
1	

Towards	
 Secure	
 and	
 Privacy-­‐Preserving	

Social	
 Web	
 Services	

	

Neil	
 Gong	

ECpE,	
 Iowa	
 State	
 University	

October	
 24,	
 2016	

Overview	
 of	
 Our	
 Research	

Secure	
 and	
 privacy-­‐
preserving	
 systems	

Overview	
 of	
 Our	
 Research	

•  Big	
 data	
 for	
 security	
 and	
 privacy	

– Secure	
 and	
 privacy-­‐preserving	
 online	
 social	

networks	

– Secure	
 and	
 usable	
 authenLcaLon	

3	

Overview	
 of	
 Our	
 Research	

•  Trustworthy	
 machine	
 learning/data	
 mining	

4	

5	

Towards	
 Secure	
 and	
 Privacy-­‐Preserving	

Social	
 Web	
 Services	

What	
 are	
 Social	
 Web	
 Services?	

6	

Security:	
 Fake	
 Account	
 DetecLon	

7	

|

Privacy	
 Issues	

•  Private	
 informaLon	

– User	
 idenLty	

– Demographics	

–  Interests	
 	

•  ProtecLng	
 user	
 privacy-­‐-­‐current	
 paradigm	

– Privacy	
 seVngs	

– Users	
 not	
 disclose	

•  How	
 about	
 machine	
 learning	
 techniques?	

8	

Outline	

I.  Fake	
 account	
 detecLon	
 via	
 probabilisLc	

graphical	
 model	
 techniques	

II.  Private	
 informaLon	
 inference:	
 machine	

learning	
 as	
 new	
 privacy	
 a[acks	

9	

Risks	
 Brought	
 by	
 Fake	
 Accounts	

•  DisrupLng	
 presidenLal	
 elecLon	

•  Influencing	
 financial	
 market	

•  Subvert	
 personal	
 security	
 and	
 privacy	

– Distribute	
 malware	
 or	
 spam	

– Carry	
 out	
 phishing	
 a[acks	

– Steal	
 users’	
 private	
 informaLon	

•  Manipulate	
 data	
 analyLcs	

– Manipulate	
 Google	
 search	
 via	
 fake	
 “+1”	
 clicks	

10	

Social	
 Structure	
 based	
 DetecLon	

11	

Benign Fake/Sybil Attack edge

?

?
?

?

?

?
?

?

?

ExisLng	
 Approaches	

•  MathemaLcal	
 foundaLon	

– Random	
 walks	

– Community	
 detecLon	

•  One-­‐class	
 classificaLon	

– Either	
 labeled	
 benign	
 or	
 labeled	
 fake	
 accounts	
 in	

the	
 training	
 dataset	

12	

Our	
 Approach	

•  SybilBelief:	
 A	
 scalable	
 semi-­‐supervised	

learning	
 framework	

– Leverage	
 both	
 labeled	
 benign	
 and	
 labeled	
 fake	

accounts	
 in	
 the	
 training	
 dataset	

•  MathemaLcal	
 foundaLon	

– Pairwise	
 Markov	
 Random	
 Fields	

– Loopy	
 Belief	
 PropagaLon	
 	

13	

N. Z. Gong, M. Frank, P. Mittal. “SybilBelief: A Semi-supervised Learning Approach for Structure-based Sybil Detection”.
In IEEE Transactions on Information Forensics and Security, 2014

Key	
 ObservaLon:	
 Homophily	

14	

Benign Fake/Sybil

Two connected accounts tend to have the same label

Attack edge

Modeling	
 Homophily	
 for	
 One	
 Account	

15	

…

€

u1

€

u2

€

u3

€

um…

€

u0

€

binary random variable xi ∈ {+1,−1}, +1 is benign and -1 is fake

€

x 1

€

x 2

€

x 3

€

x m…

€

x0
€

Pr(x0 = +1 | neighbors' labels) =
1

1+ exp(− wi0x i∑ − h0)

Prior knowledge about

€

u0

€

w10

€

w20

€

w30

€

wm0

€

Homophily, wij > 0

€

hi > 0 : biased to be benign

€

hi = 0 : no bias

€

hi < 0 : biased to be fake

Local Probabilistic Rule:

Generalizing	
 to	
 the	
 EnLre	
 Social	
 Structure	

16	

€

Pr(x0, x1,, xn−1) =
1
Z

φ (xi)
ui∈V
∏ ϕ (xi , x j)

(ui , uj)∈E
∏€

Given G = (V,E)

Normalize the probabilities

Encode prior knowledge

€

φ (xi) =
(1 + exp(-hi))

-1 if xi = +1

1− (1 + exp(-hi))
-1 if xi = −1

$
%
&

' & Encode homophily

€

ϕ (xi , x j) =
(1 + exp(-wij))

-1 if xix j = +1

1− (1 + exp(-wij))
-1 if xix j = −1

$
%
&

' &

Pairwise Markov Random Fields:

DetecLng	
 Fake	
 Accounts	

17	

G=(V,E)
Pairwise Markov
Random Fields

Conditional
Probability
Distribution

Classification

Ranking

Training dataset: labeled
benign and fake accounts

Classification: An account has the label that has
the higher conditional probability

Ranking: Ranking accounts using their conditional
probability of being benign

Inferring	
 CondiLonal	
 Probability	
 via	

Loopy	
 Belief	
 PropagaLon	

18	

Benign Fake/Sybil Attack edge

500 1000 1500 2000
Number of attack edges

0

5000

10000

15000

20000
N

um
be

r
of

ac
ce

pt
ed

fa
ke

ac
co

un
ts

SybilInfer
SybilLimit
SybilBelief

Comparison	
 with	
 ClassificaLon	
 Methods	

19	

SybilBelief performs orders of magnitude better than previous methods

Comparison	
 with	
 Ranking	
 Methods	

•  Twi[er	
 dataset	

– 10K	
 benign	
 accounts	

– 1K	
 fake	
 accounts	
 (spammers)	

	

	

20	

Ranking	
 Results	
 on	
 Twi[er	

21	

SybilBelief detects significantly more fake accounts than SybilRank

100 200 300 400 500
Top K nodes

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 S

yb
ils

SybilRank
SybilBelief

Outline	

I.  Fake	
 account	
 detecLon	
 via	
 probabilisLc	

graphical	
 model	
 techniques	

II.  Private	
 informaLon	
 inference:	
 machine	

learning	
 as	
 new	
 privacy	
 a[acks	

	

22	

N. Z. Gong, B. Liu. “You are Who You Know and How You Behave:
Attribute Inference Attacks via Users' Social Friends and Behaviors”.
In Usenix Security Symposium, 2016

Mixture	
 of	
 public	
 and	
 private	

informaLon	

•  Public	
 informaLon	

– Friends	

– User	
 behaviors	

•  Like/share/review	
 webpages	
 and	
 apps	
 	

– Self-­‐reported	
 a[ributes	

•  EducaLon,	
 employment,	
 interests,	
 locaLon	

•  Private	
 informaLon	

– Sexual	
 orientaLon	

– Drug	
 usage	

– Religious	
 view	

– …	

23	

A[ribute	
 Inference	
 A[acks	

•  Given	
 public	
 informaLon	
 of	
 some	
 users	

– Friends	

– Behaviors	

– A[ributes	
 	

•  Infer	
 private	
 a[ributes	
 of	
 some	
 target	
 users	

	

24	

An	
 Example	

25	

Alice

Bob
Carol

David
Eva

Social1graph Attributes

User Alice Bob Carol David Eva Page1
A

Page1
B

Page1
C

Page1
D

Sexual1
Orientation

Alice � � � � � � � =
Bob � � � hetersexual
Carol � � � � � homosexual
David � � � bisexual
Eva � � � � � homosexual

Behaviors1(Page1 likes)Friend1lists
Public'data

Roadmap	

•  Threat	
 model	

•  Our	
 a[ack	
 algorithm	

•  EvaluaLon	

•  Conclusion	

26	

Threat	
 Model	

•  A[ackers	

–  Cyber criminal,	

–  OSN provider,
–  Advertiser
–  Data broker

•  A[ack	
 procedure	

– A[acker	
 collects	
 publicly	
 available	
 friends,	
 user	

a[ributes,	
 and	
 behaviors	

– Use	
 our	
 algorithm	
 to	
 infer	
 private	
 a[ributes	
 of	

target	
 users	

27	

Threat	
 Model	

•  ImplicaLon/ApplicaLon	
 of	
 a[ribute	
 inference	

a[acks	

– Privacy	
 threat	

– Targeted	
 phishing	
 a[acks	

– Breaking	
 “security	
 quesLon”	
 based	
 user	

authenLcaLon	

– Targeted	
 adverLsement	

•  Perform	
 further	
 a[acks	

– Help	
 profile	
 users	
 across	
 social	
 networks	

– Help	
 combine	
 online	
 profile	
 with	
 offline	
 data	
 28	

Our	
 A[ack	
 Algorithm,	
 High-­‐Level	

Overview	

•  Construct	
 a	
 Social-­‐Behavior-­‐A[ribute	
 (SBA)	

network	
 to	
 unify	
 friends,	
 a[ributes,	
 and	

behavior	
 informaLon	

•  For	
 a	
 target	
 user,	
 find	
 the	
 most	
 “similar”	

a[ributes	
 on	
 the	
 SBA	
 network	
 based	
 on	

homophily	

– Homophily:	
 users	
 that	
 have	
 similar	
 a[ributes	

share	
 similar	
 friends	
 and	
 behaviors	

29	

Social-­‐Behavior-­‐A[ribute	
 (SBA)	

Network	

social node attribute node
social link attribute link

u1 u2 u6u5u4u3

behavior node
behavior link

WhatsApp Messager Facebook PinterestAngry Birds

Computer Science Male Biology Google Inc.

30	

Vote	
 DistribuLon	
 A[ack	
 (VIAL)	

Algorithm	

•  Phase	
 I:	
 	

–  IteraLvely	
 distribute	
 a	
 fixed	
 vote	
 capacity	
 from	

the	
 targeted	
 user	
 v	
 to	
 the	
 rest	
 of	
 users	

	
 	

•  Phase	
 II:	
 	

– Each	
 user	
 votes	
 his/her	
 own	
 a[ributes	
 using	
 his/
her	
 vote	
 capacity	

– The	
 target	
 user	
 is	
 predicted	
 to	
 have	
 the	
 a[ribute	

values	
 that	
 receive	
 the	
 highest	
 votes	

31	

Phase	
 I-­‐	
 DistribuLng	
 Vote	

Capacity	

•  A	
 user	
 receives	
 a	
 high	
 vote	
 capacity	
 if	
 the	
 user	

and	
 the	
 targeted	
 user	
 are	
 structurally	
 similar	

•  DistribuLon	
 via	
 three	
 local	
 rules	

– Dividing	

– Backtracking	

– AggregaLng	

32	

Local	
 Rule	
 I:	
 Dividing	

•  Social	
 neighbors	
 	

•  Behavior-­‐sharing	
 social	

neighbors	
 	

•  A[ribute-­‐sharing	
 social	

neighbors	
 	

33	

Dividing Backtracking Aggregating

Targeted
 user

Figure 2: Illustration of our three local rules.

the similarity between v and each attribute value, and
then we predict that v owns the attribute values that have
the highest similarity scores. In a high-level abstraction,
VIAL works in two phases.

• Phase I. VIAL iteratively distributes a fixed vote
capacity from the targeted user v to the rest of users
in Phase I. The intuitions are that a user receives a
high vote capacity if the user and the targeted user
are structurally similar in the SBA network (e.g.,
share common friends and behaviors), and that the
targeted user is more likely to have the attribute val-
ues belonging to users with higher vote capacities.
After Phase I, we obtain a vote capacity vector ~sv,
where~svu is the vote capacity of user u.

• Phase II. Intuitively, if a user with a certain vote ca-
pacity has more attribute values, then, according to
the information of this user alone, the likelihood of
each of these attribute values belonging to the tar-
geted user decreases. Moreover, an attribute value
should receive more votes if more users with higher
vote capacities have the attribute value. Therefore,
in Phase II, each social node votes for its attribute
values via dividing its vote capacity among them,
and each attribute value sums the vote capacities
that are divided to it by its social neighbors. We
treat the summed vote capacity of an attribute value
as its similarity with v. Finally, we predict v has the
attribute values that receive the highest votes.

4.2 Phase I
In Phase I, VIAL iteratively distributes a fixed vote ca-
pacity from the targeted user v to the rest of users. We
denote by~s(i)v the vote capacity vector in the ith iteration,
where ~s(i)vu is the vote capacity of node u in the ith itera-
tion. Initially, v has a vote capacity |Vs| and all other so-
cial nodes have vote capacities of 0. Formally, we have:

~s(0)vu =

(
|Vs| if u = v
0 otherwise

(1)

In each iteration, VIAL applies three local rules. They
are dividing, backtracking, and aggregating. Intuitively,

if a user u has more (hop-2) social neighbors, then each
neighbor could receive less vote capacity from u. There-
fore, our dividing rule splits a social node’s vote capacity
to its social neighbors and hop-2 social neighbors. The
backtracking rule takes a portion of every social node’s
vote capacity and assigns them back to the targeted user
v, which is based on the intuition that social nodes that
are closer to v in the SBA network are likely to be more
similar to v and should get more vote capacities. A user
could have a higher vote capacity if it is linked to more
social neighbors and hop-2 social neighbors with higher
vote capacities. Thus, for each user u, the aggregating
rule collects the vote capacities that are shared to u by its
social neighbors and hop-2 social neighbors. Fig. 2 illus-
trates the three local rules. Next, we elaborate the three
local rules.
Dividing: A social node u could have social neigh-
bors, behavior-sharing social neighbors, and attribute-
sharing social neighbors. To distinguish them, we use
three weights wS, wBS, and wAS to represent the shares
of them, respectively. For instance, the total vote ca-
pacity shared to social neighbors of u in the tth itera-
tion is ~s(i�1)

vu ⇥ wS
wS+wBS+wAS

. Then we further divide the
vote capacity among each type of neighbors according
to their link weights. We define Iu,Y = 1 if the set of
neighbors Gu,Y is non-empty, otherwise Iu,Y = 0, where
Y = S,BS,AS. The variables Iu,S, Iu,BS, and Iu,AS are used
to consider the scenarios where u does not have some
type(s) of neighbors, in which u’s vote capacity is di-
vided among less than three types of social neighbors.
For convenience, we denote wT = wSIu,S + wBSIu,BS +
wASIu,AS.

• Social neighbors. A social neighbor x 2 Gu,S re-
ceives a higher vote capacity from u if their link
weight (e.g., tie strength) is higher. Therefore, we
model the vote capacity p(i)v (u,x) that is divided to
x by u in the ith iteration as:

p(i)v (u,x) =~s(i�1)
vu · wS

wT
· wux

du,S
, (2)

where du,S is the summation of weights of social
links that are incident from u.

• Behavior-sharing social neighbors. A behavior-
sharing social neighbor x 2 Gu,BS receives a higher
vote capacity from u if they share more behavior
neighbors with higher predictiveness. Thus, we
model vote capacity q(i)v (u,x) that is divided to x by
u in the ith iteration as:

q(i)v (u,x) =~s(i�1)
vu · wBS

wT
·wB(u,x), (3)

where wB(u,x) = Ây2Gu,B\Gx,B
wuy
du,B

· wxy
dy,S

, represent-
ing the overall share of vote capacity that u divides

5

Local	
 Rule	
 II:	
 Backtracking	

34	

Dividing Backtracking Aggregating

Targeted
 user

Figure 2: Illustration of our three local rules.

the similarity between v and each attribute value, and
then we predict that v owns the attribute values that have
the highest similarity scores. In a high-level abstraction,
VIAL works in two phases.

• Phase I. VIAL iteratively distributes a fixed vote
capacity from the targeted user v to the rest of users
in Phase I. The intuitions are that a user receives a
high vote capacity if the user and the targeted user
are structurally similar in the SBA network (e.g.,
share common friends and behaviors), and that the
targeted user is more likely to have the attribute val-
ues belonging to users with higher vote capacities.
After Phase I, we obtain a vote capacity vector ~sv,
where~svu is the vote capacity of user u.

• Phase II. Intuitively, if a user with a certain vote ca-
pacity has more attribute values, then, according to
the information of this user alone, the likelihood of
each of these attribute values belonging to the tar-
geted user decreases. Moreover, an attribute value
should receive more votes if more users with higher
vote capacities have the attribute value. Therefore,
in Phase II, each social node votes for its attribute
values via dividing its vote capacity among them,
and each attribute value sums the vote capacities
that are divided to it by its social neighbors. We
treat the summed vote capacity of an attribute value
as its similarity with v. Finally, we predict v has the
attribute values that receive the highest votes.

4.2 Phase I
In Phase I, VIAL iteratively distributes a fixed vote ca-
pacity from the targeted user v to the rest of users. We
denote by~s(i)v the vote capacity vector in the ith iteration,
where ~s(i)vu is the vote capacity of node u in the ith itera-
tion. Initially, v has a vote capacity |Vs| and all other so-
cial nodes have vote capacities of 0. Formally, we have:

~s(0)vu =

(
|Vs| if u = v
0 otherwise

(1)

In each iteration, VIAL applies three local rules. They
are dividing, backtracking, and aggregating. Intuitively,

if a user u has more (hop-2) social neighbors, then each
neighbor could receive less vote capacity from u. There-
fore, our dividing rule splits a social node’s vote capacity
to its social neighbors and hop-2 social neighbors. The
backtracking rule takes a portion of every social node’s
vote capacity and assigns them back to the targeted user
v, which is based on the intuition that social nodes that
are closer to v in the SBA network are likely to be more
similar to v and should get more vote capacities. A user
could have a higher vote capacity if it is linked to more
social neighbors and hop-2 social neighbors with higher
vote capacities. Thus, for each user u, the aggregating
rule collects the vote capacities that are shared to u by its
social neighbors and hop-2 social neighbors. Fig. 2 illus-
trates the three local rules. Next, we elaborate the three
local rules.
Dividing: A social node u could have social neigh-
bors, behavior-sharing social neighbors, and attribute-
sharing social neighbors. To distinguish them, we use
three weights wS, wBS, and wAS to represent the shares
of them, respectively. For instance, the total vote ca-
pacity shared to social neighbors of u in the tth itera-
tion is ~s(i�1)

vu ⇥ wS
wS+wBS+wAS

. Then we further divide the
vote capacity among each type of neighbors according
to their link weights. We define Iu,Y = 1 if the set of
neighbors Gu,Y is non-empty, otherwise Iu,Y = 0, where
Y = S,BS,AS. The variables Iu,S, Iu,BS, and Iu,AS are used
to consider the scenarios where u does not have some
type(s) of neighbors, in which u’s vote capacity is di-
vided among less than three types of social neighbors.
For convenience, we denote wT = wSIu,S + wBSIu,BS +
wASIu,AS.

• Social neighbors. A social neighbor x 2 Gu,S re-
ceives a higher vote capacity from u if their link
weight (e.g., tie strength) is higher. Therefore, we
model the vote capacity p(i)v (u,x) that is divided to
x by u in the ith iteration as:

p(i)v (u,x) =~s(i�1)
vu · wS

wT
· wux

du,S
, (2)

where du,S is the summation of weights of social
links that are incident from u.

• Behavior-sharing social neighbors. A behavior-
sharing social neighbor x 2 Gu,BS receives a higher
vote capacity from u if they share more behavior
neighbors with higher predictiveness. Thus, we
model vote capacity q(i)v (u,x) that is divided to x by
u in the ith iteration as:

q(i)v (u,x) =~s(i�1)
vu · wBS

wT
·wB(u,x), (3)

where wB(u,x) = Ây2Gu,B\Gx,B
wuy
du,B

· wxy
dy,S

, represent-
ing the overall share of vote capacity that u divides

5

Take a portion of a user’s vote capacity back to the
targeted user

Local	
 Rule	
 III:	
 AggregaLng	

35	

Dividing Backtracking Aggregating

Targeted
 user

Figure 2: Illustration of our three local rules.

the similarity between v and each attribute value, and
then we predict that v owns the attribute values that have
the highest similarity scores. In a high-level abstraction,
VIAL works in two phases.

• Phase I. VIAL iteratively distributes a fixed vote
capacity from the targeted user v to the rest of users
in Phase I. The intuitions are that a user receives a
high vote capacity if the user and the targeted user
are structurally similar in the SBA network (e.g.,
share common friends and behaviors), and that the
targeted user is more likely to have the attribute val-
ues belonging to users with higher vote capacities.
After Phase I, we obtain a vote capacity vector ~sv,
where~svu is the vote capacity of user u.

• Phase II. Intuitively, if a user with a certain vote ca-
pacity has more attribute values, then, according to
the information of this user alone, the likelihood of
each of these attribute values belonging to the tar-
geted user decreases. Moreover, an attribute value
should receive more votes if more users with higher
vote capacities have the attribute value. Therefore,
in Phase II, each social node votes for its attribute
values via dividing its vote capacity among them,
and each attribute value sums the vote capacities
that are divided to it by its social neighbors. We
treat the summed vote capacity of an attribute value
as its similarity with v. Finally, we predict v has the
attribute values that receive the highest votes.

4.2 Phase I
In Phase I, VIAL iteratively distributes a fixed vote ca-
pacity from the targeted user v to the rest of users. We
denote by~s(i)v the vote capacity vector in the ith iteration,
where ~s(i)vu is the vote capacity of node u in the ith itera-
tion. Initially, v has a vote capacity |Vs| and all other so-
cial nodes have vote capacities of 0. Formally, we have:

~s(0)vu =

(
|Vs| if u = v
0 otherwise

(1)

In each iteration, VIAL applies three local rules. They
are dividing, backtracking, and aggregating. Intuitively,

if a user u has more (hop-2) social neighbors, then each
neighbor could receive less vote capacity from u. There-
fore, our dividing rule splits a social node’s vote capacity
to its social neighbors and hop-2 social neighbors. The
backtracking rule takes a portion of every social node’s
vote capacity and assigns them back to the targeted user
v, which is based on the intuition that social nodes that
are closer to v in the SBA network are likely to be more
similar to v and should get more vote capacities. A user
could have a higher vote capacity if it is linked to more
social neighbors and hop-2 social neighbors with higher
vote capacities. Thus, for each user u, the aggregating
rule collects the vote capacities that are shared to u by its
social neighbors and hop-2 social neighbors. Fig. 2 illus-
trates the three local rules. Next, we elaborate the three
local rules.
Dividing: A social node u could have social neigh-
bors, behavior-sharing social neighbors, and attribute-
sharing social neighbors. To distinguish them, we use
three weights wS, wBS, and wAS to represent the shares
of them, respectively. For instance, the total vote ca-
pacity shared to social neighbors of u in the tth itera-
tion is ~s(i�1)

vu ⇥ wS
wS+wBS+wAS

. Then we further divide the
vote capacity among each type of neighbors according
to their link weights. We define Iu,Y = 1 if the set of
neighbors Gu,Y is non-empty, otherwise Iu,Y = 0, where
Y = S,BS,AS. The variables Iu,S, Iu,BS, and Iu,AS are used
to consider the scenarios where u does not have some
type(s) of neighbors, in which u’s vote capacity is di-
vided among less than three types of social neighbors.
For convenience, we denote wT = wSIu,S + wBSIu,BS +
wASIu,AS.

• Social neighbors. A social neighbor x 2 Gu,S re-
ceives a higher vote capacity from u if their link
weight (e.g., tie strength) is higher. Therefore, we
model the vote capacity p(i)v (u,x) that is divided to
x by u in the ith iteration as:

p(i)v (u,x) =~s(i�1)
vu · wS

wT
· wux

du,S
, (2)

where du,S is the summation of weights of social
links that are incident from u.

• Behavior-sharing social neighbors. A behavior-
sharing social neighbor x 2 Gu,BS receives a higher
vote capacity from u if they share more behavior
neighbors with higher predictiveness. Thus, we
model vote capacity q(i)v (u,x) that is divided to x by
u in the ith iteration as:

q(i)v (u,x) =~s(i�1)
vu · wBS

wT
·wB(u,x), (3)

where wB(u,x) = Ây2Gu,B\Gx,B
wuy
du,B

· wxy
dy,S

, represent-
ing the overall share of vote capacity that u divides

5

Compute a new vote capacity for a user by
aggregating the vote capacities from its
neighbors

Phase	
 II:	
 	

•  In	
 the	
 end	
 of	
 Phase	
 I,	
 each	
 user	
 has	
 a	
 certain	

vote	
 capacity	

•  Each	
 user	
 divides	
 its	
 vote	
 capacity	
 to	
 its	
 own	

a[ributes	

•  Each	
 a[ribute	
 sums	
 the	
 received	
 votes	

•  A[ributes	
 with	
 the	
 highest	
 votes	
 are	

predicted	
 to	
 belong	
 to	
 the	
 targeted	
 user	
 	

36	

EvaluaLon	
 Data	
 -­‐	
 Google+	

37	

0 20 40 60 80 100
Time (day)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

um
be

r
of

So
ci

al
N

od
es

1e7

Gong et al. “Evolution of Social-Attribute Networks:
Measurements, Modeling, and Implications using Google+”. In IMC’12.

Social graph

User attributes

Publicly available

Downloaded by
~200 research

groups

EvaluaLon	
 Data	
 -­‐	
 Google	
 Play	

•  Behaviors	
 from	
 Google	
 Play	

– Liked/reviewed	
 apps,	
 movies,	
 books,	
 etc.	

38	

EvaluaLon	
 Data	

•  Considered	
 a[ributes	

– Major	
 (62)	

– Employer	
 (78)	

– CiLes	
 lived	
 (70)	

•  Construct	
 a	
 SBA	
 network	

	

39	

and cities lived). Their dataset includes 79 snapshots of
Google+ collected from July 6 to October 11, 2011. Each
snapshot was a large Weakly Connected Component of
Google+ social network at the time of crawling.

We obtained one collected snapshot from Gong et
al. [16, 15]. To better approximate friendships between
users, we construct an undirected social network from
the crawled Google+ dataset via keeping an undirected
link between a user u and v if u is in v’s both incom-
ing friend list and outgoing friend list. After preprocess-
ing, our Google+ dataset consists of 1,111,905 users and
5,328,308 undirected social links.
User attributes: We consider three attributes, major,
employer, and cities lived. We note that, although we fo-
cus on these attributes that are available to us at a large
scale, our attack is also applicable to infer other attributes
such as sexual orientation, political views, and religious
views. Moreover, some targeted users might not view
inferring these attributes as an privacy attack, but an at-
tacker can leverage these attributes to further link users
across online social networks [4, 14, 2, 13] or even link
them with offline records to perform more serious secu-
rity and privacy attacks [38, 32].

We take the strings input by a user in its Google+ pro-
file as attribute values. We found that most attribute val-
ues are owned by a small number of users while some
are owned by a large number of users. Users could fill
in their profiles freely in Google+, which could be one
reason that we observe many infrequent attribute values.
Specifically, different users might have different names
for the same attribute value. For instance, the major of
Computer Science could also be abbreviated as CS by
some users. Indeed, we find that 20,861 users have Com-
puter Science as their major and 556 users have CS as
their major in our dataset. Moreover, small typos (e.g.,
one letter is incorrect) in the free-form inputs make the
same attribute value be treated as different ones. There-
fore, we manually label a set of attribute values.

1) Major. We consider the top-100 majors that are
claimed by the most users. We manually merge the ma-
jors that actually refer to the same one, e.g., Computer
Science and CS, Btech and Biotechnology. After prepro-
cessing, we obtain 62 distinct majors. 8.4% of users in
our dataset have at least one of these majors.

2) Employer. Similar to major, we select the top-100
employers that are claimed by the most users and manu-
ally merge the employers that refer to the same one. We
obtain 78 distinct employers, and 3.1% of users have at
least one of these employers.

3) Cities lived. Again, we select the top-100 cities in
which most users in the Google+ dataset claimed they
have lived in. After we manually merge the cities that ac-
tually refer to the same one, we obtain 70 distinct cities.
8% of users have at least one of these attribute values.

Table 1: Basic statistics of our SBA.

#nodes #links
social behavior attri. social behavior attri.

1,111,905 48,706 210 5,328,308 3,635,231 269,997

Summary and limitations: In total, we consider 210
popular distinct attribute values, including 62 majors,
78 employers, and 70 cities. We acknowledge that our
Google+ dataset might not be a representative sample of
the recent entire Google+ social network, and thus the in-
ference attack success rates obtained in our experiments
might not represent those of the entire Google+ social
network.

6.2 Crawling Google Play
There are 7 categories of items in Google Play. They
are apps, tv, movies, music, books, newsstand, and de-
vices. Google Play provides two review mechanisms for
users to provide feedback on an item. They are the lik-
ing mechanism and the rating mechanism. In the liking
mechanism, a user simply clicks a like button to express
his preference about an item. In the rating mechanism, a
user gives a rating score which is in the set {1,2,3,4,5}
as well as a detailed comment to support his/her rating.
A score of 1 represents low preference and a score of 5
represents high preference. We call a user reviewed an
item if the user rated or liked the item.

User reviews are publicly available in Google Play.
Specifically, after a user u logs in Google Play, u can
view the list of items reviewed by any user v once u can
obtain v’s Google ID. We crawled the list of items re-
viewed by each user in the Google+ dataset.

We find that 33% of users in the Google+ dataset have
reviewed at least one item. In total, we collected 260,245
items and 3,954,822 reviews. Since items with too few
reviews might not be informative to distinguish users
with different attribute values, we use items that were re-
viewed by at least 5 users. After preprocessing, we have
48,706 items and 3,635,231 reviews.

6.3 Constructing SBA Networks
We take each user in the Google+ dataset as a social node
and links between them as social links. For each item in
our Google Play dataset, we add a corresponding behav-
ior node. If a user reviewed an item, we create a link be-
tween the corresponding social node and the correspond-
ing behavior node. That a user reviewed an item means
that the user once used the item. Using similar items
could indicate similar interests, user characteristics, and
user attributes. To predict attribute values, we further

9

EvaluaLon	
 SeVng	

•  Sample	
 a	
 set	
 of	
 users	
 uniformly	
 at	
 random	

•  Remove	
 their	
 a[ributes	
 as	
 groundtruth	

•  Treat	
 them	
 as	
 targeted	
 users	

•  Predict	
 top-­‐K	
 a[ributes	
 for	
 each	
 targeted	
 user	

•  Measure	
 Precision,	
 Recall,	
 and	
 F-­‐Score	

40	

Comparing	
 with	
 Friend-­‐based	
 and	

Behavior-­‐based	
 A[acks	

41	

Table 2: Performance gains and relative performance
gains of RWwR-SAN over other friend-based attacks,
where K = 1. Results are averaged over all attributes.
We find that RWwR-SAN is the best friend-based at-
tack.

Attack DP DP% DR DR% DF DF%
CN-SAN 0.07 24% 0.04 24% 0.05 24%
AA-SAN 0.08 26% 0.04 26% 0.05 26%

Table 3: Performance gains and relative performance
gains of VIAL-B over other behavior-based attacks,
where K = 1. We find that VIAL-B is the best
behavior-based attack.

Attack DP DP% DR DR% DF DF%
LG-B-I 0.06 42% 0.04 47% 0.05 45%
LG-B-II 0.07 47% 0.05 52% 0.06 50%

dataset. Specifically, LG-B-I extracts a feature vec-
tor whose length is the number of items for each
user that has review data, and a feature has a value
of the rating score that the user gave to the corre-
sponding item. Google Play allows users to rate or
like an item, and we treat a liking as a rating score
of 5. For a test user, the learned logistic regression
classifier returns a posterior probability distribution
over the possible attribute values, which are used as
the scores S(v,a). Weinsberg et al. [42] showed that
logistic regression classifier outperforms other clas-
sifiers including SVM [10] and Naive Bayes [29].

• Logistic regression with binary features (LG-B-
II) [25]. The difference between LG-B-II and LG-
B-I is that LG-B-II extracts binary feature vectors
for users. Specifically, a feature has a value of 1 if
the user has reviewed the corresponding item.

• VIAL-B. A variant of VIAL that only uses behavior
data. Specifically, we remove social links from the
SBA network and perform our VIAL attack using
the remaining links.

Attacks combining social structures and behav-
iors: Intuitively, we can combine social structures and
behaviors via concatenating social structure features with
behavior features. We compare with two such attacks.

• Logistic regression (LG-I). LG-I extracts a binary
feature vector whose length is the number of users
from social structures for each user, and a feature
has a value of 1 if the user is a friend of the person
that corresponds to the feature. Then LG-I concate-
nates this feature vector with the one used in LG-B-I
and learns multi-class logistic regression classifiers.

Table 4: Performance gains and relative performance
gains of VIAL over other attacks combining social
structures and behaviors, where K = 1. We find that
VIAL substantially outperforms other attacks.

Attack DP DP% DR DR% DF DF%
LG-I 0.17 61% 0.10 65% 0.13 63%
LG-II 0.18 65% 0.11 69% 0.13 67%

Table 5: Performance gains and relative performance
gains of VIAL over Random, RWwR-SAN (the best
friend-based attack), and VIAL-B (the best behavior-
based attack), where K = 1.

Attack DP DP% DR DR% DF DF%
Random 0.36 526% 0.22 535% 0.27 534%

RWwR-SAN 0.07 20% 0.05 23% 0.06 22%
VIAL-B 0.22 102% 0.13 99% 0.16 100%

• Logistic regression with binary features (LG-II).
LG-II concatenates the binary social structure fea-
ture vector with the binary behavior feature vector
used by LG-B-II.

We use the popular package LIBLINEAR [12] to learn
logistic regression classifiers.

7.3 Results
Fig. 3-Fig. 5 demonstrate the Precision, Recall, and F-
score for top-K inference of major, employer, and city,
where K = 1,2,3. Table 2-Table 5 compare different at-
tacks using results that are averaged over all attributes.
Our metrics are averaged over 10 trials. We find that
standard deviations of the metrics are very small, and
thus we do not show them for simplicity. Next, we de-
scribe several key observations we have made from these
results.
Comparing friend-based attacks: We find that
RWwR-SAN performs the best among the friend-based
attacks. Our observation is consistent with the previ-
ous work [15]. To better illustrate the difference be-
tween the friend-based attacks, we show the performance
gains and relative performance gains of RWwR-SAN
over other friend-based attacks in Table 2. Please refer
to Section 7.1 for formal definitions of (relative) perfor-
mance gains. The (relative) performance gains are aver-
aged over all attributes (i.e., major, employer, and city).
The reason why RWwR-SAN outperforms other friend-
based attacks is that RWwR-SAN performs a random
walk among the augmented graph, which better lever-
ages the graph structure, while other attacks simply count
the number of common neighbors or weighted common
neighbors.

12

Absolute performance gain Relative performance gain

Best friend-based attack
Best behavior-based attack

Our attacks are significant more accurate than existing ones

Backtracking	
 is	
 Important	

42	

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Backtracking strength, �

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pr

ec
is

io
n

of
in

fe
rr

in
g

ci
ti

es
K

=1

Figure 6: Impact of the backtracking strength on the
Precision of VIAL for inferring cities. We observe
that backtracking substantially improves VIAL’s per-
formance.

Comparing behavior-based attacks: We find that
VIAL-B performs the best among the behavior-based
attacks. Table 3 shows the average performance gains
and relative performance gains of VIAL-B over other
behavior-based attacks. Our results indicate that our
graph-based attack is a better way to leverage behavior
structures, compared to LG-B-I and LG-B-II, which flat-
ten the behavior structures into feature vectors. More-
over, LG-B-I and LG-B-II achieve very close perfor-
mances, which indicates that the rating scores carry little
information about user attributes.
Comparing attacks combining social structure and
behavior: We find that VIAL performs the best among
the attacks combining social structures and behaviors.
Table 4 shows the average performance gains and rela-
tive performance gains of VIAL over other attacks. Our
results imply that, compared to flattening the structures
into feature vectors, our graph-based attack can better in-
tegrate social structures and user behaviors.
Comparing VIAL with the best friend-based attack
and the best behavior-based attack: Table 4 shows
the average performance gains and relative performance
gains of VIAL over Random, the best friend-based at-
tack, and the best behavior-based attack. We find that
VIAL significantly outperforms these attacks, indicating
the importance of combining social structures and be-
haviors to perform attribute inference. This implies that,
when an attacker wants to attack user privacy via infer-
ring their private attributes, the attacker can successfully
attack substantially more users using VIAL.
Impact of backtracking strength: Fig. 6 shows the im-
pact of backtracking strength on the Precision of VIAL
for inferring cities. According to Theorem 1, VIAL with
a = 1 reduces to random guessing, and thus we do not
show the corresponding result in the figure. a = 0 cor-
responds to the case in which VIAL does not use back-
tracking. We observe that not using backtracking sub-

Figure 7: Impact of the number of reviewed items on
the Precision of our attack VIAL for inferring cities.
We observe that, when users share more behaviors,
our attack is able to more accurately predict their at-
tributes.

stantially decreases the performance of VIAL. The rea-
son might be that 1) a = 0 makes VIAL predict the same
attribute values for all test users, according to Theorem 2,
and 2) a user’ attributes are close to the user in the SBA
network and backtracking makes it more likely for votes
to be distributed among these attribute nodes. Moreover,
we find that inference accuracies are stable across dif-
ferent backtracking strengths once they are larger than
0. The reason is that when we increase the backtrack-
ing strength, attribute values receive different votes, but
the ones with top ranked votes only change slightly. We
observe similar results for other attributes.

Impact of the number of reviewed items: Figure 7
shows the Precision as a function of the number of re-
viewed items for inferring cities lived. We average Preci-
sions for test users whose number of reviewed items falls
under a certain interval (i.e., [5,20), [20,35), [35,50), or
� 50). We observe that our attack can more accurately
infer attributes for users who share more digital behav-
iors (i.e., reviewed items in our case).

Confidence estimation: Figure 8 shows the trade-off
between the Precision and the fraction of users that are
attacked via our confidence estimator. We observe that
an attacker can increase the Precision (K = 1) of infer-
ring cities from 0.57 to over 0.92 if the attacker attacks
a half of the test users that are selected via confidence
estimation. We also tried the confidence estimator called
gap statistic [34], in which the confidence score for a
targeted user is the difference between the score of the
highest ranked attribute value and the score of the second
highest ranked one. Our confidence estimator slightly
outperforms gap statistic because a test user could have
multiple attribute values and our attack could produce
close scores for them.

13

Backtracking substantially improves attack
success rates

Theoretically sound

Sharing	
 More	
 Behaviors	
 Makes	
 You	

More	
 Vulnerable	

43	

[5,20) [20,35) [35,50) � 50
Number of reviewed items

0.45

0.50

0.55

0.60

0.65

A
ve

ra
ge

pr
ec

is
io

ns
of

in
fe

rr
in

g
ci

ti
es

,K
=1

Attack success rates are higher when more behaviors are available

Other	
 Inference	
 A[acks	

44	

•  Inferring	
 author	
 idenLty	
 using	
 wriLng	
 styles	
 [IEEE	
 S	

&	
 P	
 2012]	

•  De-­‐anonymizing	
 social	
 networks	
 [NDSS2015]	

•  Inferring	
 user	
 interests	
 [WSDM2015]	

	

Summary	

•  Private	
 informaLon	
 can	
 be	
 inferred	
 from	

public	
 data	
 via	
 machine	
 learning	
 techniques	

	

•  Fundamental	
 reason:	
 private	
 informaLon	
 is	

correlated	
 with	
 public	
 informaLon	

•  How	
 to	
 defend	
 against	
 inference	
 a[acks?	

45	

