
Dynamic Frequency-Based Fingerprinting Attacks against Modern Sandbox
Environments

Debopriya Roy Dipta
Iowa State University

Ames, IA, USA
roydipta@iastate.edu

Eduard Marin Fabregas
Telefonica Research

Barcelona, Spain
eduard.marinfabregas@telefonica.com

Thore Tiemann
University of Lübeck

Lübeck, Germany
t.tiemann@uni-luebeck.de

Berk Gulmezoglu
Iowa State University

Ames, IA, USA
bgulmez@iastate.edu

Thomas Eisenbarth
University of Lübeck

Lübeck, Germany
thomas.eisenbarth@uni-luebeck.de

Abstract—The cloud computing landscape has evolved sig-
nificantly in recent years, embracing various sandboxes to
meet the diverse demands of modern cloud applications.
These sandboxes encompass container-based technologies
like Docker and gVisor, microVM-based solutions like Fire-
cracker, and security-centric sandboxes relying on Trusted
Execution Environments (TEEs) such as Intel SGX and
AMD SEV. However, the practice of placing multiple tenants
on shared physical hardware raises security and privacy
concerns, most notably side-channel attacks.

In this paper, we investigate the possibility of fingerprint-
ing containers through CPU frequency reporting sensors in
Intel and AMD CPUs. One key enabler of our attack is that
the current CPU frequency information can be accessed by
user-space attackers. We demonstrate that Docker images
exhibit a unique frequency signature, enabling the distinction
of different containers with up to 84.5% accuracy even when
multiple containers are running simultaneously in different
cores. Additionally, we assess the effectiveness of our attack
when performed against several sandboxes deployed in cloud
environments, including Google’s gVisor, AWS’ Firecracker,
and TEE-based platforms like Gramine (utilizing Intel SGX)
and AMD SEV. Our empirical results show that these attacks
can also be carried out successfully against all of these
sandboxes in less than 40 seconds, with an accuracy of over
70% in all cases. Finally, we propose a noise injection-based
countermeasure to mitigate the proposed attack on cloud
environments.

1. Introduction

In recent years, there has been a significant surge in
the adoption of novel application models for developing
applications in the cloud. These models are primarily de-
signed to offer enhanced flexibility and agility, improved
fault isolation, greater cost-efficiency, and more efficient
resource utilization. One notable development is the emer-
gence of the microservices paradigm as an alternative to
the conventional practice of running monolithic applica-
tions within virtual machines (VMs). In the microservices
model, an application is decomposed into a collection of

small, autonomous, and loosely interconnected compo-
nents (i. e., the microservices) that communicate with each
other through well-defined APIs. Simultaneously, there
has been a sudden increase in the demand for highly se-
cure and privacy-focused applications in the cloud, driving
the need for confidential computing solutions based on
Trusted Execution Environments (TEEs). Inevitably, these
significant developments also require the creation of new
sandbox environments designed to meet the performance
and security needs of modern cloud applications.

Container technologies like Docker [23] emerged as a
compelling alternative to traditional VMs, primarily due
to their ability to address inherent VM limitations such as
slow start-up times and resource-intensive nature. Docker
containers represented a significant step forward in the
development and management of cloud applications, albeit
with an important trade-off in security [15]. In light of
this, major cloud service providers chose to develop their
own execution environments, broadly categorized into two
main approaches: (i) those built upon container technolo-
gies (e.g., Google’s gVisor [54]) and (ii) those focused on
developing lightweight virtual machines (e.g., Amazon’s
Firecracker [4]). Within the context of confidential com-
puting, the landscape has similarly evolved to encompass
two distinct styles for protecting cloud applications. On
the one hand, new TEEs, such as AMD Secure Encrypted
Virtualization (SEV) [35], have been introduced, enabling
the protection of entire virtual machines. On the other
hand, multiple frameworks [10], [26] have been proposed
to ease the development of containers backed by a TEE
like Intel Software Guard Extensions (SGX) [18]. All in
all, today’s cloud applications can run in various execution
environments depending on the chosen cloud provider and
the application’s security requirements.

Regardless of the execution environment or infras-
tructure employed, cloud providers frequently enhance
server efficiency by allocating multiple tenants to the
same physical hardware. This practice, known as co-
location [55], [47], [31], results in the sharing of various
hardware components and OS features among these ten-
ants. Unfortunately, the shared nature of hardware presents
security and privacy risks for cloud computing users,

as it can be susceptible to side-channel attacks [63],
[30]. By exploiting shared hardware components, such
as data/instruction cache [2], [32], branch predictors [3],
execution ports [5], and ring buffers [45], adversaries
can perform sophisticated attacks aiming to leak sensi-
tive information from co-located users in public clouds.
Furthermore, cloud providers offer privacy-oriented plat-
forms through Intel SGX and AMD SEV by encrypting
the user’s application in the memory and executing the
applications in an enclave. However, TEEs can also be
compromised by malicious tenants and administrators in
the cloud through monitoring microarchitectural compo-
nents [41], [56], [39], [12]. In both cases, these attacks are
relatively well-understood today and mitigation strategies
have been enforced to counteract them. For instance, a
range of attacks against TEEs was previously possible
because of the ability to single-step through enclaves using
tools like SGX-Step [53]. However, it is noteworthy that
such attacks are no longer feasible, as evidenced by the
work of Constable et al. [16].

In addition to microarchitectural components, special-
ized architectural registers provide detailed information
about device usage. These registers gather data from vari-
ous sensors, reporting metrics like power/energy consump-
tion, CPU core-specific frequency values, and the number
of interrupts. Importantly, these registers can be accessed
directly by user-space applications through model-specific
registers (MSRs) or the operating system’s interface, pos-
ing a significant security risk to cloud users. Recently, the
Intel Running Average Power Limit (RAPL) interface that
reports the device power consumption was compromised
to leak secret keys [39] and other user activities [64].
Similarly, the cpufreq interface was leveraged to monitor
user activity through malicious applications [57], [20].
These attacks demonstrated that OS-based features are
also valuable sources for side-channel attacks.

In this study, we examine whether containers running
in microservices architectures can be identified through
frequency reporting sensors available in Intel and AMD
CPUs. We focus on the most popular microservices plat-
forms and their underlying systems, such as Amazon
Firecracker [4] and Google gVisor [60], as well as privacy-
oriented platforms such as Gramine [52] relying on Intel
SGX and AMD SEV [35] to assess our attack accuracy
for container fingerprinting. (Note that none of these sand-
boxing mechanisms/TEEs is supposed to protect against
dynamic frequency-based side-channel attacks). The ac-
quisition of such knowledge can provide adversaries with
the capability to execute more effective, efficient, and
stealthy attacks.

We summarize our key contributions as follows:
● We demonstrate that each Docker image has a unique

dynamic frequency fingerprint, and the detection ac-
curacy reaches up to 84.5% in the native environ-
ment.

● We show that our attack is successful in real-world
sandbox (gVisor, Firecracker) and privacy-oriented
environments (Intel SGX, AMD SEV) by achieving
a detection accuracy of up to 91.4%.

● Our attack can distinguish multiple containers run-
ning concurrently with an accuracy higher than 70%.

● We examine the effects of the bootstrap phase of
the Firecracker container process, MicroVM creation,

and the Docker image pull process on the frequency
fingerprints.

● Our attack can distinguish different versions of the
same image with an accuracy of 81.02%.

● Finally, we propose a noise injection-based defense
technique against frequency-based side-channel at-
tacks.

2. Background

We begin by offering the necessary background in-
formation to understand the functioning of the Dynamic
Voltage and Frequency Scaling (DVFS) present in modern
CPUs. Subsequently, we present several sandboxes widely
used today alongside two TEE-based solutions that pro-
vide enhanced security and privacy for cloud applications.

2.1. Dynamic Voltage and Frequency Scaling

Modern processors can operate at different voltage
configurations and clock frequencies, commonly known
as P-states or Operating Performance Points. Operating
a CPU at higher clock frequencies and voltages allows
more instructions to be executed during a given time
window; however, this comes at the cost of higher power
consumption and a significant increase in temperature.
From this observation, it becomes evident that the goal
is to achieve an optimal balance between CPU utiliza-
tion and power consumption, using the P-states with the
lowest power consumption whenever possible. The use
of these P-states is particularly relevant in the context
of cloud computing, where server CPUs need not always
be running at full speed. Fortunately, today’s CPUs inte-
grate multiple hardware interfaces that facilitate automatic
switching between various frequency/voltage configura-
tions, dynamically adapting to changing CPU resource
demands. Moreover, Turbo Boost technology, present in
Intel and AMD CPUs, allows these processors to oper-
ate at higher frequency levels than their specified maxi-
mum threshold when certain conditions are met, a feature
known as dynamic overclocking. Intel devices support this
feature through Intel Turbo Boost Technology [33] while
AMD enables high operating frequency through Turbo
Core technology [6].

In Linux-based systems, the cpufreq subsystem is
responsible for adjusting the performance scaling of all
CPU cores. This subsystem is structured into three layers:
the core, scaling governors, and scaling drivers. Among
these layers, the scaling governor is the one in charge
of selecting the scaling algorithm that predicts the CPU
latency. Furthermore, it is worth noting that user-space
applications can access the current dynamic frequency
values of each core, which are updated approximately
every 10 ms and can be read through the cpufreq interface.

2.2. Sandbox Environments

Docker containers [23]. The kernel’s resource-sharing
model adopted by containers presents significant bene-
fits in performance and efficiency while offering much
weaker isolation guarantees. Consequently, it is of utmost
importance to protect the host from malicious containers

2

aiming to exploit host OS kernel vulnerabilities. To this
end, cloud providers can utilize various Linux kernel
functions and modules (e.g., SELinux [46], AppArmor [9]
or Seccomp [22]) in order to enforce fine-grained security
policies. For achieving isolation among containers on the
same host, namespaces and cgroups security mechanisms
are typically employed [15]. Namespaces is a key feature
in the Linux kernel that enables process and resource
isolation by effectively dividing system resources (e. g.,
process IDs or network interfaces) so that each container
has its own isolated instance of such resources. Addition-
ally, cgroups governs the allocation of resources (e. g.,
CPU, memory, and disk I/O) to maintain equitable sharing
among containers.
gVisor [54]. Developed by Google, gVisor is an open-
source container runtime that adds an extra layer to
provide greater security and isolation to containerized
applications. Positioned in between the containerized ap-
plication and the host OS, gVisor serves as a user-space
application kernel, intercepting and emulating system calls
in order to create individual virtualized environments for
each container. This approach mitigates attacks by ma-
licious applications against the underlying host. gVisor
goes one step further and extends this protection by iso-
lating itself from the host through well-known Linux iso-
lation capabilities. This multi-layered approach provides
defense-in-depth while maintaining performance compa-
rable to virtual machines and efficiency akin to containers.
Other key features of gVisor include its minimal privilege
requirements, strict system call filtering, and implemen-
tation in Go, a well-known memory-safe and type-safe
programming language.
Firecracker [4]. Firecracker is an open-source virtualiza-
tion technology developed by AWS, establishing a min-
imal and efficient environment for operating lightweight
VMs, known as MicroVMs. MicroVMs offer enhanced
resource utilization and quicker startup times compared
to traditional VMs, while also providing a higher security
level compared to Docker containers. Guided by a mini-
malist design philosophy, Firecracker creates MicroVMs
with the minimum essential functions to optimize both
performance and security. Executed on the KVM hyper-
visor, MicroVMs also leverage isolation mechanisms built
into the Linux kernel such as Seccomp, cgroups, and
Namespaces in order to further improve security within
Firecracker MicroVMs. Last but not least, Firecracker
integrates a novel virtual machine monitor (VMM) and
an extended API for software developers to efficiently
manage their MicroVMs.

2.3. Trusted Execution Environments (TEEs)

Intel Software Guard Extension (SGX) [34]. Intel SGX
is a TEE that shields applications by encapsulating them
in so-called enclaves. Enclaves are isolated regions of
memory protected from the operating system and other
software running on the same system. The isolation mech-
anism ensures that sensitive data and code can be pro-
cessed within the enclave without exposure to threats or
attacks. SGX enables developers to create applications
that protect valuable assets like encryption keys, sensitive
computations, and authentication processes from being

accessed by unauthorized parties. By utilizing hardware-
enforced isolation, Intel SGX addresses critical security
concerns in various domains, such as cloud computing
and mobile phones, securing user data against malicious
activities.
Gramine [26]. Gramine is a lightweight guest OS de-
signed to execute Linux applications while easing host
requirements. The benefit of Gramine compared to VMs in
the cloud is to run applications in an isolated environment
with guest customization, process migration, and easily
porting the applications to different host OSes. Moreover,
Gramine supports running unmodified applications inside
SGX enclaves without manually configuring the applica-
tion for the SGX environment. This process is extremely
useful for container users without trust in cloud providers
since Intel SGX enclaves are protected against adversaries
in the host system. The Gramine Shielded Containers
(GSC) tool [27] basically transforms a base Docker image
into a graminized Docker image that includes Gramine-
specific application configuration and the Gramine Library
OS. As a result, Gramine allows cloud providers to run
containers in the Intel SGX environment while protecting
the application against a malicious host through enhanced
security primitives.
AMD Secure Encrypted Virtualization (SEV) [35].
AMD SEV is a security technology developed by AMD to
enhance the protection and isolation of virtual machines
in cloud environments. It allows for creating encrypted
memory areas called “encrypted VMs” or “encrypted
enclaves”. These enclaves isolate the memory and data
of each virtual machine from both the hypervisor and
other virtual machines, providing a higher level of security
against various types of attacks, including those attempt-
ing to steal sensitive data from memory. By encrypting vir-
tual machine memory, SEV helps safeguard against threats
such as malicious administrators, unauthorized access,
and memory-based attacks. This technology is crucial in
bolstering the security of cloud computing environments
and maintaining the confidentiality of customer data and
workloads.

3. Motivation

Our research builds upon the key observation that
modern CPUs dynamically adjust their voltage and fre-
quency in response to the workloads they handle, and this
information is accessible from user-space. Our hypothesis
is that this voltage and frequency information can consti-
tute a unique application’s fingerprint.

In this study, we consider different scenarios in which
the victim and the attacker should operate in full isolation
within their corresponding domains (container vs user-
space or TEE vs kernel-space), i.e., without violating
the trust boundaries established in each case. Therefore,
regardless of the scenario, adversaries should not be able
to obtain any information whatsoever about the applica-
tions running inside the victim’s container. This includes
information such as what application is running within
the victim container (e.g., a MariaDB instance). Such
knowledge could give adversaries valuable information to
perform sophisticated attacks more efficiently, effectively,
and stealthily. If adversaries can discover that a container
implements a MariaDB image, they can design more

3

targeted attacks by taking advantage of known weaknesses
and attacks against this type of database. For example,
if adversaries know that MariaDB is used, they could
try to exploit the remote code execution vulnerability
reported in CVE-2021-27928 [44] or the highly successful
vulnerability found in CVE-2016-6662 [43].

4. Threat Models

In this study, we consider three threat models: (1) a
native environment, (2) a sandbox environment, and (3) a
TEE-based environment. In the following, we explain the
threat models in further detail.
Native Environment. In the native environment scenario,
we assume that the victim is running an application inside
a Docker container in the user-space. Concurrently, the
attacker, also operating within the user space, seeks to
monitor the CPU frequency of all cores in the victim’s
device through a malicious application or container. (Note
that our experiments revealed that, by default, Docker
containers expose such CPU frequency information to
their owners). In this scenario, the attacker leverages the
cpufreq interface to gather frequency values and perform
fingerprinting of the running containerized applications,
as illustrated in Figure 1a.
Sandbox Environment. In the sandbox environment, we
assume that the victim is a tenant running one container-
ized application in the cloud and the attacker is employed
by the cloud provider with user-level access to the host
system. The victim runs its containers either using a
container-based sandbox (Figure 1b) or inside a MicroVM
(Figure 1d). Note that, unlike the previous scenario, the
cpufreq interface is not accessible from MicroVMs in Fire-
cracker and containers in gVisor). Limiting cloud provider
employees to user-level access on its host systems while
they are serving customers is a common technique to
secure the system [11]. However, the cloud provider must
be able to gather metrics like CPU utilization, memory
allocation, or power consumption to be able to properly
bill its customers.
TEE-based Environment. In this threat scenario, we
assume that the victim runs the containers in a more
privacy-oriented environment using TEEs like Gramine
(see Figure 1c) or AMD SEV (cf. Figure 1e). The vic-
tim container is assigned to one core and runs inside
an enclave. Here, we adopt the standard TEE adversary
model [40], which considers adversaries who have root
privileges. The attacker profiles the CPU frequency of the
physical core assigned to the victim container. This type
of attack can be carried out by the cloud providers them-
selves, or by malicious tenants who manage to escape the
container and gain control of the underlying host [1]. In
the latter case, after carrying out the attack, the adversary
has the same privileges as the cloud provider on that host.

Finally, we consider two variations for each of the
threat models. In the first variant, the attacker is able
to capture frequency measurements during the execution
of the victim (i.e., from the moment the “docker run”
command is executed). In the second variant, the attacker
can additionally gather measurements while the victim
retrieves its container image from a container registry
(i.e., while the “docker pull” command is being executed).

Figure 1: Overview of the threat models of our proposed
attack in different execution environments.

Obviously, the second variant gives the attacker an ad-
vantage over the first variant as they have access to more
information that can be leveraged for the fingerprinting
attack. It is to be noted that, we assume the adversary
has a list of official docker images and the fingerprinting
attack can profile only the listed docker images.

5. Technical Challenges

During our work, we overcame three technical chal-
lenges (C1, C2, and C3) as described in detail next.
C1: Collecting container frequency signatures.
Adversaries aim to devise an efficient and effective ap-
proach for accurately acquiring the frequency signature
of a (victim) container. Achieving this goal poses several
challenges, as follows. One such challenge is how to dis-
entangle the frequency pattern of the underlying execution
environment from that of the container image. This com-
plexity is particularly pronounced when Docker containers
operate within MicroVMs, such as those generated by
Firecracker. Moreover, while collecting frequency mea-
surements, the container operates within a non-isolated
core, introducing noise into the measurements due to
concurrent tasks sharing the same core. Another poten-
tial hurdle for adversaries relates to the specific type of
frequency measurements they have access to. In certain
scenarios, unauthorized access to the server might have
been obtained by adversaries before the container is ex-
ecuted, enabling them to monitor the frequency patterns
produced as a result of the “docker pull” and “docker run”
commands. In other cases, however, adversaries could
compromise the server after the image has been pulled
and stored on the server, meaning they can only see the
frequency signature while a container is running.
C2: Distinguishing container frequency signatures.
The second challenge lies in accurately identifying the
application running inside a container solely from its
frequency signature, taking into account that it is common
for similarities between containers to exist. It is worth
noting that Docker images are made up of layers–base,
intermediate, and top layers. Many of these layers are
shared across containers to optimize storage and transfer
efficiency. For instance, base image layers include oper-
ating system files and core software components that can

4

be directly used in many containers. Another example is
that multiple containers may share software dependencies
such as libraries, packages, and frameworks, leading to
the same image layers. Complicating matters, software
developers frequently rely on Docker images sourced
in public repositories as foundations to build their own
applications, thereby exacerbating the layer-sharing prob-
lem and resulting in more similar frequency fingerprints
between containers.
C3: Exploiting the leakage arising from the frequency
signatures to compromise privacy.
Once adversaries have been able to collect the containers’
frequency signatures accurately and use the collected mea-
surements to distinguish them from one another, they have
to think of ways to carry out their attacks in the real world.
In a real cloud computing environment with many tenants,
each concurrently running numerous containers, adver-
saries must possess the capability to monitor all cores
of the server they compromised. Swiftly identifying the
creation of a sandbox environment designated for applica-
tion execution becomes crucial. Additionally, adversaries
consistently prioritize launching attacks that yield substan-
tial impact while maintaining cost efficiency. With this in
mind, we are interested in investigating the feasibility of
the proposed fingerprinting attacks by “weak” adversaries
who are limited to collecting frequency measurements
only for a short amount of time.

6. Methodology

In all the proposed threat models, the attack consists
of two distinct phases: an offline phase, which occurs
before the victim container is executed, and an online
phase, which takes place while the victim’s container is
running. In the offline phase, the attacker collects CPU
frequency data through the cpufreq interface while
running different Docker images in a container separately.
To that end, the attacker can either use container images
they own or rely on widely used container images located
in public repositories such as Docker Hub. The collected
CPU frequency data is then used to train a deep learning
model, creating a pre-trained model for the online phase of
real-time fingerprinting attacks. During the online phase,
the CPU frequency readings of the victim’s application
are recorded by a malicious app and are forwarded to
the attacker’s device through a communication network.
The attacker utilizes the pre-trained model to predict the
running Docker image based on the frequency fingerprint.
Note that most of the required steps are performed in the
offline phase, while the online phase can be considered as
a testing stage of our experiments. In the following, we
describe the steps performed during both phases in further
detail.
1) Retrieve container images. During the initial step,
which takes place in the offline phase, the attacker obtains
the container images they want to use in their dataset.
This can involve retrieving container images from a public
container image repository or constructing the container
images from source code repositories. For our experi-
ments, we developed a custom web scraper to gather pub-
lic Docker images from Docker Hub through the Docker
Hub API [21]. Our crawler was configured to retrieve all
official Docker images on Docker Hub, which resulted in

a total of 178 container images. Out of the initial set of
container images, we excluded 23 images that were either
deprecated or obsolete. This process resulted in a dataset
containing 126 Docker images, which we used for our
subsequent experiments and analysis.
2) Converting container images into different runtimes.
In the next step, the attacker prepares the Docker container
images for the specific target execution environment,
which can vary depending on the sandbox on which the
attack will be performed. For the container environment,
this step is rather straightforward if the retrieved container
images follow the specifications of the open container
initiative. When VMs are used to isolate container work-
loads, the images first have to be converted to a virtual
machine format. This is usually done by either converting
the container image into a bootable root file system by
flattening the image layer into a single file system, adding
a kernel, and configuring the initialization of the container
workload [48] or the container image is moved into a
prepared VM that has a container runtime installed which
will execute the container inside the VM [36], [58]. If
the execution environment is a process-based TEE like
SGX, the container image must be converted into an
enclave for that TEE. Execution environments that provide
a TEE for VMs like AMD SEV or Intel TDX require
the container-to-VM conversion, followed by a conversion
from a generic VM image to a TEE enclave. The attacker
performs these steps during the offline phase of the attack.

We use a Firecracker-specific version of containerd
to run Docker images inside microVMs via a container
runtime inside the VM, prepare the images for SGX
with Gramine, rely on the Kata container runtime when
working with AMD SEV, and integrate the runsc run-
time with containerd for gVisor. More information about
the several setups and conversion steps are given in the
respective sections later in the paper.
3) Collecting CPU frequency measurements. To col-
lect CPU frequency signatures for individual Docker
containers, the adversary monitors the CPU frequency
(scaling_cur_freq attribute) during the runtime of
each container. A generalized data collection algorithm1 is
presented in Algorithm 1 that works for all environments.
The algorithm reads the CPU frequency (f) in parallel
while running a specific container. The sampling rate (Ti)
and the number of samples (Ns) in each measurement are
predefined for each environment. This step is performed
during the offline phase to gather training data for the
ML model and also during the online phase to retrieve
measurements from the victim container. In general, we
collected 4000 samples with a sampling rate of 10 ms
(unless otherwise specified), which takes 40 seconds to
collect one measurement. If the number of images is N
and the number of measurements per image is M, the
overall data collection time during the offline phase takes
around (N ×M ∣times40) sec. Further details on chosen
Docker arguments are given in Section 9.
4) ML model deployment. In the fourth step, we train a
Convolution Neural Network (CNN) model to establish
a pre-trained model based on the CPU frequency data
collected in the previous step. The model architecture

1. The dataset and the code will be made available on GitHub: https:
//github.com/XXXXXX

5

https://github.com/XXXXXX
https://github.com/XXXXXX

Algorithm 1: Data Collection Algorithm
// Ti is the interval between each reading
// Ns is the number of samples
// NC is the number of containers
// NM is the number of measurements per

container
// Container_name is the name of the container
// f is the CPU frequency
Input: Ti,Ns,NC ,NM ,Container name
Output: f

1 for i← 1 to NC do
2 for j ← 1 to NM do
3 Run Container name[i] ;
4 for k ← 1 to Ns do
5 f[i, j, k]← Read scaling cur freq ;
6 sleep Ti ;

7 kill Container name[i] ;
8 sleep 5s ;

consists of multiple convolutional layers, max-pool layers,
dense layers, and dropout layers. The ReLU activation
function is used for all convolutional and dense layers
except for the last one. The last dense layer incorporates
the softmax activation function. The dropout rate in the
dropout layers is set to 0.5. We also utilized a fixed kernel
size of 3 × 1 for all the convolutional layers. The only
parameters that are changed during each specific execution
environment are the number of convolutional layers and
the number of neurons in the dense layers. Note that this
ML model is only able to accurately classify samples
from any of the containers included in the dataset. The
time for building a pre-trained model in the offline phase
depends on the computational power of the adversary. We
used NVDIA GeForce 3090 GPU to create our pre-trained
model. The time to train a model takes around 1.5 minutes
in our experimental setup.
5) Conducting fingerprinting attacks in the wild. Once
the adversary has developed an ML model capable of
accurately identifying images in its training dataset solely
based on their frequency signatures, the next step is to
consider the practical execution of the attack (i. e., the
online phase). To achieve this, the adversary must possess
knowledge about the sandbox employed by the victim
application and the specific core it is utilizing. For the
former, the adversary can leverage the fact that infor-
mation regarding execution environments and the micro-
architecture types for different instances used by major
cloud providers is usually well-documented [50], [49],
[7], [13], [14]. For the second case, it becomes crucial to
determine whether the sandbox frequently employed for
running cloud-based applications also possesses a unique
fingerprint that can be used by adversaries to detect the
presence of a new container. Afterward, the attacker col-
lects a CPU fingerprint from the victim’s device and feeds
the fingerprint into the pre-trained model to classify the
running container.

7. Attack in the Docker Environment

Our work is built upon the hypothesis that a series
of CPU frequency samples collected while a container
is in operation can develop into a reliable container
fingerprint. To confirm this hypothesis, we choose to
employ DVFS in order to quantify the fluctuations in CPU

Figure 2: Frequency signatures of containers running in
the Native Linux environment are given. openjdk (a, b),
groovy (c, d), and ghost (e, f) containers have distinct
fingerprints.

frequencies during the execution of Docker containers. In
this section, we perform our attack on a native Linux
environment. We built a dataset of 126 Docker images
and trained a CNN model to evaluate the performance of
our attack. The attack execution steps are explained in
detail in light of the attacker.
Experiment Setup. The experiments for the native Linux
environment are performed on the Intel Comet Lake mi-
croarchitecture with a CPU model of Intel Core i7-10610U
CPU @ 1.80GHz. The installed version of containers and
docker-init are v1.6.6 and 0.19.0, respectively. The OS is
Ubuntu 20.04 LTS with a Linux kernel version of 5.11.0-
46-generic. Intel Turbo Boost is enabled.
Data Collection. To evaluate the feasibility of the attack,
we collected 100 measurements (NM) for each container,
resulting in a dataset containing a total of 12600 mea-
surements. Each measurement consists of Ns = 4000
samples, collected at the Ti = 10ms resolution. Hence,
one fingerprint is captured in 40 seconds. In Figure 2, we
visualize six frequency fingerprints collected from three
different containers. Note that, while a consistent pattern
is observed across multiple measurements of the same
container, the frequency signature varies among three
individual containers. We also observed that while some
containers result in higher operating frequency for a longer
time (as in the case of groovy), some containers possess
less activity (such as openjdk).
Attack. The collected CPU frequency measurements are
one-dimensional. The CNN model consists of three con-
volution, two max-pooling, and three dense layers. Addi-
tionally, two dropout layers are added in between the con-
volution and max-pooling layers to avoid overfitting. For
the optimizer, we utilize categorical cross-entropy since
we have more than one class. Out of 100 measurements
per container, we randomly chose 60 measurements for
training, 20 measurements for validation, and 20 measure-
ments for the online phase (test data). The obtained test
accuracy with the CNN model is 84.5%. This result shows
that our hypothesis is valid in the scenario of identifying
the applications running inside Docker containers in a
native Linux environment with relatively little noise.

Our attack relies on two assumptions for its success.
Firstly, we assume an exclusive core usage scenario, where
each core hosts only one active container at any given
time. Secondly, we presume a stable core assignment
throughout a container’s operational lifetime. Due to the

6

limited number of samples required for the attack, we
work under the premise that the container stays on a
core for a short period, typically a few seconds, which
we consider a reasonable premise. Considering these two
assumptions, the first piece of information that the adver-
sary needs to know is identifying the core in which the
containers are running. One solution for such a problem
is to monitor the CPU frequency of all the cores and
analyze the signatures with a separate ML model that
closely resembles the fingerprints of the listed containers.
The confidence rate of the prediction for the fingerprints
of each monitored core can be utilized to address this
issue. If we consider a realistic execution environment for
the containers, identifying the core is comparatively easier
than the native Linux environment, as in most cases, the
execution environments create a unique signature.

8. Attacks in Modern Sandbox Environments

In this section, we go beyond the previous native
scenario and demonstrate the applicability of our attack
in more practical and real-world execution environments
like gVisor and Firecracker, which are used by millions
of users in production environments today. (Note that in
the sandboxes based on creating user-level microVMs, we
employ Docker containers inside them).

8.1. gVisor

As a first step, we set ourselves the objective of
evaluating our attack in gVisor, a popular sandbox that
allows the creation of containers with much better security
guarantees than those of Docker.
Experiment Setup. The experiment for gVisor is con-
ducted on a server equipped with Intel Xeon Gold 5218
CPU @ 2.30GHz. The device has 32 cores with 16
cores per socket. The host OS is Ubuntu 20.04.6 LTS
with a kernel version of 5.15.0-78-generic. The version
of the installed containerd tool is v1.6.21. Note that this
hardware is a typical high-end server that is commonly
used in cloud environments.
Data Collection. In order to set up the gVisor execution
environment, two crucial components are required. The
first one is the runsc runtime through which gVisor
manages the runtime interface and runs containers in
isolated sandboxes. The other required component, named
containerd-shim-runsc-v1, is a shim plugin that
works as an intermediary between runsc and containerd.
Specifically, this plugin is responsible for managing the
communication interface between containerd and runsc.
Once the execution environment for gVisor is ready, any
containerd CRI tool can be used to run containers in the
gVisor environment. In our experiment, the ctr command
line tool [17] carries out the tasks associated with pulling
and running of the sandboxed containers with the inte-
gration of runsc runtime. Namely, it is equivalent to
the functionality provided by containerd when Docker
containers are used.
Results. The CPU frequency data is collected for 126
official Docker images selected from Docker Hub [21].
We collected 100 measurements for each Docker image
consisting of 4000 samples. The same arguments from the
native Linux environment scenario are used. A new 1D

CNN model is built for gVisor, which is trained with a
randomly selected dataset (60% training, 20% validation)
in the offline phase. Unlike the previous CNN model for
the native environment, an additional convolutional layer
is incorporated in the CNN model. Thus, the CNN model
includes four convolutional, two max-pool, two dropouts,
and three dense layers. The kernel size remains the same
as 3× 1 for each convolutional layer. In the online phase,
the pre-trained model is tested with 20% of the data that
is not included in the training phase. The obtained test
accuracy of the CNN model is 71.2%. The sandboxed con-
tainers possess an extra layer of isolation and are protected
against many microarchitectural attacks. Still, our results
indicate that the container technology offered by Google
cannot protect the identity of the running containerized
application against dynamic frequency-based side-channel
attacks.

8.2. Gramine

We also explore whether it is possible to fingerprint
the Docker images running inside Gramine. Much like
Docker and gVisor, Gramine operates as a container-
based sandbox; however, it distinguishes itself by run-
ning containers backed by Intel SGX, thereby offering
enhanced security assurances. It is to be noted that the
Docker images running inside the enclave are built from
the public images available in Docker Hub. Also, note
that the extracted fingerprints do not directly correspond
to the characteristics of the public Docker image; instead,
they refer to the signatures of the newly built signed-
graminized images.
Experiment Setup. We perform this experiment on an
Intel Coffee Lake microarchitecture compatible with Intel
SGX. The CPU configuration of the mobile server is Intel
Core i9-9980HK CPU @ 2.40GHz. The installed OS in
this device is Ubuntu 22.04.3 LTS with a kernel version
v5.15.0-86-generic.
Data Collection. The first step before using the Gramine
framework is to enable Intel SGX from the BIOS setup.
The necessary SGX driver requires to be installed as well.
Once the device is ready to use Intel SGX, the second
step is to install and configure the Gramine framework.
The Docker images available in the public repository
cannot be used directly to run inside a protected enclave.
Gramine framework provides a feature that can convert
any pulled image from the public repository into an
unsigned-graminized image. (Optionally, this unsigned-
graminized image can be converted again into a signed-
graminized image). In this experiment, we convert all
the public Docker images into their signed-graminized
version. Afterward, these images are run inside an en-
clave and can be protected from any untrusted part of
the system, including the OS and the hypervisor. We
considered 50 images for this experiment which were
converted into signed-graminized images as the largest
enclave size supported in our target device is 256 MB.
Once the graminization was complete, we ran the signed
images inside an enclave and collected the CPU frequency
data in parallel. This experiment proves the efficacy of
the attack to distinguish signed graminized Docker images
which are built from the official Docker images.

7

Results. We collected 100 measurements for each image
and trained a CNN model to make a prediction. The pre-
trained model can predict the containerized images with
an accuracy of 91.38%. We observed higher accuracy
for detecting the graminized images compared with the
detection of official Docker images in other execution
environments. The graminized Docker image incorporates
additional layers on top of the existing layers of the
official Docker image from which it is built. This feature
might provide some unique activity during the runtime of
the individual graminized image to affect their frequency
signature distinctively.

8.3. Firecracker VMM

In this section, we perform our fingerprinting attack
in a Firecracker environment in which MicroVMs are
utilized to run containers in a sandbox environment.
Experiment Setup. To ensure a fair comparison, we
maintain an identical experimental setup for Firecracker
as the one employed for gVisor. In addition to the previous
features, the device is compatible with KVM kernel. The
installed version of the Firecracker framework is v1.1.0.
Data Collection. Firecracker VMM allows clients to cre-
ate multiple MicroVMs in the cloud provider’s server.
Inside each MicroVM, the client can run any containerized
Docker image. In this experiment, we consider that the
client is assigned to a specific core of the server to create a
MicroVM and run the containers inside it. We also assume
that the MicroVM is always run in the same physical core.

firecracker-containerd is the containerd bi-
nary used with Firecracker through which the containers
can be managed inside the MicroVMs. This process is
also equivalent to the Docker daemon established in the
native Linux environment. The initial step before running
a containerized application inside a MicroVM is to run
the firecracker-containerd daemon with a pre-
built configuration file. The configuration file defines the
initialization of the containerd runtime. For this experi-
ment, the considered configuration script to allow certain
settings is summarized in Appendix D.

After creating the script, the second step is to con-
figure the device mapper thinpool, which is used by
the firecracker-containerd as a storage driver. The device
mapper thinpool has two components–data and metadata.
A configuration file is created that generates the “data”
file with a size of 100 GB and the “metadata” file with a
size of 2 GB. These two components allow an optimized
and efficient infrastructure to manage the dynamic data
and operational metadata of the MicroVM.

The last step is to set up the aws.firecracker
runtime, which is required to run Firecracker MicroVM.
This configuration file mainly includes the path to the
firecracker executable binary, kernel image, and the
root driver image. The kernel image facilitates the boot-up
phase of the MicroVM, and the root driver creates its file
system. The configuration file sets up the necessary kernel
arguments, which are passed into the MicroVM. The
network interface with the MicroVM is also established
through the configuration file setup.

Once we run firecracker-containerd, the containerd
runtime gets initialized and booted in within a very short
period (≈ 50 − 80ms in our test setup). Later, we utilize

the firecracker-ctr tool to manage the containers
inside the MicroVM, which is equivalent to the docker
command in the native Linux. The firecracker-ctr
tool allows users to start a MicroVM and manage the
containers/images inside. In other words, the firecracker-
ctr tool allows running containerized applications encap-
sulated by the MicroVM.

Before starting the data collection, we run firecracker-
containerd in a separate terminal. In a new terminal,
firecracker-ctr tool is used to pull and run all the
official Docker images. We adopt a similar data collec-
tion algorithm as given in Algorithm 1 and collect CPU
frequency data during the runtime of the containerized
applications. We collected the fingerprint dataset for 126
official Docker images in this manner.
Results. For Firecracker, a CNN model is trained (60%)
and validated (20%) with the collected dataset in the
offline phase. The architecture of the CNN model remains
the same with the gVisor scenario. The test accuracy of
the pre-trained model in the online phase based on the
test dataset (20%) is 73.04%, which is similar to gVisor.
If we consider the top 3 and top 5 guesses of the pre-
diction model, the accuracy becomes 81.2% and 86.4%,
respectively. Although Firecracker is designed to provide
two layers of isolation through container and MicroVM,
our results show that Firecracker VMM is still vulnerable
to dynamic frequency side-channel attacks.

8.4. AMD SEV

In this scenario, we intend to evaluate our attack in an
AMD SEV execution environment that is regarded as one
of the most secure execution environments in the cloud.
Experiment setup. We ran our SEV experiments on an
AMD EPYC 7232P (Zen 2) CPU @ 3.1GHz processor
that features eight cores and 16 threads. The CPU is
capable of SEV and SEV-ES. The host OS is an Ubuntu
22.04.3 LTS with a kernel version of 5.15.0-78-generic.
To activate SEV, we run the host kernel with parameters
kvm_amd.sev=1 and kvm_amd.sev_es=1. We use
containerd version 1.7.3 and the Kata container runtime
version 3.2.0-rc02 to run container workloads in SEV-
secured virtual machines. The Kata runtime uses QEMU
version 7.2.0 (kata-static). QEMU is configured to run the
VMs with eight host vCPUs which are made available
through KVM. The kernel version inside the VMs is
5.19.2-112-sev.
Data Collection. The SEV feature of the AMD requires
to be enabled from the BIOS setting in the first stage.
Later, we configure QEMU to create and run a SEV-
protected VM. In order to run the container inside the VM,
the Kata container runtime is utilized. In this experiment,
we use the nerdctl command line tool to manage
the runtime and the features of containerd. We collected
CPU frequency data from 107 official Docker images in
the Docker Hub [21]. We faced some difficulties while
running the rest of the official Docker images, leading to
a low number of images compared to previous scenarios.
We collected 4000 samples with 10 ms resolution for each
measurement and created a data set that contains 100
measurements of each Docker image.

2. Earlier (stable) versions only supported SEV-SNP which is not
supported by our CPU.

8

Results. We consider 80% of the entire dataset as training
and validation data for the offline phase. The remaining
20% are separated for testing in the online phase. A
CNN model dedicated to the AMD SEV-based execution
environment is trained with the training dataset. The train-
ing data contains 107 × 60 = 6420 measurements, where
60 measurements from each Docker image are randomly
chosen. After getting a stable prediction accuracy on the
validation data that contains 20 additional measurements
from each Docker image, we fixed the pre-trained model
to be used for the online phase. In the online phase,
we tested the accuracy of our pre-trained model with
107 × 20 = 2140 measurements. The test accuracy for the
AMD SEV execution environment is 79.1%. Although
we shifted our experiment from the simplest execution
environment to the most secure one, we can observe that
our attack still remains feasible.

9. Evaluation

In Section 8, we showed that individual Docker con-
tainers create distinguishable CPU frequency fingerprints
when run on top of different sandbox environments. This
section performs additional analysis based on the previous
results to make the threat model more practical. Specifi-
cally, we evaluate the portability of our attack (E1), the
effect of sample size (E2), the simultaneous execution of
multiple containers (E3), the relation between frequency
activity and misprediction rates (E4), the detection of dif-
ferent image versions (E5), the effects of input arguments
(E6) and multi-core execution (E7), noise analysis (E8)
and effects of Docker pull on Firecracker (E9).

E1) Compatibility with different microarchitectures and
execution environments. The ideal environment for lever-
aging CPU frequency to identify different containers is the
native Linux environment. Although containers are iso-
lated through cgroups and namespaces, our side-channel
attack is still effective in identifying running containers.
From Table 1, we can observe that the highest accuracy
(84.5%) is obtained from the native environment when
the number of images is higher than 100. Proceeding
toward more complex execution environments is expected
to reduce the test accuracy due to additional noise. How-
ever, the increased level of security features and additional
layers in different execution environments cannot mask the
CPU frequency fingerprint of the containers. In Table 1,
the container profiling accuracy is enlisted for four ad-
ditional secured execution environments. In all cases, the
running containers can be detected with more than 70%
accuracy. It is to be noted that we included all the Docker
containers from Docker Hub [21] that work without any
issue within the individual execution environment in our
target devices. The rest of the Docker containers did not
run due to issues specific to the execution environment
and our target devices.

Previously, the efficacy of our attack was tested on a
specific microarchitecture. In this section, we evaluate the
performance of this attack in different microarchitectures
to prove the attack’s portability. It is to be noted that the
portability indicates the reproducibility of the attack in a
different microarchitecture rather than the transferability
of the pre-trained model from one microarchitecture to

Figure 3: Accuracy of container fingerprinting in the
native environment with different samples. The accuracy
in terms of the top 3 and top 5 guesses of the prediction
model is also considered to make a comparison.

another. As shown in Table 1, the fingerprinting attack
is compatible even with different microarchitectures for
a specific execution environment. The detection accuracy
remains close even though a different microarchitecture
is used with the same execution environment. For every
execution environment, we consider testing our attack in
two different microarchitectures except for Gramine and
AMD-SEV, as our other available servers do not support
trusted execution environments, like SGX and SEV.

E2) Impact of varying sampling size in the accuracy
of the ML model. Although we initiated the experiment
with 4000 samples per measurement, we also analyzed the
impact of different sample sizes with a fixed resolution
to select the least amount of samples that are adequate
to perform the fingerprinting with satisfactory accuracy.
Reducing the sample size will speed up the overall data
collection and attack execution time, making the attack
more efficient and stealthy. We perform this experiment
on the Native Linux environment. In Figure 3, we observe
that the accuracy does not improve further after 2500
samples, resulting in a 1.7 times faster attack. The test
accuracy of the pre-trained model with 2500 samples is
86.4%, which is even slightly better than 4000 samples
(84.5%). One of the reasons for such a scenario is that
we observe more activity during the starting phase of
the Docker runtime, and it facilitates the ML model to
extract more useful features from the initial samples. The
top guesses of the prediction model are also analyzed to
explain the deviation of the misprediction.The accuracy
of the pre-trained model with top 3 and top 5 guesses
are 97.3% and 99.1%, respectively, with 4000 samples. A
similar trend can be seen in Figure 3 with the reduced
number of samples. The accuracy with the top 3 and top
5 guesses remains stable after 2500 samples.

E3) Effects of running multiple containers simultane-
ously. In cloud environments, multiple tenants share the
same physical server simultaneously, where each tenant’s
workload may be run on one specific core. In a scenario
where multiple tenants are running Docker images on their
assigned cores at the same time, the efficacy of our attack
from the adversary’s perspective is evaluated in this sec-
tion. We intend to measure the effects of running multiple
containers simultaneously in separate cores, where each
container is pinned to a specific core. Since the cpufreq
subsystem reports the dynamic frequency of each core

9

TABLE 1: Comparison of the fingerprinting results in different execution environments and microarchitectures. The
highest accuracy for each environment is given with the bold font.

Execution
Environment

of
containers

Microarchitectures
Comet Lake Cascade Broadwell Skylake Coffee Lake AMD EPYC

Native 126 84.5% 83.03% 73.37% 81.04% 74.16% 79.60%
Firecracker 126 - 73.04% - 72.01% - -

gVisor 126 - 71.20% 71.7% -
Gramine 50 - - - - 91.4% -

AMD-SEV 107 - - - - - 79.8%

separately, an adversary can track multiple users or con-
tainers concurrently, which makes our attack stronger than
other side-channel attacks in which only one victim can be
monitored [29], [5]. However, separate containers running
in multiple cores might introduce some noise, creating
fluctuation in core frequency and degrading the perfor-
mance of the container detection model. We evaluate the
performance degradation of the detection model in case an
adversary monitors multiple physical cores concurrently,
as well as the impact of running separate containers on
two sibling threads.

This experiment is performed on the Intel Cascade
microarchitecture with the native environment. In order to
analyze the impact of noise, we randomly choose a set of
containers and run them in two separate cores in parallel.
By monitoring the frequency values from these two cores,
we collected 110 measurements and fed them to our pre-
trained model, which was previously trained in a noise-
free environment in the Intel Cascade microarchitecture.
The accuracy based on our newly collected test data is
81.8% in contrast to the accuracy of 83.03% obtained
with noise-free test data. When we increase the number
of containers to four, the accuracy drops to 77.3%. We
repeated the experiment by running 6, 8, and 10 containers
in parallel to realize how far it affects the accuracy. In
Figure 4, we demonstrate the accuracy drop with the
increasing number of containers in separate cores. By
running ten containers concurrently in ten different cores,
we can observe an accuracy drop of 12.4% from a single
container scenario. On average, every container introduces
≈ 1.5% accuracy drop due to the added noise caused
by concurrent execution. The top 3 and top 5 guesses
predicted by the pre-trained model are also reported in
Figure 4. The accuracy of the pre-trained model based
on the top 5 guesses is 95.6% (noise-free), which drops
to 89.1% with ten simultaneous executions of containers.
The margin of accuracy drop in this case is 6.8%, com-
pared with the accuracy drop of 9.2% for the top 3 guesses
and 12.4% for the top 1 guess. It is to be noted that we
can observe a rise in the accuracy with ten concurrent runs
of containers for the top 3 and top 5 guesses. Since the
containers running in parallel are picked randomly, there
is a small fluctuation in detection accuracy while changing
the number of cores.

Another aspect of this experiment involves running
two containers in the sibling threads of the same core.
Interestingly, running them in the sibling threads reduces
the accuracy to 42.7%. This concludes that although it
is still practical to fingerprint containers running concur-
rently on different cores, it is less effective if they run on
the sibling threads of the same core. The reason is that two
sibling cores affect each other’s frequency values as they

Figure 4: The effects of running containers simultaneously
in parallel cores. Although the containers are running in
separate cores, the concurrent execution introduces some
noise, which affects the accuracy of the pre-trained model.

share many microarchitecture components, corrupting the
fingerprint substantially. The impact of running containers
on the same thread of a core is further analyzed in
Appendix A.
E4) Frequency activity vs misprediction rate. For differ-
ent execution environments, we achieve an accuracy of
over 70% in general. We put an effort into understanding
the cause behind the mispredictions. In Figure 5, the blue
dots refer to the misprediction rate per image, sorted in
descending order. Out of 110 Docker images, we find a
100% misprediction rate for 8 images and a 0% mispredic-
tion rate for 62 images. This indicates that some Docker
images are more challenging to distinguish than others,
affecting the overall accuracy of our prediction model.

We consider that the number of high-frequency points
beyond a predefined threshold is considered as the fre-
quency activity demonstrated by the runtime of a spe-
cific Docker image inside a container. According to our
observation, Docker images that demonstrate less fre-
quency activity have a higher misprediction rate compared
to the others. Figure 5 illustrates this observation more
comprehensively. The right y-axis of the figure attributes
the frequency activity of individual images. On the left
side of the figure, we can observe comparatively high
misprediction rates with less frequency activity. However,
on the right side, the frequency activity/image is compar-
atively higher, and the prediction model can distinguish
the images with higher accuracy, thus causing zero mis-
prediction rates. It is to be noted that this experiment
is performed on the Cascade microarchitecture with the
native environment. The minimum CPU frequency of
this microarchitecture is 1 GHz; therefore, we set our
predefined threshold to be 1.2 GHZ (adding a small factor
with the minimum frequency to incorporate the effect of
small noise) for quantifying the frequency activity for each

10

Figure 5: Demonstrating less frequency activity as the
cause behind high misprediction rates of some Docker
images. The left portion of the figure corresponds to the
images that are comparatively harder to distinguish than
the images in the right portion that show high-frequency
activity.

Figure 6: The CPU frequency signatures of three differ-
ent versions of Cassandra image. Different versions of
the same image exhibit unique variations in the CPU
frequency signature that make them distinguishable by
the DL model. Two measurements for each version are
presented to show the consistency of the pattern.

runtime of the Docker images.
E5) Feasibility of the attack with different versions of
the docker images. The previous experiment considers
the latest versions of the docker images. However, the
victim can run different versions of an image, leading to
variations in the image layers, such as dependencies. We
carry out an experiment to analyze the CPU frequency sig-
nature for different versions of the docker images. For this
analysis, we randomly selected 25 images from our image
list and chose five different versions for each image. Our
initial observations imply that different image versions
have unique signatures, as shown in Figure 6. Although
there are common patterns among different versions of the
same image, a well-trained ML/DL model can distinguish
versions with high accuracy. To prove our hypothesis, we
collected 50 measurements (CPU frequency signatures)
for all five versions of the 25 images. By considering each
of these versions as separate classes, we trained a CNN
model with 60% of the training data and 20% validation
data. The rest 20% data are used for testing the pre-trained
model in the online phase. The acquired test accuracy
for the pre-trained model is 81.02%, demonstrating that
different versions of Docker images produce adequate
variability in signatures to fingerprint them.
E6) Effects of input argument variations in docker

Figure 7: The CPU frequency signatures of
websphere-liberty run with two sets of arguments,
where (a) corresponds to the set with minimal arguments
and (b) refers to the set with additional arguments. We
observe negligible changes in the fingerprints.

images. For a more realistic end-to-end attack scenario,
we considered more flexibility from the victims’ side. The
victim can run different docker images with variations in
the input arguments. Our attack considers these aspects
and has been tailored to accommodate these variations.
The proposed attack is tested with the variation of input
arguments. We randomly selected 20 images and collected
CPU frequency data while running them with two dif-
ferent sets of arguments (Appendix H). One of the sets
includes minimal arguments to run the image, and the
other set contains more arguments specific to the image.
When we considered more arguments to run the images,
we noticed no significant variation in the signature. In
Figure 7, the signatures of the same image run with
two sets of arguments are compared. We observed minor
changes in the later part of the signature, but these did
not affect the classification accuracy. The initial portion
of the signature remains almost similar, which makes the
image distinguishable even with additional inputs.
E7) Effects of assigning containers to multiple cores.
We analyzed the feasibility of our attack when a docker
image is assigned to multiple cores. If we restrict the
docker image to run in two separate cores, the workload
gets distributed between the two cores. Consequently,
the active frequency signature of the docker image gets
divided into two parts, which shrinks the active area of
the fingerprint while having a similar pattern in both cores.
We also observed that fingerprints are more noisy due to
frequent jumps between cores, and we used a Gaussian
filter with a window size of 10 samples to eliminate the
noise. Afterwards, we performed the movmax operation
with the same window size to smooth out the signal. We
randomly chose 45 images and initially restricted them to
utilize only two cores during their runtime. We collected
100 measurements of CPU frequency signatures from both
of these active cores for each image and filtered out the
noise. As we observed similar patterns in the signatures
from both cores for a single image, instead of combining
them, we considered each signature as a separate mea-
surement for that image. After training a model with the
newly collected fingerprints, we achieved an accuracy of
73.1% from 45 images.

In the second stage, we restricted the images to four
cores. After filtering out the noise and smoothing the
signal in the same manner as before, we observed a similar
pattern in all four cores for the same image, while the
active portion of the signature decreases almost by half in
each core compared to the two-core scenario. Considering

11

Figure 8: CPU frequency fingerprints for the bootstrap
phase of firecracker-containerd (for Firecracker VMM).

the signatures from each core as separate measurements,
we trained a new CNN model only for the 4 core scenario.
The accuracy decreased to 68.9% for the same 45 images.
If we increase the number of shared cores, each time,
the active portion of the signatures gets reduced in every
active core as the workload is distributed among them.
Considering the top 3 and top 5 guesses of the pre-trained
model in the two cores scenario, we achieve an accuracy
of 86.44% and 90.22%, respectively. If the docker images
share 4 cores, we achieve 78.33% and 84.81% accuracy
considering the top 3 and top 5 guesses, respectively.
With an enhanced number of shared cores, relying on the
top 3 or top 5 predictions from our pre-trained model
is essential for efficiently narrowing down our search for
fingerprinting the correct docker image.
E8) Noise analysis on Firecracker VMM. The initia-
tion of the Firecracker execution environment starts with
the bootstrap phase of the firecracker-containerd. The
firecracker-containerd is a customized contain-
erd binary that runs in the background to initialize the
containerd runtime as explained in the previous section.
This bootstrap phase can be considered as the first form
of noise directly associated (tied) with the Firecracker
execution environment. The frequency signature of the
bootstrap phase is shown in Figure 8. We collect the
frequency fingerprints while starting the bootstrap phase
in parallel. In the figure, we present three measurements
corresponding to the same noise. As the bootstrap phase
occurs fast, a rise in the CPU frequency can be observed
by analyzing the first few samples. Once the bootstrap
is finished, the frequency returns to the base frequency.
It is good to see that the frequency signatures remain
similar for each individual measurement. This provides
an opportunity for the adversary to figure out the moment
when the victim starts using the Firecracker environment.

Once the bootstrap phase is complete, the
firecracker-ctr tool pulls all the necessary
images. This command line tool also associates the

aws.firecracker runtime to set forth a request to
start a MicroVM and run any pulled image inside that
MicroVM. The starting phase of the MicroVM introduces
an additional noise in our frequency signature data. In
the threat model (Section 4), we mentioned that each
MicroVM only runs one container inside. Therefore,
the frequency signature of every Docker container will
contain some initial noise created from the starting
MicroVM part. Appendix B:Figure 10 represents the
signature of starting the MicroVM for three different
instances. We expect that the start-up process of the
MicroVM should involve similar activity and affect the
CPU frequency in the same manner. The CPU frequency
signatures in Appendix B:Figure 10 demonstrate a similar
pattern as we expected.

E9) Effects of Docker pull on Firecracker VMM. Our
ML model trained with the fingerprints collected from the
Firecracker environment categorizes the Docker images
based on their runtime signatures (i. e., after running the
docker run command). However, the fingerprints do
not include the pulling phase of the Docker images since
the pulling phase is generally performed once before
running the container. On the other hand, we consider a
more interesting scenario in which the victim might pull
the image instantly before running the container and might
remove the image after the utilization. In this scenario,
the attacker collects a fingerprint that captures frequency
values from both the pulling phase and execution portion
of the Docker image. In order to determine whether it is
possible to separate these two phases, we first collect fin-
gerprints for the pulling phase of different Docker images
inside the MicroVM. When we analyze these fingerprints
as visualized in Appendix C: Figure 11, we observe that
the pulling phase of each layer in Docker images creates
a distinguishable frequency signature because the number
of layers and their contents in each image are distinct.
For example, we observe high-frequency patterns up to
2200 samples for Erlang. However, for Percona, this
pattern exists for 1000 samples. In the same figure, we also
present two different measurements of the pulling phase
of the same image. It is to be noted that we removed the
previously pulled image before the collection of the new
measurement to determine whether the signature remains
consistent over multiple measurements.

Afterward, we collect CPU frequency while pulling
and running the image together. In Figure 9, the CPU
frequency fingerprint of pulling vs pulling and running
the Erlang container is shown. Figure 9(a) shows the
measurement when we only pulled the Erlang image
inside the MicroVM. Conversely, Figure 9(b) presents
the CPU frequency signature of a new measurement
where we pull and run the Erlang image together. By
comparing Figure 9 (a) and (b), we can observe that it
is possible to recognize the pulling part of the Docker
image as it remains consistent. There can be an issue
regarding the alignment, which can be solved based on
the signature of the MicroVM start operation, shown in
Appendix B:Figure 10. Thus, an adversary can understand
different operations based on the CPU frequency data by
conducting a more detailed analysis of the data.

12

Figure 9: Fingerprints corresponding to the start of a
MicroVM (for Firecracker VMM).

10. End-to-end Attack

Adversaries are always driven to execute attacks that
inflict significant damage while minimizing costs and the
likelihood of detection as much as possible. Despite the
prevalence of Docker images containing outdated pack-
ages with high-severity vulnerabilities, launching an attack
“blindly“ reduces the chances of success and increases the
risk of detection. Our attack can be viewed as a means of
acquiring information that enables the execution of more
effective, efficient, and stealthy attacks at a late stage.

The end-to-end attack presents various scenarios for
consideration from the adversary’s perspective. Adver-
saries may choose to execute a targeted fingerprinting
attack against a specific docker image or instead target
any docker image running on the server where they are
located. Irrespective of their objective, our attack always
comprises an offline phase followed by an online phase.
In its simplest form, during the offline phase, the ad-
versary first compiles a dataset by collecting frequency
measurements from accessible docker images and then
utilizes this dataset to train a machine learning model,
with each image representing a distinct class within the
model. Note that the training and storage of the machine
learning model can occur on a separate device accessible
only to the adversary. Importantly, adversaries can accu-
rately replicate the environments where cloud containers
operate. This is because all information about sandboxing
mechanisms and microarchitectures employed by various
cloud providers is publicly available online [50], [49],
[13], [14]. Once the adversary executes the attack and
identifies the Docker image in use, they can leverage
information from security databases to identify vulnera-
bilities affecting said image and conduct a more targeted
attack. In Section 9, the feasibility of fingerprinting the
docker images with different versions, input arguments,
and multiple cores/images is demonstrated.

In certain scenarios, additional details must be consid-
ered. For instance, when the adversary intends to execute
a targeted fingerprinting attack from a malicious container
(or similar sandbox), they may employ various strategies
to increase the likelihood of achieving co-location with the
victim docker image [24], [31]. Another aspect to consider

is the effort the adversary must put into the offline phase.
One possibility for the adversary is to train a different ML
model for each sandbox – microarchitecture pair in the
cloud provider where the victim runs. Given that the num-
ber of microarchitectures and sandboxes utilized by cloud
providers is relatively small and that the offline phase
happens very occasionally, we believe that this approach is
reasonable. However, if the adversary possesses informa-
tion regarding the victim image and its requirements, they
can narrow down their options and develop a smaller set of
ML models. Finally, we expect adversaries can employ the
state-of-the-art available techniques in ML to build models
that can detect docker images that were not included in
the training dataset or to update the generated ML models
without needing to start the training from scratch each
time.

11. Related Work

In this section, we provide a brief overview of related
work in side-channel attacks in cloud computing and OS-
based side-channel attacks.

11.1. Side-channel Attacks in Cloud Computing

Cloud computing has been a target for side-channel
attacks since it was shown that co-location between users
can be detected with a high accuracy [47]. After this
study, side-channel attacks on cloud computing focused
on shared resources between tenants. Zhang et al. [62]
showed that RSA decryption keys can be leaked through
cache attacks. Next, Inci et al. [32] showed that co-
location detection is still possible on Amazon EC2 clouds,
and last-level cache usage can be monitored to reveal
2048-bit RSA keys belonging to users. The deduplication
feature utilized in cloud computing was also leveraged to
leak AES keys from co-located users [8]. The memory
bus is also targeted to create extensive contention on
the victim’s application, resulting in slowing down the
system [59]. Delimitrou et al. [19] showed that resource
pressure of the co-located VMs reveals the victim ap-
plication with high accuracy. Similarly, Gulmezoglu et
al. [28] demonstrated that last-level cache usage can be
used to detect running applications in co-located VMs
on the EC2 cloud. Potential convert and side-channels
are also examined in cloud computing in which multiple
containers are run at the same time [25]. This study shows
that power outage attacks can be performed by co-resident
containers in cloud servers.

11.2. OS-based Side-channel Attacks

Several built-in sensors can be accessed through the
OS features or interface, which were used to perform side-
channel attacks, leaking private information from users.
Zhang et al. [61] leverages the procfs system calls for
keystroke detection. This attack shows that inter-keystroke
timings can be recovered with high accuracy. Gulmezoglu
et al. [29] used performance counters through the perf in-
terface available in Linux OS to track the website activity
of a victim. Similarly, memory consumption statistics in
resource tracking APIs are leveraged to track the usage of

13

GPU cards to detect keystrokes and website activity [42].
The power consumption measurable via MSRs is also
used to leak secret keys [39] and website activity [64],
showing the efficiency of power consumption sensors.
Finally, dynamic frequency readings through the cpufreq
interface are used to leak AES-NI keys [57] and website
activity [20]. ThermalBleed [38] also exploits the thermal
sensors to create covert channels and bypass kernel ad-
dress space layout randomization (KASLR). Finally, Hot
Pixels [51] shows that GPU and ARM SoCs are subject
to thermal, power, and frequency attacks.

12. Countermeasures

In this section, we propose an artificial noise injection
mechanism and describe additional potential countermea-
sures to mitigate our attack.
Artificial Noise Injection. We implemented a defense
technique that injects random noise into the attacker’s
CPU frequency readings by increasing the workload in a
controlled manner during the runtime of a docker image.
We first assume a scenario where the attacker does not
have knowledge regarding the noise injection tool. In the
second scenario, we consider that the attacker has access
to the noise injection tool and can re-train the ML model
with noisy fingerprints.

To change the workload, we run a program that ex-
ecutes a pre-defined set of instructions iteratively in the
sibling core as given in Algorithm 2. In the noise injec-
tion code snippet, we utilize floating-point instructions as
they involve complex mathematical operations on decimal
numbers that require comparatively more computational
resources than integer or logical operation instructions.
Therefore, executing floating-point instructions increases
the CPU frequency significantly compared to other in-
structions. Moreover, we observe that the core frequency
increases further when different types of floating-point
instructions are included in the noise injection code snip-
pet. For example, we consider fld (load), fstp (store),
faddp (addition), and fmul (multiplication) instructions
and observe the frequency signature for individual in-
structions. It is to be noted that each instruction is ex-
ecuted 20 million times to increase the CPU frequency
close to the maximum frequency level (approximately
2.8 GHz). To introduce more randomness into the noise,
we use all these four instructions together to create a
noise injection program as shown in Appendix G Algo-
rithm 2, which increases frequency based on the number
of iterative executions and time intervals between each
execution. Nrepeat controls how long the CPU frequency
will stay in the increased state. Conversely, Ti adjusts
the time interval between two iterative executions that
define the idle period of the runtime of this program. As
the values of these two parameters are selected randomly
during the noise injection process, the CPU frequency
readings are also randomized. With the injected noise,
the original frequency fingerprints of each docker image
change randomly. We first tested the efficacy of our noise
injection tool for the first scenario where the adversary
does not know about the deployed tool. The pre-trained
model (trained with the noiseless dataset) only achieves
a 9% detection accuracy rate when noisy fingerprints are
classified.

In the second scenario, the adversary is aware of the
noise injection tool. Hence, the attacker might collect
noisy fingerprints and train a new model with the injected
noise to circumvent the effect of the noise injection tool.
In this case, the detection accuracy for the new model is
50.2% with the noisy dataset. This proves our proposed
program can produce significant noise and degrade the
performance of the deep-learning model trained with the
noisy dataset. The performance overhead results are given
in Appendix F.
Syscall Pattern Monitoring. To carry out the dynamic
frequency attacks, adversaries need to repeatedly access
the information supplied by cpufreq. Given this insight,
an alternative countermeasure could involve monitoring
the system calls invoked to identify potential malicious
activities. If a suspicious pattern is detected, the cloud
admin can be notified, stating that a malicious user-space
application is profiling running containers. One of the key
advantages of this countermeasure is its cost-effectiveness,
as there exist tools for efficiently monitoring system calls
on Linux systems without adversely affecting the appli-
cations’ performance. Using the perf trace tool [37], we
monitor the system calls invoked on the server used for the
Firecracker and gVisor, both with and without an ongoing
attack. First, the attack execution is monitored with the
profiling tool to examine the syscall patterns while access-
ing the cpufreq interface. We observed four distinct system
calls used to access the frequency values in order: fstat,
fadvise64, read, and close. All these system calls have an
input of the cpufreq folder. For the benign process dataset
collection, 50 Phoronix benchmark tests are selected ran-
domly and monitored with the perf tool for a duration of
60 seconds. The syscall pattern we observed in the attack
execution is not visible in the benchmark tests, resulting
in 0% false positive and 100% attack detection rate. When
we analyze the performance overhead of the perf tool with
randomly selected 20 benchmark tests, we observe that the
average performance overhead is 1.8% ranging between
0.1% and 8.6% as shown in Appendix E Figure 12. Our
detection tool shows that malicious applications exploiting
the dynamic frequency channel can be detected with a
high success rate and minimal performance overhead. Our
preliminary experiments demonstrate that such a detection
tool is a promising research direction to mitigate our
proposed attack.
Restricting Access Privilege to cpufreq. Dynamic fre-
quency attacks leverage the user-space access to the
cpufreq interface to access the current frequency values of
each core. The simplest way of mitigating dynamic fre-
quency attacks would be to restrict access to the interface
for root privileged users only. However, this countermea-
sure is still ineffective against malicious (or honest-but-
curious) entities with root privileges in the host machines,
such as cloud providers. Hence, there is a need for user-
controlled defense mechanisms to lower the attacker’s
capabilities.

13. Conclusion

This study analyzes the possibility of identifying run-
ning containers through dynamic frequency fingerprints
in native, sandboxed, and TEEs. We show that our attack

14

achieves at least a 70% success rate in all these environ-
ments. We examine various scenarios that an attacker can
face in cloud computing, such as multiple core utiliza-
tion, the influence of Docker image pull and MicroVM
bootstrapping processes, a diverse set of input arguments,
and the detection of different image versions. We also
perform our attack on a diverse set of microarchitectures,
as well as running multiple containers simultaneously, and
classify them with high accuracy. Finally, we propose
two countermeasures: (1) a client-based defense technique
using artificial noise injection to reduce the detection accu-
racy and (2) a lightweight cloud-based countermeasure to
profile system calls in a system and distinguish malicious
activities with only 1.8% performance overhead while
achieving a 100% detection rate. This study opens new
research directions in the security of both sandbox and
TEE applications in cloud computing.

Acknowledgements

We thank the anonymous reviewers for their insightful
feedback and help in improving this paper. This work
was partially funded by the German Research Foundation
(DFG) under grant no. 439797619 and 456967092. More-
over, the research leading to these results have received
funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreements
No 101070473 (FLUIDOS) and No 101092950 (EDGE-
LESS) and from the UNICO I+D Cloud programme with
the CLOUDLESS project.

References

[1] epanaroma: Escape Docker Container Using waitid() — CVE-
2017-5123 — Twistlock. https://www.epanorama.net/blog/201
8/01/05/escape-docker-container-using-waitid-cve-2017-5123-twi
stlock-19/, 2017.

[2] Onur Aciiçmez. Yet another microarchitectural attack: : exploiting
i-cache. In CSAW, pages 11–18. ACM, 2007.

[3] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the
power of simple branch prediction analysis. In AsiaCCS, pages
312–320. ACM, 2007.

[4] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony
Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa.
Firecracker: Lightweight virtualization for serverless applications.
In NSDI, pages 419–434. USENIX Association, 2020.

[5] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida Garcı́a, and Nicola Tuveri. Port contention for fun
and profit. In IEEE Symposium on Security and Privacy, pages
870–887. IEEE, 2019.

[6] Turbo core technology, 2023. https://www.amd.com/en/technolog
ies/turbo-core.

[7] AMD. Google Cloud Confidential Computing Powered by AMD,
Last accessed: 03-17-2024. https://www.amd.com/en/solutions/g
oogle-cloud-confidential-computing.

[8] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisen-
barth, and Berk Sunar. Wait a minute! A fast, cross-vm attack
on AES. In RAID, volume 8688 of Lecture Notes in Computer
Science, pages 299–319. Springer, 2014.

[9] Apparmor – linux kernel security module, 2019. https://apparmor
.net/.

[10] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth,
André Martin, Christian Priebe, Joshua Lind, Divya Muthuku-
maran, Dan O’Keeffe, Mark Stillwell, David Goltzsche, David M.
Eyers, Rüdiger Kapitza, Peter R. Pietzuch, and Christof Fetzer.
SCONE: secure linux containers with intel SGX. In OSDI, pages
689–703. USENIX Association, 2016.

[11] J. D. Bean, Mark Ryland, Matthew S. Wilson, Colm MacCárthaigh,
and Benjamin Serebrin. The security design of the aws nitro
system. White paper, AWS, Nov 2022.

[12] Jo Van Bulck, David F. Oswald, Eduard Marin, Abdulla Aldoseri,
Flavio D. Garcia, and Frank Piessens. A tale of two worlds:
Assessing the vulnerability of enclave shielding runtimes. In CCS,
pages 1741–1758. ACM, 2019.

[13] Alibaba Cloud. Elastic Compute Service, Last accessed: 03-17-
2024. https://www.alibabacloud.com/help/en/ecs/user-guide/step-1
-deploy-a-client.

[14] Google Cloud. AMD and Google Cloud, Last accessed: 03-17-
2024. https://cloud.google.com/amd.

[15] Théo Combe, Antony Martin, and Roberto Di Pietro. To docker
or not to docker: A security perspective. IEEE Cloud Comput.,
3(5):54–62, 2016.

[16] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao, Cedric
Xing, Ilya Alexandrovich, Taesoo Kim, Frank Piessens, Mona
Vij, and Mark Silberstein. Aex-notify: Thwarting precise single-
stepping attacks through interrupt awareness for intel sgx enclaves.
In 32nd USENIX Security Symposium, pages 4051–4068, August
2023.

[17] containerd, Last accessed: 08-21-2023. https://containerd.io/.

[18] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR
Cryptol. ePrint Arch., page 86, 2016.

[19] Christina Delimitrou and Christos Kozyrakis. Bolt: I know what
you did last summer... in the cloud. In ASPLOS, pages 599–613.
ACM, 2017.

[20] Debopriya Roy Dipta and Berk Gülmezoglu. DF-SCA: dynamic
frequency side channel attacks are practical. In ACSAC, pages
841–853. ACM, 2022.

[21] Docker hub api, 2023. https://docs.docker.com/docker-hub/api/lat
est/.

[22] Seccomp security profiles for docker, 2023. https://docs.docker.co
m/engine/security/seccomp/.

[23] Use containers to build, share and run your applications, 2023.
https://www.docker.com/resources/what-container/.

[24] Chongzhou Fang, Han Wang, Najmeh Nazari, Behnam Omidi,
Avesta Sasan, Khaled N. Khasawneh, Setareh Rafatirad, and
Houman Homayoun. Repttack: Exploiting Cloud Schedulers to
Guide Co-Location Attacks. In Annual Network and Distributed
System Security Symposium, NDSS, 2022.

[25] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis,
and Haining Wang. Containerleaks: Emerging security threats of
information leakages in container clouds. In DSN, pages 237–248.
IEEE Computer Society, 2017.

[26] Gramine - a library os for unmodified applications, 2023. https:
//gramineproject.io/.

[27] gsc – gramine shielded containers, 2023. https://gramine.readthed
ocs.io/projects/gsc/en/latest/.

[28] Berk Gülmezoglu, Thomas Eisenbarth, and Berk Sunar. Cache-
based application detection in the cloud using machine learning.
In AsiaCCS, pages 288–300. ACM, 2017.

[29] Berk Gülmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk
Sunar. Perfweb: How to violate web privacy with hardware
performance events. In ESORICS (2), volume 10493 of Lecture
Notes in Computer Science, pages 80–97. Springer, 2017.

[30] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui Apecechea,
Thomas Eisenbarth, and Berk Sunar. Seriously, get off my cloud!
cross-vm RSA key recovery in a public cloud. IACR Cryptol.
ePrint Arch., page 898, 2015.

[31] Mehmet Sinan Inci, Berk Gülmezoglu, Thomas Eisenbarth, and
Berk Sunar. Co-location detection on the cloud. In COSADE,
volume 9689 of Lecture Notes in Computer Science, pages 19–34.
Springer, 2016.

[32] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Cache attacks enable bulk key re-
covery on the cloud. In CHES, volume 9813 of Lecture Notes in
Computer Science, pages 368–388. Springer, 2016.

15

https://www.epanorama.net/blog/2018/01/05/escape-docker-container-using-waitid-cve-2017-5123-twistlock-19/
https://www.epanorama.net/blog/2018/01/05/escape-docker-container-using-waitid-cve-2017-5123-twistlock-19/
https://www.epanorama.net/blog/2018/01/05/escape-docker-container-using-waitid-cve-2017-5123-twistlock-19/
https://www.amd.com/en/technologies/turbo-core
https://www.amd.com/en/technologies/turbo-core
https://www.amd.com/en/solutions/google-cloud-confidential-computing
https://www.amd.com/en/solutions/google-cloud-confidential-computing
https://apparmor.net/
https://apparmor.net/
https://www.alibabacloud.com/help/en/ecs/user-guide/step-1-deploy-a-client
https://www.alibabacloud.com/help/en/ecs/user-guide/step-1-deploy-a-client
https://cloud.google.com/amd
https://containerd.io/
https://docs.docker.com/docker-hub/api/latest/
https://docs.docker.com/docker-hub/api/latest/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://www.docker.com/resources/what-container/
https://gramineproject.io/
https://gramineproject.io/
https://gramine.readthedocs.io/projects/gsc/en/latest/
https://gramine.readthedocs.io/projects/gsc/en/latest/

[33] What is intel turbo boost technology?, 2023. https://www.intel.co
m/content/www/us/en/gaming/resources/turbo-boost.html.

[34] Intel SGX Explained. Cryptology ePrint Archive, Paper 2016/086,
2016. https://eprint.iacr.org/2016/086.

[35] David Kaplan. Protecting VM register state with SEV-ES. White
paper, AMD, Feb 2017.

[36] Kazuyoshi Kato, Maksym Pavlenko, Erik Sipsma, Samuel Karp,
xibz, Austin Vazquez, Kern Walster, Gavin Inglis, Noah Meyer-
hans, Anirudh Aithal, Alakesh Haloi, et al. Create firecracker VM
images for use with firecracker-containerd, 2023.

[37] Michael Kerrisk. perf-trace(1) – linux manual page, 2023. https:
//man7.org/linux/man-pages/man1/perf-trace.1.html.

[38] Taehun Kim and Youngjoo Shin. Thermalbleed: A practical ther-
mal side-channel attack. IEEE Access, 10:25718–25731, 2022.

[39] Moritz Lipp, Andreas Kogler, David F. Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. PLATY-
PUS: software-based power side-channel attacks on x86. In IEEE
Symposium on Security and Privacy, pages 355–371. IEEE, 2021.

[40] Pieter Maene, Johannes Götzfried, Ruan de Clercq, Tilo Müller,
Felix Freiling, and Ingrid Verbauwhede. Hardware-based trusted
computing architectures for isolation and attestation. IEEE Trans-
actions on Computers, 67(3):361–374, 2018.

[41] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
Cachezoom: How SGX amplifies the power of cache attacks. In
CHES, volume 10529 of Lecture Notes in Computer Science, pages
69–90. Springer, 2017.

[42] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael B.
Abu-Ghazaleh. Rendered insecure: GPU side channel attacks are
practical. In CCS, pages 2139–2153. ACM, 2018.

[43] NIST. CVE-2016-6662, Last accessed: 11-2-2023. https://nvd.nist
.gov/vuln/detail/CVE-2016-6662.

[44] NIST. CVE-2021-27928, Last accessed: 11-2-2023. https://nvd.ni
st.gov/vuln/detail/CVE-2021-27928.

[45] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher.
Lord of the ring(s): Side channel attacks on the CPU on-chip ring
interconnect are practical. In USENIX Security Symposium, pages
645–662. USENIX Association, 2021.

[46] What is selinux, 2019. https://www.redhat.com/en/topics/linux/w
hat-is-selinux.

[47] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In CCS, pages 199–212.
ACM, 2009.

[48] Kai Salmen. Automatic conversion of containers to virtual ma-
chines, 2021. https://www.typefox.io/blog/automatic-conversion-o
f-containers-to-virtual-machines/.

[49] Amazon Web Services. AMD SEV-SNP, Last accessed: 03-17-
2024. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/se
v-snp.html.

[50] Amazon Web Services. AWS and Intel, Last accessed: 03-17-2024.
https://aws.amazon.com/intel/.

[51] Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel
Genkin, and Yuval Yarom. Hot pixels: Frequency, power, and
temperature attacks on gpus and arm socs. In USENIX Security
Symposium, pages 6275–6292. USENIX Association, 2023.

[52] Chia-che Tsai, Donald E. Porter, and Mona Vij. Graphene-sgx:
A practical library OS for unmodified applications on SGX. In
USENIX Annual Technical Conference, pages 645–658. USENIX
Association, 2017.

[53] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
practical attack framework for precise enclave execution control. In
2nd Workshop on System Software for Trusted Execution (SysTEX),
pages 4:1–4:6. ACM, October 2017.

[54] Fabricio Voznika, Adin Scannell, Andrei Vagin, Kevin Krakauer,
Ayush Ranjan, Nicolas Lacasse, Ghanan, Jamie Liu, Michael Pratt,
Bhasker Hariharan, et al. gvisor, 2023.

[55] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart,
and Michael M. Swift. Peeking behind the curtains of serverless
platforms. In USENIX Annual Technical Conference, pages 133–
146. USENIX Association, 2018.

[56] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, Xi-
aoFeng Wang, Vincent Bindschaedler, Haixu Tang, and Carl A.
Gunter. Leaky cauldron on the dark land: Understanding memory
side-channel hazards in SGX. In CCS, pages 2421–2434. ACM,
2017.

[57] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Ho-
vav Shacham, Christopher W. Fletcher, and David Kohlbrenner.
Hertzbleed: Turning power side-channel attacks into remote timing
attacks on x86. In USENIX Security Symposium, pages 679–697.
USENIX Association, 2022.

[58] Li Wei, Jonathan Bryce, Xu Wang, Peng Tao, Fabiano Fidêncio,
Hui Zhu, Mohammed Naser, Anastassios Nanos, Thierry Carrez,
Maksym Pavlenko, et al. Kata containers architecture – container
creation, 2023.

[59] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-
space: High-bandwidth and reliable covert channel attacks inside
the cloud. IEEE/ACM Trans. Netw., 23(2):603–615, 2015.

[60] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. The true cost of
containing: A gvisor case study. In HotCloud. USENIX Associa-
tion, 2019.

[61] Kehuan Zhang and XiaoFeng Wang. Peeping tom in the neighbor-
hood: Keystroke eavesdropping on multi-user systems. In USENIX
Security Symposium, pages 17–32. USENIX Association, 2009.

[62] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-vm side channels and their use to extract private keys.
In CCS, pages 305–316. ACM, 2012.

[63] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Risten-
part. Cross-tenant side-channel attacks in paas clouds. In CCS,
pages 990–1003. ACM, 2014.

[64] Zhenkai Zhang, Sisheng Liang, Fan Yao, and Xing Gao. Red alert
for power leakage: Exploiting intel rapl-induced side channels. In
AsiaCCS, pages 162–175. ACM, 2021.

16

https://www.intel.com/content/www/us/en/gaming/resources/turbo-boost.html
https://www.intel.com/content/www/us/en/gaming/resources/turbo-boost.html
https://eprint.iacr.org/2016/086
https://man7.org/linux/man-pages/man1/perf-trace.1.html
https://man7.org/linux/man-pages/man1/perf-trace.1.html
https://nvd.nist.gov/vuln/detail/CVE-2016-6662
https://nvd.nist.gov/vuln/detail/CVE-2016-6662
https://nvd.nist.gov/vuln/detail/CVE-2021-27928
https://nvd.nist.gov/vuln/detail/CVE-2021-27928
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.typefox.io/blog/automatic-conversion-of-containers-to-virtual-machines/
https://www.typefox.io/blog/automatic-conversion-of-containers-to-virtual-machines/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://aws.amazon.com/intel/

A. Impact of Running Multiple Containers
on the Same Thread.

Although it is not ideal to run multiple containers
on the same thread of a core, we analyze the impact of
our attack in this threat scenario. For this analysis, we
randomly chose ten containers and ran a pair of containers
concurrently on the same thread of a core. Considering
two different containers run simultaneously, we have 45
different possible combinations of pairs made from the list
of 10 containers that we chose previously. We collected
fingerprints for all of these combinations. The intention is
to analyze whether it is possible to recognize the specific
combination or the pair of containers by looking at the
combined frequency fingerprint if two containers run at
a time in the same thread. To verify that concept, we
trained a model with frequency fingerprints of all these
45 combinations and tested the accuracy. The accuracy
of the model to correctly predict the pair of containers
is 64.67%. Considering only ten containers, the accuracy
shows that it is challenging to predict the correct pair of
containers if they run in the same thread as fingerprints
are combined together in one fingerprint, which degrades
the model accuracy.

B. Noise signature of Firecracker VMM.

Figure 10: Induced noise due to the starting of a MicroVM
(for Firecracker VMM). The frequency signatures show
similar variation in all three measurements.

C. Frequency fingerprints of pulling images
inside MicroVM.

Figure 11: Comparison of pulling different images inside
a MicroVM of Firecracker. (a, b) represent two different
measurements of pulling the Erlang image, and (c,
d) refers to two separate measurements for pulling the
Percona image. As can be seen, it is possible to recog-
nize the container image being pulled in the Firecracker
execution environment based on the CPU frequency sig-
natures.

D. Configuration Script for Firecracker.

● Disable plugins: The plugins are simply
extensions that are supposed to enhance specific
firecracker-containerd capabilities. The
io.containerd.grpc.v1.cri plugin is disabled
through the configuration file, i. e., this certain container
runtime feature is excluded from the setup.

● Storage and State Management: The configuration
file defines the root directory for firecracker-containerd’s
storage. The state information of the firecracker-
containerd is also stored in a separate directory specified
by the configuration file.

● Configuration of gRPC setting: gRPC is a high-level
communication protocol that ensures communications
between services. One of the best capabilities of gRPC
is its multiplexing capability that works across different
languages and platforms. In the configuration file, the
address of the Unix domain socket is specified to ensure
seamless communication for gRPC.

● Configuration of snapshot plugin: The
io.containerd.snapshotter.v1.devmapper
plugin is configured to utilize the Devmapper
technology. This plugin specifically helps to manage
the container images effectively. To configure this
setting, a storage space of 10 GB is allocated for the
efficient management of the container images.

● Debug capability: The debug capability is added
through the configuration file by setting the log level
which gives an opportunity for troubleshooting.

17

E. Performance Overhead for Syscall Pattern
Monitoring.

Figure 12: Performance overhead for the 20 Phoronix
benchmark tests. The overall performance overhead is
1.8%

F. Performance Overhead for the Noise In-
jection Tool.

As the proposed noise injection program will run in the
background, it is important to calculate the performance
overhead in terms of energy consumption. For measuring
the system-wide energy consumption, we leveraged the
Intel RAPL tool. We calculated the performance overhead
for 25 images randomly picked from our image list. In
Figure 13, we show that our noise injection tool introduces
19.7% overhead on average with a maximum of 25.1%
performance overhead.

Figure 13: The overhead in terms of system-wide energy
consumption calculated over 25 different images.

G. Pseudo code of the Noise Injection Tool.

Algorithm 2: Pseudo code of noise injection
// Nrepeat Number of repeated execution
// Tsleep Time interval between two

consecutive repetitions
Input: Nrepeat, Ti

1 define variables a, b, c
2 for i← 1 to Nrepeat do
3 asm
4 {
5 fld %1/n
6 fld %2/n
7 faddp/n
8 fmulp/n
9 fstp %0/n

10 : ”=m” (c)
11 : ”m” (a), ”m” (b)
12 }

H. List of input arguments to run the con-
tainer.

Argument Description

minimal arguments

name Assign a name to the con-
tainer

rm Automatically remove the
container when it exits

cpuset-cpus CPUs in which to allow ex-
ecution

it Assign a pseudo-TTY to the
container

runtime Container runtime specific to
the sandbox environment

additional arguments

v Create a bind mount

p Publish a container’s port, or
range of ports, to the host

e Set environment variables

input script Configuration file or script to
be executed (Specific to an
image)

18

	Introduction
	Background
	Dynamic Voltage and Frequency Scaling
	Sandbox Environments
	Trusted Execution Environments (TEEs)

	Motivation
	Threat Models
	Technical Challenges
	Methodology
	Attack in the Docker Environment
	Attacks in Modern Sandbox Environments
	gVisor
	Gramine
	Firecracker VMM
	AMD SEV

	Evaluation
	End-to-end Attack
	Related Work
	Side-channel Attacks in Cloud Computing
	OS-based Side-channel Attacks

	Countermeasures
	Conclusion
	References
	 A: Impact of Running Multiple Containers on the Same Thread.
	 B: Noise signature of Firecracker VMM.
	 C: Frequency fingerprints of pulling images inside MicroVM.
	 D: Configuration Script for Firecracker.
	 E: Performance Overhead for Syscall Pattern Monitoring.
	 F: Performance Overhead for the Noise Injection Tool.
	 G: Pseudo code of the Noise Injection Tool.
	 H: List of input arguments to run the container.

