Rule	
  I:	
  Dividing	
  

•  Social	
  neighbors	
  	
  
•  Behavior-­‐sharing	
  social	
  

neighbors	
  	
  
•  A[ribute-­‐sharing	
  social	
  

neighbors	
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Dividing Backtracking Aggregating

Targeted
    user

Figure 2: Illustration of our three local rules.

the similarity between v and each attribute value, and
then we predict that v owns the attribute values that have
the highest similarity scores. In a high-level abstraction,
VIAL works in two phases.

• Phase I. VIAL iteratively distributes a fixed vote
capacity from the targeted user v to the rest of users
in Phase I. The intuitions are that a user receives a
high vote capacity if the user and the targeted user
are structurally similar in the SBA network (e.g.,
share common friends and behaviors), and that the
targeted user is more likely to have the attribute val-
ues belonging to users with higher vote capacities.
After Phase I, we obtain a vote capacity vector ~sv,
where~svu is the vote capacity of user u.

• Phase II. Intuitively, if a user with a certain vote ca-
pacity has more attribute values, then, according to
the information of this user alone, the likelihood of
each of these attribute values belonging to the tar-
geted user decreases. Moreover, an attribute value
should receive more votes if more users with higher
vote capacities have the attribute value. Therefore,
in Phase II, each social node votes for its attribute
values via dividing its vote capacity among them,
and each attribute value sums the vote capacities
that are divided to it by its social neighbors. We
treat the summed vote capacity of an attribute value
as its similarity with v. Finally, we predict v has the
attribute values that receive the highest votes.

4.2 Phase I
In Phase I, VIAL iteratively distributes a fixed vote ca-
pacity from the targeted user v to the rest of users. We
denote by~s(i)v the vote capacity vector in the ith iteration,
where ~s(i)vu is the vote capacity of node u in the ith itera-
tion. Initially, v has a vote capacity |Vs| and all other so-
cial nodes have vote capacities of 0. Formally, we have:

~s(0)vu =

(
|Vs| if u = v
0 otherwise

(1)

In each iteration, VIAL applies three local rules. They
are dividing, backtracking, and aggregating. Intuitively,

if a user u has more (hop-2) social neighbors, then each
neighbor could receive less vote capacity from u. There-
fore, our dividing rule splits a social node’s vote capacity
to its social neighbors and hop-2 social neighbors. The
backtracking rule takes a portion of every social node’s
vote capacity and assigns them back to the targeted user
v, which is based on the intuition that social nodes that
are closer to v in the SBA network are likely to be more
similar to v and should get more vote capacities. A user
could have a higher vote capacity if it is linked to more
social neighbors and hop-2 social neighbors with higher
vote capacities. Thus, for each user u, the aggregating
rule collects the vote capacities that are shared to u by its
social neighbors and hop-2 social neighbors. Fig. 2 illus-
trates the three local rules. Next, we elaborate the three
local rules.
Dividing: A social node u could have social neigh-
bors, behavior-sharing social neighbors, and attribute-
sharing social neighbors. To distinguish them, we use
three weights wS, wBS, and wAS to represent the shares
of them, respectively. For instance, the total vote ca-
pacity shared to social neighbors of u in the tth itera-
tion is ~s(i�1)

vu ⇥ wS
wS+wBS+wAS

. Then we further divide the
vote capacity among each type of neighbors according
to their link weights. We define Iu,Y = 1 if the set of
neighbors Gu,Y is non-empty, otherwise Iu,Y = 0, where
Y = S,BS,AS. The variables Iu,S, Iu,BS, and Iu,AS are used
to consider the scenarios where u does not have some
type(s) of neighbors, in which u’s vote capacity is di-
vided among less than three types of social neighbors.
For convenience, we denote wT = wSIu,S + wBSIu,BS +
wASIu,AS.

• Social neighbors. A social neighbor x 2 Gu,S re-
ceives a higher vote capacity from u if their link
weight (e.g., tie strength) is higher. Therefore, we
model the vote capacity p(i)v (u,x) that is divided to
x by u in the ith iteration as:

p(i)v (u,x) =~s(i�1)
vu · wS

wT
· wux

du,S
, (2)

where du,S is the summation of weights of social
links that are incident from u.

• Behavior-sharing social neighbors. A behavior-
sharing social neighbor x 2 Gu,BS receives a higher
vote capacity from u if they share more behavior
neighbors with higher predictiveness. Thus, we
model vote capacity q(i)v (u,x) that is divided to x by
u in the ith iteration as:

q(i)v (u,x) =~s(i�1)
vu · wBS

wT
·wB(u,x), (3)

where wB(u,x) = Ây2Gu,B\Gx,B
wuy
du,B

· wxy
dy,S

, represent-
ing the overall share of vote capacity that u divides

5



Local	
  Rule	
  II:	
  Backtracking	
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Dividing Backtracking Aggregating

Targeted
    user

Figure 2: Illustration of our three local rules.

the similarity between v and each attribute value, and
then we predict that v owns the attribute values that have
the highest similarity scores. In a high-level abstraction,
VIAL works in two phases.

• Phase I. VIAL iteratively distributes a fixed vote
capacity from the targeted user v to the rest of users
in Phase I. The intuitions are that a user receives a
high vote capacity if the user and the targeted user
are structurally similar in the SBA network (e.g.,
share common friends and behaviors), and that the
targeted user is more likely to have the attribute val-
ues belonging to users with higher vote capacities.
After Phase I, we obtain a vote capacity vector ~sv,
where~svu is the vote capacity of user u.

• Phase II. Intuitively, if a user with a certain vote ca-
pacity has more attribute values, then, according to
the information of this user alone, the likelihood of
each of these attribute values belonging to the tar-
geted user decreases. Moreover, an attribute value
should receive more votes if more users with higher
vote capacities have the attribute value. Therefore,
in Phase II, each social node votes for its attribute
values via dividing its vote capacity among them,
and each attribute value sums the vote capacities
that are divided to it by its social neighbors. We
treat the summed vote capacity of an attribute value
as its similarity with v. Finally, we predict v has the
attribute values that receive the highest votes.

4.2 Phase I
In Phase I, VIAL iteratively distributes a fixed vote ca-
pacity from the targeted user v to the rest of users. We
denote by~s(i)v the vote capacity vector in the ith iteration,
where ~s(i)vu is the vote capacity of node u in the ith itera-
tion. Initially, v has a vote capacity |Vs| and all other so-
cial nodes have vote capacities of 0. Formally, we have:

~s(0)vu =

(
|Vs| if u = v
0 otherwise

(1)

In each iteration, VIAL applies three local rules. They
are dividing, backtracking, and aggregating. Intuitively,

if a user u has more (hop-2) social neighbors, then each
neighbor could receive less vote capacity from u. There-
fore, our dividing rule splits a social node’s vote capacity
to its social neighbors and hop-2 social neighbors. The
backtracking rule takes a portion of every social node’s
vote capacity and assigns them back to the targeted user
v, which is based on the intuition that social nodes that
are closer to v in the SBA network are likely to be more
similar to v and should get more vote capacities. A user
could have a higher vote capacity if it is linked to more
social neighbors and hop-2 social neighbors with higher
vote capacities. Thus, for each user u, the aggregating
rule collects the vote capacities that are shared to u by its
social neighbors and hop-2 social neighbors. Fig. 2 illus-
trates the three local rules. Next, we elaborate the three
local rules.
Dividing: A social node u could have social neigh-
bors, behavior-sharing social neighbors, and attribute-
sharing social neighbors. To distinguish them, we use
three weights wS, wBS, and wAS to represent the shares
of them, respectively. For instance, the total vote ca-
pacity shared to social neighbors of u in the tth itera-
tion is ~s(i�1)

vu ⇥ wS
wS+wBS+wAS

. Then we further divide the
vote capacity among each type of neighbors according
to their link weights. We define Iu,Y = 1 if the set of
neighbors Gu,Y is non-empty, otherwise Iu,Y = 0, where
Y = S,BS,AS. The variables Iu,S, Iu,BS, and Iu,AS are used
to consider the scenarios where u does not have some
type(s) of neighbors, in which u’s vote capacity is di-
vided among less than three types of social neighbors.
For convenience, we denote wT = wSIu,S + wBSIu,BS +
wASIu,AS.

• Social neighbors. A social neighbor x 2 Gu,S re-
ceives a higher vote capacity from u if their link
weight (e.g., tie strength) is higher. Therefore, we
model the vote capacity p(i)v (u,x) that is divided to
x by u in the ith iteration as:

p(i)v (u,x) =~s(i�1)
vu · wS

wT
· wux

du,S
, (2)

where du,S is the summation of weights of social
links that are incident from u.

• Behavior-sharing social neighbors. A behavior-
sharing social neighbor x 2 Gu,BS receives a higher
vote capacity from u if they share more behavior
neighbors with higher predictiveness. Thus, we
model vote capacity q(i)v (u,x) that is divided to x by
u in the ith iteration as:

q(i)v (u,x) =~s(i�1)
vu · wBS

wT
·wB(u,x), (3)

where wB(u,x) = Ây2Gu,B\Gx,B
wuy
du,B

· wxy
dy,S

, represent-
ing the overall share of vote capacity that u divides

5

Take a portion of a user’s vote capacity back to the 
targeted user 
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Figure 2: Illustration of our three local rules.

the similarity between v and each attribute value, and
then we predict that v owns the attribute values that have
the highest similarity scores. In a high-level abstraction,
VIAL works in two phases.

• Phase I. VIAL iteratively distributes a fixed vote
capacity from the targeted user v to the rest of users
in Phase I. The intuitions are that a user receives a
high vote capacity if the user and the targeted user
are structurally similar in the SBA network (e.g.,
share common friends and behaviors), and that the
targeted user is more likely to have the attribute val-
ues belonging to users with higher vote capacities.
After Phase I, we obtain a vote capacity vector ~sv,
where~svu is the vote capacity of user u.

• Phase II. Intuitively, if a user with a certain vote ca-
pacity has more attribute values, then, according to
the information of this user alone, the likelihood of
each of these attribute values belonging to the tar-
geted user decreases. Moreover, an attribute value
should receive more votes if more users with higher
vote capacities have the attribute value. Therefore,
in Phase II, each social node votes for its attribute
values via dividing its vote capacity among them,
and each attribute value sums the vote capacities
that are divided to it by its social neighbors. We
treat the summed vote capacity of an attribute value
as its similarity with v. Finally, we predict v has the
attribute values that receive the highest votes.

4.2 Phase I
In Phase I, VIAL iteratively distributes a fixed vote ca-
pacity from the targeted user v to the rest of users. We
denote by~s(i)v the vote capacity vector in the ith iteration,
where ~s(i)vu is the vote capacity of node u in the ith itera-
tion. Initially, v has a vote capacity |Vs| and all other so-
cial nodes have vote capacities of 0. Formally, we have:

~s(0)vu =

(
|Vs| if u = v
0 otherwise

(1)

In each iteration, VIAL applies three local rules. They
are dividing, backtracking, and aggregating. Intuitively,

if a user u has more (hop-2) social neighbors, then each
neighbor could receive less vote capacity from u. There-
fore, our dividing rule splits a social node’s vote capacity
to its social neighbors and hop-2 social neighbors. The
backtracking rule takes a portion of every social node’s
vote capacity and assigns them back to the targeted user
v, which is based on the intuition that social nodes that
are closer to v in the SBA network are likely to be more
similar to v and should get more vote capacities. A user
could have a higher vote capacity if it is linked to more
social neighbors and hop-2 social neighbors with higher
vote capacities. Thus, for each user u, the aggregating
rule collects the vote capacities that are shared to u by its
social neighbors and hop-2 social neighbors. Fig. 2 illus-
trates the three local rules. Next, we elaborate the three
local rules.
Dividing: A social node u could have social neigh-
bors, behavior-sharing social neighbors, and attribute-
sharing social neighbors. To distinguish them, we use
three weights wS, wBS, and wAS to represent the shares
of them, respectively. For instance, the total vote ca-
pacity shared to social neighbors of u in the tth itera-
tion is ~s(i�1)

vu ⇥ wS
wS+wBS+wAS

. Then we further divide the
vote capacity among each type of neighbors according
to their link weights. We define Iu,Y = 1 if the set of
neighbors Gu,Y is non-empty, otherwise Iu,Y = 0, where
Y = S,BS,AS. The variables Iu,S, Iu,BS, and Iu,AS are used
to consider the scenarios where u does not have some
type(s) of neighbors, in which u’s vote capacity is di-
vided among less than three types of social neighbors.
For convenience, we denote wT = wSIu,S + wBSIu,BS +
wASIu,AS.

• Social neighbors. A social neighbor x 2 Gu,S re-
ceives a higher vote capacity from u if their link
weight (e.g., tie strength) is higher. Therefore, we
model the vote capacity p(i)v (u,x) that is divided to
x by u in the ith iteration as:

p(i)v (u,x) =~s(i�1)
vu · wS

wT
· wux

du,S
, (2)

where du,S is the summation of weights of social
links that are incident from u.

• Behavior-sharing social neighbors. A behavior-
sharing social neighbor x 2 Gu,BS receives a higher
vote capacity from u if they share more behavior
neighbors with higher predictiveness. Thus, we
model vote capacity q(i)v (u,x) that is divided to x by
u in the ith iteration as:

q(i)v (u,x) =~s(i�1)
vu · wBS

wT
·wB(u,x), (3)

where wB(u,x) = Ây2Gu,B\Gx,B
wuy
du,B

· wxy
dy,S

, represent-
ing the overall share of vote capacity that u divides

5

Compute a new vote capacity for a user by 
aggregating the vote capacities from its 
neighbors  
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  (62)	

– Employer	
  (78)	

– CiLes	
  lived	
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•  Construct	
  a	
  SBA	
  network	
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and cities lived). Their dataset includes 79 snapshots of
Google+ collected from July 6 to October 11, 2011. Each
snapshot was a large Weakly Connected Component of
Google+ social network at the time of crawling.

We obtained one collected snapshot from Gong et
al. [16, 15]. To better approximate friendships between
users, we construct an undirected social network from
the crawled Google+ dataset via keeping an undirected
link between a user u and v if u is in v’s both incom-
ing friend list and outgoing friend list. After preprocess-
ing, our Google+ dataset consists of 1,111,905 users and
5,328,308 undirected social links.
User attributes: We consider three attributes, major,
employer, and cities lived. We note that, although we fo-
cus on these attributes that are available to us at a large
scale, our attack is also applicable to infer other attributes
such as sexual orientation, political views, and religious
views. Moreover, some targeted users might not view
inferring these attributes as an privacy attack, but an at-
tacker can leverage these attributes to further link users
across online social networks [4, 14, 2, 13] or even link
them with offline records to perform more serious secu-
rity and privacy attacks [38, 32].

We take the strings input by a user in its Google+ pro-
file as attribute values. We found that most attribute val-
ues are owned by a small number of users while some
are owned by a large number of users. Users could fill
in their profiles freely in Google+, which could be one
reason that we observe many infrequent attribute values.
Specifically, different users might have different names
for the same attribute value. For instance, the major of
Computer Science could also be abbreviated as CS by
some users. Indeed, we find that 20,861 users have Com-
puter Science as their major and 556 users have CS as
their major in our dataset. Moreover, small typos (e.g.,
one letter is incorrect) in the free-form inputs make the
same attribute value be treated as different ones. There-
fore, we manually label a set of attribute values.

1) Major. We consider the top-100 majors that are
claimed by the most users. We manually merge the ma-
jors that actually refer to the same one, e.g., Computer
Science and CS, Btech and Biotechnology. After prepro-
cessing, we obtain 62 distinct majors. 8.4% of users in
our dataset have at least one of these majors.

2) Employer. Similar to major, we select the top-100
employers that are claimed by the most users and manu-
ally merge the employers that refer to the same one. We
obtain 78 distinct employers, and 3.1% of users have at
least one of these employers.

3) Cities lived. Again, we select the top-100 cities in
which most users in the Google+ dataset claimed they
have lived in. After we manually merge the cities that ac-
tually refer to the same one, we obtain 70 distinct cities.
8% of users have at least one of these attribute values.

Table 1: Basic statistics of our SBA.

#nodes #links
social behavior attri. social behavior attri.

1,111,905 48,706 210 5,328,308 3,635,231 269,997

Summary and limitations: In total, we consider 210
popular distinct attribute values, including 62 majors,
78 employers, and 70 cities. We acknowledge that our
Google+ dataset might not be a representative sample of
the recent entire Google+ social network, and thus the in-
ference attack success rates obtained in our experiments
might not represent those of the entire Google+ social
network.

6.2 Crawling Google Play
There are 7 categories of items in Google Play. They
are apps, tv, movies, music, books, newsstand, and de-
vices. Google Play provides two review mechanisms for
users to provide feedback on an item. They are the lik-
ing mechanism and the rating mechanism. In the liking
mechanism, a user simply clicks a like button to express
his preference about an item. In the rating mechanism, a
user gives a rating score which is in the set {1,2,3,4,5}
as well as a detailed comment to support his/her rating.
A score of 1 represents low preference and a score of 5
represents high preference. We call a user reviewed an
item if the user rated or liked the item.

User reviews are publicly available in Google Play.
Specifically, after a user u logs in Google Play, u can
view the list of items reviewed by any user v once u can
obtain v’s Google ID. We crawled the list of items re-
viewed by each user in the Google+ dataset.

We find that 33% of users in the Google+ dataset have
reviewed at least one item. In total, we collected 260,245
items and 3,954,822 reviews. Since items with too few
reviews might not be informative to distinguish users
with different attribute values, we use items that were re-
viewed by at least 5 users. After preprocessing, we have
48,706 items and 3,635,231 reviews.

6.3 Constructing SBA Networks
We take each user in the Google+ dataset as a social node
and links between them as social links. For each item in
our Google Play dataset, we add a corresponding behav-
ior node. If a user reviewed an item, we create a link be-
tween the corresponding social node and the correspond-
ing behavior node. That a user reviewed an item means
that the user once used the item. Using similar items
could indicate similar interests, user characteristics, and
user attributes. To predict attribute values, we further

9
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Table 2: Performance gains and relative performance
gains of RWwR-SAN over other friend-based attacks,
where K = 1. Results are averaged over all attributes.
We find that RWwR-SAN is the best friend-based at-
tack.

Attack DP DP% DR DR% DF DF%
CN-SAN 0.07 24% 0.04 24% 0.05 24%
AA-SAN 0.08 26% 0.04 26% 0.05 26%

Table 3: Performance gains and relative performance
gains of VIAL-B over other behavior-based attacks,
where K = 1. We find that VIAL-B is the best
behavior-based attack.

Attack DP DP% DR DR% DF DF%
LG-B-I 0.06 42% 0.04 47% 0.05 45%
LG-B-II 0.07 47% 0.05 52% 0.06 50%

dataset. Specifically, LG-B-I extracts a feature vec-
tor whose length is the number of items for each
user that has review data, and a feature has a value
of the rating score that the user gave to the corre-
sponding item. Google Play allows users to rate or
like an item, and we treat a liking as a rating score
of 5. For a test user, the learned logistic regression
classifier returns a posterior probability distribution
over the possible attribute values, which are used as
the scores S(v,a). Weinsberg et al. [42] showed that
logistic regression classifier outperforms other clas-
sifiers including SVM [10] and Naive Bayes [29].

• Logistic regression with binary features (LG-B-
II) [25]. The difference between LG-B-II and LG-
B-I is that LG-B-II extracts binary feature vectors
for users. Specifically, a feature has a value of 1 if
the user has reviewed the corresponding item.

• VIAL-B. A variant of VIAL that only uses behavior
data. Specifically, we remove social links from the
SBA network and perform our VIAL attack using
the remaining links.

Attacks combining social structures and behav-
iors: Intuitively, we can combine social structures and
behaviors via concatenating social structure features with
behavior features. We compare with two such attacks.

• Logistic regression (LG-I). LG-I extracts a binary
feature vector whose length is the number of users
from social structures for each user, and a feature
has a value of 1 if the user is a friend of the person
that corresponds to the feature. Then LG-I concate-
nates this feature vector with the one used in LG-B-I
and learns multi-class logistic regression classifiers.

Table 4: Performance gains and relative performance
gains of VIAL over other attacks combining social
structures and behaviors, where K = 1. We find that
VIAL substantially outperforms other attacks.

Attack DP DP% DR DR% DF DF%
LG-I 0.17 61% 0.10 65% 0.13 63%
LG-II 0.18 65% 0.11 69% 0.13 67%

Table 5: Performance gains and relative performance
gains of VIAL over Random, RWwR-SAN (the best
friend-based attack), and VIAL-B (the best behavior-
based attack), where K = 1.

Attack DP DP% DR DR% DF DF%
Random 0.36 526% 0.22 535% 0.27 534%

RWwR-SAN 0.07 20% 0.05 23% 0.06 22%
VIAL-B 0.22 102% 0.13 99% 0.16 100%

• Logistic regression with binary features (LG-II).
LG-II concatenates the binary social structure fea-
ture vector with the binary behavior feature vector
used by LG-B-II.

We use the popular package LIBLINEAR [12] to learn
logistic regression classifiers.

7.3 Results
Fig. 3-Fig. 5 demonstrate the Precision, Recall, and F-
score for top-K inference of major, employer, and city,
where K = 1,2,3. Table 2-Table 5 compare different at-
tacks using results that are averaged over all attributes.
Our metrics are averaged over 10 trials. We find that
standard deviations of the metrics are very small, and
thus we do not show them for simplicity. Next, we de-
scribe several key observations we have made from these
results.
Comparing friend-based attacks: We find that
RWwR-SAN performs the best among the friend-based
attacks. Our observation is consistent with the previ-
ous work [15]. To better illustrate the difference be-
tween the friend-based attacks, we show the performance
gains and relative performance gains of RWwR-SAN
over other friend-based attacks in Table 2. Please refer
to Section 7.1 for formal definitions of (relative) perfor-
mance gains. The (relative) performance gains are aver-
aged over all attributes (i.e., major, employer, and city).
The reason why RWwR-SAN outperforms other friend-
based attacks is that RWwR-SAN performs a random
walk among the augmented graph, which better lever-
ages the graph structure, while other attacks simply count
the number of common neighbors or weighted common
neighbors.

12

Absolute performance gain Relative performance gain 

Best friend-based attack 
Best behavior-based attack 

Our attacks are significant more accurate than existing ones 
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Figure 6: Impact of the backtracking strength on the
Precision of VIAL for inferring cities. We observe
that backtracking substantially improves VIAL’s per-
formance.

Comparing behavior-based attacks: We find that
VIAL-B performs the best among the behavior-based
attacks. Table 3 shows the average performance gains
and relative performance gains of VIAL-B over other
behavior-based attacks. Our results indicate that our
graph-based attack is a better way to leverage behavior
structures, compared to LG-B-I and LG-B-II, which flat-
ten the behavior structures into feature vectors. More-
over, LG-B-I and LG-B-II achieve very close perfor-
mances, which indicates that the rating scores carry little
information about user attributes.
Comparing attacks combining social structure and
behavior: We find that VIAL performs the best among
the attacks combining social structures and behaviors.
Table 4 shows the average performance gains and rela-
tive performance gains of VIAL over other attacks. Our
results imply that, compared to flattening the structures
into feature vectors, our graph-based attack can better in-
tegrate social structures and user behaviors.
Comparing VIAL with the best friend-based attack
and the best behavior-based attack: Table 4 shows
the average performance gains and relative performance
gains of VIAL over Random, the best friend-based at-
tack, and the best behavior-based attack. We find that
VIAL significantly outperforms these attacks, indicating
the importance of combining social structures and be-
haviors to perform attribute inference. This implies that,
when an attacker wants to attack user privacy via infer-
ring their private attributes, the attacker can successfully
attack substantially more users using VIAL.
Impact of backtracking strength: Fig. 6 shows the im-
pact of backtracking strength on the Precision of VIAL
for inferring cities. According to Theorem 1, VIAL with
a = 1 reduces to random guessing, and thus we do not
show the corresponding result in the figure. a = 0 cor-
responds to the case in which VIAL does not use back-
tracking. We observe that not using backtracking sub-

Figure 7: Impact of the number of reviewed items on
the Precision of our attack VIAL for inferring cities.
We observe that, when users share more behaviors,
our attack is able to more accurately predict their at-
tributes.

stantially decreases the performance of VIAL. The rea-
son might be that 1) a = 0 makes VIAL predict the same
attribute values for all test users, according to Theorem 2,
and 2) a user’ attributes are close to the user in the SBA
network and backtracking makes it more likely for votes
to be distributed among these attribute nodes. Moreover,
we find that inference accuracies are stable across dif-
ferent backtracking strengths once they are larger than
0. The reason is that when we increase the backtrack-
ing strength, attribute values receive different votes, but
the ones with top ranked votes only change slightly. We
observe similar results for other attributes.

Impact of the number of reviewed items: Figure 7
shows the Precision as a function of the number of re-
viewed items for inferring cities lived. We average Preci-
sions for test users whose number of reviewed items falls
under a certain interval (i.e., [5,20), [20,35), [35,50), or
� 50). We observe that our attack can more accurately
infer attributes for users who share more digital behav-
iors (i.e., reviewed items in our case).

Confidence estimation: Figure 8 shows the trade-off
between the Precision and the fraction of users that are
attacked via our confidence estimator. We observe that
an attacker can increase the Precision (K = 1) of infer-
ring cities from 0.57 to over 0.92 if the attacker attacks
a half of the test users that are selected via confidence
estimation. We also tried the confidence estimator called
gap statistic [34], in which the confidence score for a
targeted user is the difference between the score of the
highest ranked attribute value and the score of the second
highest ranked one. Our confidence estimator slightly
outperforms gap statistic because a test user could have
multiple attribute values and our attack could produce
close scores for them.

13

Backtracking substantially improves attack 
success rates 
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Attack success rates are higher when more behaviors are available 
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•  Inferring	
  author	
  idenLty	
  using	
  wriLng	
  styles	
  [IEEE	
  S	
  
&	
  P	
  2012]	
  

•  De-­‐anonymizing	
  social	
  networks	
  [NDSS2015]	
  

•  Inferring	
  user	
  interests	
  [WSDM2015]	
  
	
  



Summary	
  

•  Private	
  informaLon	
  can	
  be	
  inferred	
  from	
  
public	
  data	
  via	
  machine	
  learning	
  techniques	
  

	
  
•  Fundamental	
  reason:	
  private	
  informaLon	
  is	
  
correlated	
  with	
  public	
  informaLon	
  

•  How	
  to	
  defend	
  against	
  inference	
  a[acks?	
  

45	
  


