
A Hardware-software integrated solution for improved Single-Instruction Multi-

Thread processor efficiency

Michael Steffen

Ph. D. Final Defense

Friday April 6 at 10am in 3043 ECpE Addition

ABSTRACT

This thesis proposes using an integrated hardware-software solution for improving Single-Instruction

Multiple-Thread branching efficiency. Unlike current SIMT hardware branching architectures, this

hardware-software solution allows programmers the ability to fine tune branching behavior for their

application or allow the compiler to implement a generic software solution. To support a wide range of

SIMT applications with different control flow properties, three branching methods are implemented in

hardware with configurable software instructions. The three branching methods are the contemporary

Post-Dominator Re-convergence that is currently implemented in SIMT processors, a proposed Hyper-

threaded SIMT processor cores for maintaining statically allocated thread warps and a proposed

Dynamic Micro-Kernels that modified thread warps during run-time execution. Each of the implemented

branching methods have their strengths and weaknesses and result in different performance

improvements depending on the application. SIMT hyper-threading turns a single SIMT processor core

into multiple virtual processors. These virtual processors run divergent control flow paths in parallel

from threads in the same warp. Controlling how the virtual processor cores are created is done using a

per-warp stack that is managed through software instructions. Dynamic Micro-Kernels creates new

threads at run-time to execute divergent control flow paths instead of using branching instructions. A

spawn instruction is used to create threads at run-time and once created are placed into new warps

with similar threads follow the same control flow path.

This thesis's integrated hardware-software branching architectures are evaluated using different

realistic benchmarks with varying control flow divergence. Synthetic benchmarks are also used for

evaluation and are designed to test specific branching conditions and isolate common branching

behaviors. Each of the hardware implemented branching solutions are tested in isolation using different

software algorithms. Algorithms are designed for general purpose use or to target specific types of

branching conditions. Results shows improved performance for divergent applications and using

different software algorithms will affect performance.

