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Distributed Matrix-Vector Computation
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Matrix A is typically too big to use just one node for computation.
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Distributed Matrix-Vector Computation
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Execution time dominated by the speed of the slowest worker.




Coded Matrix-Vector Multiplication [Lee et al. ‘16]
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- Master node calculates A; + A, and sends A4, Ay, and A 4+ A,
and the vector x to the worker nodes.

- Master node can decode as long as any two worker nodes
complete their tasks. 3
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- Master node calculates A; + A, and sends A4, Ay, and A 4+ A,
and the vector x to the worker nodes.

- Master node can decode as long as any two worker nodes
complete their tasks. 3



Coded Matrix-Vector Multiplication [Lee et al. ‘16]

- Natural generalization via Reed-Solomon-like approach.

(A1 + 1A, + 12 A3) x (A1 + 2A; + 22A3) x

(A1 + 3A; + 3%A3) x (A1 + 4A; + 42 A3) x

- Master node evaluates A, + Az + Asz? atz =1,...,4 and sends the
evaluations and x to the workers.

- Result can be evaluated by polynomial interpolation at master node
as long as at least three workers complete. 4



Coded Matrix-Matrix Multiplication [Yu et al. '17]
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Coded Matrix-Matrix Multiplication [Yu et al. '17]
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| Master node evaluates polynomials

A; + Az and By + B,z at five different evaluation points.

|Only requires scalar multiplication and addition. |
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(B1+7By) (B +228,) (B +38,) (B1 + 42 B,) (B +58,)
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Coded Matrix-Matrix Multiplication

A1+1A2 Aw+2/—\2 A1+3Az A1+4Az Aw+5Az

(B1+7By) (B +228,) (B +38,) (B1 + 42 B,) (B +58,)

| Worker node i equivalently calculates |

AlBy+ i AlBy+ i A]B, + P Al B,

| Degree sequence chosen carefully ... |




Figures of merit for Coded Computation

- Coding for matrix computations essentially embeds the
computation into a Reed-Solomon code.

- Schemes are clearly resilient to the maximum number of node
failures.
- Follows directly from RS-like structure.

- Recovery threshold 7 is the minimum number of nodes that need
to return their results to the master node for successful decoding.



Issues with current approaches: Partial Stragglers

| Stragglers are not the same as erasures ... |

| Unless they are complete node failures |

| Partial stragglers can be useful |
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Approximately 10% of machines are slow stragglers, but not failures ...

On 16 AWS t2.micro machines




Issues with current approaches: Partial Stragglers
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Modeling the speeds of different stragglers is not easy ...




Issues with current approaches: Numerical Stability

Vandermonde matrices have very bad condition numbers ...

Condition number of 10¢ & loss of ¢ bits of numerical precision
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| Results of interpolating a noisy degree-9 polynomial.

| Even at 100 dB, over 5% error ...




Issues with current approaches: Numerical Stability
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| Problematic for machine learning applications ... |

| Gradient computations are often noisy. |




Issues with curent approaches: Structured matrices

| Many practical situations involve sparse matrices. |
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Issues with curent approaches: Structured matrices

| Many practical situations involve sparse matrices. |

| Embedding into polynomial of deg-(k — 1) increases sparsity level k times. |

| May even cause computation times to go up [Wang et al. "18] ... |




A Fine Grained Model

|We divide matrix A into A blocks, row—vvise.|

Each worker has a storage capacity of v = é.

|Workers sequentially process blocks from top to bottom. |

|Computation is complete when any Q blocks are processed.|




A Fine Grained Model

|We divide matrix A into A blocks, row—vvise.|

Each worker has a storage capacity of v = é.

|Workers sequentially process blocks from top to bottom. |

| Computation is complete when any Q blocks are processed. |

IAllows for simple way of capturing different worker speeds! I

| Ratio Q/A : worst-case computation that needs to take place. |




A Fine Grained Model
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Ordering of blocks matters!
A X A X Az X Ay X

(Az + 2A3 )X (A3 aF 2A4)X (A4 + 2A4 )X (A1 + 2A; )X

A scheme with Q =5



Ordering of blocks matters!
A X A X Az X Ay X

(Az + 2A3 )X (A3 aF 2A4)X (A4 + 2A4 )X (A1 + 2A; )X

A scheme with Q =5

| Placing the coded blocks first, reduces Q ... |

AL L L

(A + 2A3)x (As + 2A4)x (Ay + 2A7)x (A1 + 2A7)x

A X A X Az X Ay X

A scheme with Q = 4



Dealing with sparsity & numerical stability issues

|Constrain the fraction of coded blocks in each worker

| Uncoded fraction -,

|Coded fraction ¢ |

14



Key Questions under consideration

I For the fine grained modell

I Bounds on Q/A?l

IAchievability schemes for Q/A? |




Uncoded Scheme

W1 W2 W3 W4 W5
Aq X Ay X As X A, X As X
Ay X As X A, X As X Aq X
As X Ay, X As X A1 X Ay X

|All blocks are uncoded |
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Uncoded Scheme

W1 W2 W3 W4 W5
A1 X Ay X Ay X As X
Ay X A, X As X Aq X

|All blocks are uncoded |
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Uncoded Scheme

\/|1 V\IZ V\I3 W4 W5

Al X A X A X A, X As X
Al X AL X Al X As X Aq X
Af X AR X Ad X Ay X Ay X

I Definitely need one copy of each uncoded block ... |




Uncoded Scheme: Failure resilience

- Let r be the number of occurrences of each block. Then

nt =rA
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Uncoded Scheme: Failure resilience

- Let r be the number of occurrences of each block. Then

nt =rA

Consider an (n, ¢, A, ry-uncoded system. If the system needs to be
resilient to s stragglers, then r > s +1and ny =r.

19



Uncoded Scheme: Lower bound on Q/A

| Example: Qs = 9|

- At least one copy of each Ajx needs to be obtained by the master
node.

- Q; : number of blocks processed in the worst case without
processing Ax.
20



Uncoded Scheme: Lower bound on Q/A

Aoj|

| Q =1+ maxj_q

.

| Basic Averaging argument yields |

Q=1+

9
A

21



Uncoded Scheme: Lower bound on Q/A

Combinatorial argument: Counting Q two ways ...

Uncoded Q/A bound
Inan (n,¢,A,r)-uncoded system, Q > max(A, Ar — 5 (£ +1) +1).

21



Uncoded Scheme: Matching Constructions Exist

I Choosing A = n and placing blocks in a cyclic shift manner .. I

Resilient to two failures and meets the Q/A = 2 bound.

22
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Uncoded Scheme: Matching Constructions Exist

| Choosing A = n and placing blocks in a cyclic shift manner .. |

With cyclic construction Q; is the same for each j!

23



Mix of uncoded and coded blocks

- Depends on where the coded and uncoded symbols appear in
the worker nodes.

- If we expect stragglers to be somewhat infrequent, then it makes
sense to put uncoded on top and coded blocks at the bottom.
Most of the time decoding complexity will be low.

- Placing coded blocks at the top may reduce the worst-case
computation at the expense of decoding complexity.

24



Mix of coded and uncoded blocks

- We now assume that each node receives a v = ~, + 7. fraction of
the rows of A, where ~, and ~. correspond to the uncoded and
coded parts respectively.

< A(n, by, Le, A, ry) System means
- n workers, ¢ total blocks in a worker: £,-uncoded and #¢.-coded.
- Each block appears r, times in the uncoded part.

25



Coded Blocks at the Bottom: Lower Bound on %

| In the best case each coded block is “useful” to the master node |

Coded blocks at bottom Q/A bound
Consider a (n, ¢y, ¢c, A, r,) system with coded blocks at the bottom. Then,

Qe > max(A, Ar, — %”(eu +1)+1)

. . 2 _ .
. Furthermore, it is resilient to {%J failures.

Lower bound follows from uncoded bound discussed earlier ...

26



Coded Blocks at the Bottom: Lower Bound on %

| In the best case each coded block is “useful” to the master node |

Coded blocks at bottom Q/A bound
Consider a (n, ¢y, ¢c, A, r,) system with coded blocks at the bottom. Then,

Qe > max(A, Ar, — %”(eu +1)+1)

. . 2 _ .
. Furthermore, it is resilient to {%J failures.

Lower bound follows from uncoded bound discussed earlier ...

26



Coded Blocks at the Bottom: Matching Construction

+ We consider the same scenario with n =5and v = 2
- The scheme is resilient to 3 stragglers and Q., = 8 if £, = 2.

27



Coded Blocks at the Bottom: Matching Construction
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Coded Blocks at the Bottom: Matching Construction

Requires the usage of Cauchy matrices for the coded blocks.

Cauchy

An m x n matrix with elements a;; = ﬁ where x; and y; are sequences of
I J

distinct elements, where x; # y; for1<i<mand1<j<n.

Any square submatrix is full-rank. |

27



Coded Blocks at the Bottom: Matching Construction

I Basic Idea: Place uncoded blocks in a cyclic manner at the top I

|Cauchy matrices of appropriate dimension at the bottom. |

27



Coded Blocks at the Top

- A given worker node only processes uncoded blocks after having
processed /. coded blocks.

- If x coded blocks are processed by workers, then it suffices if any
A — x blocks are processed in the uncoded part

- The any A — x fact makes things a lot harder.

- Have lower bounds, but not matching constructions in general ...

28



Coded Blocks at the Top

W1 W2 W3 W4 W5
- Consider scenario where A =n =5 and ¢ = 3. Here, {, = r, = 2 and
éc = 1

- Once again, lower bound corresponds to case where each coded
symbol is useful.

29



Coded Blocks at the Top: Lower bound on %

- Consider an arbitrary set of 5 worker nodes that process all their
blocks and another set of worker nodes that only contribute x
coded blocks.

- The total number of coded blocks is x + ¢.3. Let A denote the set
of distinct uncoded blocks from those 3 workers.

Qct > X+ L8+ 1, when
X+£cﬂ+|./4| < A.

This is because, we do not have enough equations to decode the
A —|A| unknowns.

- Next, we use another averaging argument. We calculate the
average size of A considering all possible (g) worker nodes.

30



Coded Blocks at the Top

- A lower bound on Q can be derived by solving the following
optimization problem.

maximize x-+£8+1

subjectto (x4 ¢.8) < A

31



Summary of Bound Examples

JlIL

Uncoded Coded at bottom Coded at top MDS

®
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| Q decreases as more coding is introduced. |

| Matching constructions in two of the cases. | 5




Questions?



