Information Theory Workshop, 2018

C^{3} LES : Codes for Coded Computation that Leverage Stragglers

Anindya Bijoy Das
Li Tang
Aditya Ramamoorthy
November 28, 2018
Electrical and Computer Engineering Iowa State University

Distributed Matrix-Vector Computation

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & \ldots & a_{m n}
\end{array}\right] \times\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
\ldots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{m}
\end{array}\right]} \\
x
\end{gathered}
$$

Distributed Matrix-Vector Computation

Block rows of A

Distributed Matrix-Vector Computation

| | \ldots | A_{1} |
| :--- | :--- | :--- |\ldots

Block rows of A

Distributed Matrix-Vector Computation

| | \ldots | A_{1} |
| :--- | :--- | :--- |\ldots

Block rows of A

Execution time dominated by the speed of the slowest worker.

Coded Matrix-Vector Multiplication [Lee et al. '16]

Matrix A

- Master node calculates $A_{1}+A_{2}$ and sends A_{1}, A_{2}, and $A_{1}+A_{2}$ and the vector x to the worker nodes.
- Master node can decode as long as any two worker nodes complete their tasks.

Coded Matrix-Vector Multiplication [Lee et al. '16]

Matrix A

- Master node calculates $A_{1}+A_{2}$ and sends A_{1}, A_{2}, and $A_{1}+A_{2}$ and the vector x to the worker nodes.
- Master node can decode as long as any two worker nodes complete their tasks.

Coded Matrix-Vector Multiplication [Lee et al. '16]

$$
\begin{aligned}
& \ldots A_{1} \ldots \\
& \hline \ldots A_{2} \ldots
\end{aligned}
$$

Matrix A

- Master node calculates $A_{1}+A_{2}$ and sends A_{1}, A_{2}, and $A_{1}+A_{2}$ and the vector x to the worker nodes.
- Master node can decode as long as any two worker nodes complete their tasks.

Coded Matrix-Vector Multiplication [Lee et al. '16]

- Natural generalization via Reed-Solomon-like approach.

- Master node evaluates $A_{1}+A_{2} z+A_{3} z^{2}$ at $z=1, \ldots, 4$ and sends the evaluations and x to the workers.
- Result can be evaluated by polynomial interpolation at master node as long as at least three workers complete.

Coded Matrix-Matrix Multiplication [Yu et al. '17]

A_{1}^{T}
A_{2}^{T}
Matrix A^{T}
:---:
:---:
$A_{2}^{T} B_{1}$

Coded Matrix-Matrix Multiplication [Yu et al. '17]

$A_{1}+A_{2} z$ and $B_{1}+B_{2} z^{2}$ at five different evaluation points.

Only requires scalar multiplication and addition.

Coded Matrix-Matrix Multiplication

Coded Matrix-Matrix Multiplication

Worker node i equivalently calculates

$$
A_{1}^{\top} B_{1}+i A_{2}^{\top} B_{1}+i^{2} A_{1}^{\top} B_{2}+i^{3} A_{2}^{\top} B_{2}
$$

Degree sequence chosen carefully ...

Figures of merit for Coded Computation

- Coding for matrix computations essentially embeds the computation into a Reed-Solomon code.
- Schemes are clearly resilient to the maximum number of node failures.
- Follows directly from RS-like structure.
- Recovery threshold τ is the minimum number of nodes that need to return their results to the master node for successful decoding.

Issues with current approaches: Partial Stragglers

Stragglers are not the same as erasures ...

Unless they are complete node failures

Partial stragglers can be useful ...

Issues with current approaches: Partial Stragglers

Issues with current approaches: Partial Stragglers

Approximately 10\% of machines are slow stragglers, but not failures ...

Issues with current approaches: Partial Stragglers

Modeling the speeds of different stragglers is not easy ...

Issues with current approaches: Numerical Stability

Vandermonde matrices have very bad condition numbers ...

Condition number of $10^{\ell} \approx$ loss of ℓ bits of numerical precision

Issues with current approaches: Numerical Stability

Issues with current approaches: Numerical Stability

Results of interpolating a noisy degree-9 polynomial.

Even at 100 dB, over 5\% error ...

Issues with current approaches: Numerical Stability

Problematic for machine learning applications ...

Gradient computations are often noisy.

Issues with curent approaches: Structured matrices

Many practical situations involve sparse matrices.

Issues with curent approaches: Structured matrices

> Many practical situations involve sparse matrices.

Embedding into polynomial of deg- $(k-1)$ increases sparsity level k times.

Issues with curent approaches: Structured matrices

> Many practical situations involve sparse matrices.

Embedding into polynomial of deg- $(k-1)$ increases sparsity level k times.

May even cause computation times to go up [Wang et al. '18] ...

A Fine Grained Model

We divide matrix A into Δ blocks, row-wise.
Each worker has a storage capacity of $\gamma=\frac{\ell}{\Delta}$.
Workers sequentially process blocks from top to bottom.

Computation is complete when any Q blocks are processed.

A Fine Grained Model

We divide matrix A into Δ blocks, row-wise.
Each worker has a storage capacity of $\gamma=\frac{\ell}{\Delta}$.
Workers sequentially process blocks from top to bottom.

Computation is complete when any Q blocks are processed.

Allows for simple way of capturing different worker speeds!
Ratio Q / Δ : worst-case computation that needs to take place.

A Fine Grained Model

$\Delta=3, \gamma=\frac{2}{3}, \mathrm{Q}=4$
Uncoded Solutions

A Fine Grained Model

$$
\Delta=3, \gamma=\frac{2}{3}, Q=4
$$

Uncoded Solutions

A Fine Grained Model

$$
\Delta=3, \gamma=\frac{2}{3}, \mathrm{Q}=3
$$

Partially Coded Solution

A Fine Grained Model

$$
\Delta=3, \gamma=\frac{2}{3}, \mathrm{Q}=3
$$

Partially Coded Solution

Ordering of blocks matters!

Ordering of blocks matters!

A scheme with $\mathrm{Q}=5$

Placing the coded blocks first, reduces Q ...

A scheme with $\mathrm{Q}=4$

Dealing with sparsity \& numerical stability issues

Constrain the fraction of coded blocks in each worker

Uncoded fraction γ_{u}

Coded fraction γ_{c}

Key Questions under consideration

For the fine grained model

Bounds on Q / Δ ?

Achievability schemes for Q / Δ ?

Uncoded Scheme

All blocks are uncoded ...

Uncoded Scheme

All blocks are uncoded ...

Uncoded Scheme

Uncoded Scheme: Failure resilience

- Let r be the number of occurrences of each block. Then

$$
n \ell=r \Delta
$$

Uncoded Scheme: Failure resilience

- Let r be the number of occurrences of each block. Then

$$
n \ell=r \Delta
$$

Failure resilience

Consider an $\langle n, \ell, \Delta, r\rangle$-uncoded system. If the system needs to be resilient to s stragglers, then $r \geq s+1$ and $n \gamma=r$.

Uncoded Scheme: Lower bound on Q / Δ

$$
\text { Example: } Q_{5}=9
$$

- At least one copy of each $A_{j} x$ needs to be obtained by the master node.
- Q_{j} : number of blocks processed in the worst case without processing $A_{j} x$.

Uncoded Scheme: Lower bound on Q / Δ

$$
Q=1+\max _{j=1, \ldots, \Delta} Q_{j}
$$

Basic Averaging argument yields

$$
Q \geq 1+\frac{\sum_{j=1}^{\Delta} Q_{j}}{\Delta}
$$

Uncoded Scheme: Lower bound on Q / Δ

Combinatorial argument: Counting \bar{Q} two ways ...

Uncoded Q / Δ bound

In an $\langle n, \ell, \Delta, r\rangle$-uncoded system, $Q \geq \max \left(\Delta, \Delta r-\frac{r}{2}(\ell+1)+1\right)$.

Uncoded Scheme: Matching Constructions Exist

Choosing $\Delta=n$ and placing blocks in a cyclic shift manner ..

Resilient to two failures and meets the $Q / \Delta=2$ bound.

Uncoded Scheme: Matching Constructions Exist

Choosing $\Delta=n$ and placing blocks in a cyclic shift manner ..

Uncoded Scheme: Matching Constructions Exist

Choosing $\Delta=n$ and placing blocks in a cyclic shift manner ..

$$
\Delta=n=5, \ell=3
$$

$$
Q_{1}=9
$$

Uncoded Scheme: Matching Constructions Exist

Choosing $\Delta=n$ and placing blocks in a cyclic shift manner ..

$$
\Delta=n=5, \ell=3
$$

$$
Q_{5}=9
$$

Uncoded Scheme: Matching Constructions Exist

Choosing $\Delta=n$ and placing blocks in a cyclic shift manner ..

With cyclic construction Q_{j} is the same for each j !

Mix of uncoded and coded blocks

- Depends on where the coded and uncoded symbols appear in the worker nodes.
- If we expect stragglers to be somewhat infrequent, then it makes sense to put uncoded on top and coded blocks at the bottom. Most of the time decoding complexity will be low.
- Placing coded blocks at the top may reduce the worst-case computation at the expense of decoding complexity.

Mix of coded and uncoded blocks

- We now assume that each node receives a $\gamma=\gamma_{u}+\gamma_{c}$ fraction of the rows of A, where γ_{u} and γ_{c} correspond to the uncoded and coded parts respectively.
- A $\left\langle n, \ell_{u}, \ell_{c}, \Delta, r_{u}\right\rangle$ system means
- n workers, ℓ total blocks in a worker: ℓ_{u}-uncoded and ℓ_{c}-coded.
- Each block appears r_{u} times in the uncoded part.

Coded Blocks at the Bottom: Lower Bound on $\frac{0}{\Delta}$

In the best case each coded block is "useful" to the master node

Coded blocks at bottom Q / Δ bound

Consider a $\left\langle n, \ell_{u}, \ell_{c}, \Delta, r_{u}\right\rangle$ system with coded blocks at the bottom. Then,

$$
Q_{c b} \geq \max \left(\Delta, \Delta r_{u}-\frac{r_{u}}{2}\left(\ell_{u}+1\right)+1\right)
$$

. Furthermore, it is resilient to $\left\lfloor\frac{n^{2} \gamma_{c}+n \gamma_{u}-1}{n \gamma_{c}+1}\right\rfloor$ failures.

Lower bound follows from uncoded bound discussed earlier ...

Coded Blocks at the Bottom: Lower Bound on $\frac{0}{\Delta}$

In the best case each coded block is "useful" to the master node

Coded blocks at bottom Q / Δ bound

Consider a $\left\langle n, \ell_{u}, \ell_{c}, \Delta, r_{u}\right\rangle$ system with coded blocks at the bottom. Then,

$$
Q_{c b} \geq \max \left(\Delta, \Delta r_{u}-\frac{r_{u}}{2}\left(\ell_{u}+1\right)+1\right)
$$

. Furthermore, it is resilient to $\left\lfloor\frac{n^{2} \gamma_{c}+n \gamma_{u}-1}{n \gamma_{c}+1}\right\rfloor$ failures.

Lower bound follows from uncoded bound discussed earlier ...

Coded Blocks at the Bottom: Matching Construction

- We consider the same scenario with $n=5$ and $\gamma=\frac{3}{5}$
- The scheme is resilient to 3 stragglers and $Q_{c b}=8$ if $\ell_{u}=2$.

Coded Blocks at the Bottom: Matching Construction

Coded Blocks at the Bottom: Matching Construction

Requires the usage of Cauchy matrices for the coded blocks.

Cauchy

An $m \times n$ matrix with elements $a_{i j}=\frac{1}{x_{i}-y_{j}}$ where x_{i} and y_{j} are sequences of distinct elements, where $x_{i} \neq y_{j}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$.

Coded Blocks at the Bottom: Matching Construction

Basic Idea: Place uncoded blocks in a cyclic manner at the top

Cauchy matrices of appropriate dimension at the bottom.

Coded Blocks at the Top

- A given worker node only processes uncoded blocks after having processed ℓ_{c} coded blocks.
- If x coded blocks are processed by workers, then it suffices if any $\Delta-x$ blocks are processed in the uncoded part
- The any $\Delta-x$ fact makes things a lot harder.
- Have lower bounds, but not matching constructions in general ...

Coded Blocks at the Top

- Consider scenario where $\Delta=n=5$ and $\ell=3$. Here, $\ell_{u}=r_{u}=2$ and $\ell_{c}=1$.
- Once again, lower bound corresponds to case where each coded symbol is useful.

Coded Blocks at the Top: Lower bound on $\frac{Q}{\Delta}$

- Consider an arbitrary set of β worker nodes that process all their blocks and another set of worker nodes that only contribute x coded blocks.
- The total number of coded blocks is $x+\ell_{c} \beta$. Let \mathcal{A} denote the set of distinct uncoded blocks from those β workers.

$$
\begin{aligned}
& Q_{c t} \geq x+\ell \beta+1, \text { when } \\
& x+\ell_{c} \beta+|\mathcal{A}|<\Delta .
\end{aligned}
$$

This is because, we do not have enough equations to decode the $\Delta-|\mathcal{A}|$ unknowns.

- Next, we use another averaging argument. We calculate the average size of \mathcal{A} considering all possible $\binom{n}{\beta}$ worker nodes.

Coded Blocks at the Top

- A lower bound on $Q_{c t}$ can be derived by solving the following optimization problem.

$$
\begin{array}{ll}
\text { maximize } & x+\ell \beta+1 \\
\text { subject to } & \left(x+\ell_{c} \beta\right)<\Delta\left[\frac{\binom{n-r_{u}}{\beta}}{\binom{n}{\beta}}\right]
\end{array}
$$

Summary of Bound Examples

Q decreases as more coding is introduced.

Matching constructions in two of the cases.

Questions?

