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Distributed Matrix-Vector Computation
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Matrix A is typically too big to use just one node for computation.
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Distributed Matrix-Vector Computation
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Block rows of A

W1 W2 W3

A1 x A2 x A3 x
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A1 x A2 x A3 x

Execution time dominated by the speed of the slowest worker.



Coded Matrix-Vector Multiplication [Lee et al. ‘16]
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• Master node calculates A1 + A2 and sends A1, A2, and A1 + A2
and the vector x to the worker nodes.

• Master node can decode as long as any two worker nodes
complete their tasks.
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Coded Matrix-Vector Multiplication [Lee et al. ‘16]
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• Natural generalization via Reed-Solomon-like approach.

W1 W2

W3 W4

(
A1 + 1A2 + 12 A3

)
x

(
A1 + 2A2 + 22 A3

)
x

(
A1 + 3A2 + 32 A3

)
x

(
A1 + 4A2 + 42 A3

)
x

• Master node evaluates A1 + A2z + A3z2 at z = 1, . . . , 4 and sends the
evaluations and x to the workers.

• Result can be evaluated by polynomial interpolation at master node
as long as at least three workers complete.



Coded Matrix-Matrix Multiplication [Yu et al. ’17]
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Coded Matrix-Matrix Multiplication [Yu et al. ’17]
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AT1
AT2

Matrix AT

× B1 B2

Matrix B

=
AT1B1 AT1B2
AT2B1 AT2B2

Product

Master node evaluates polynomials

A1 + A2z and B1 + B2z2 at five different evaluation points.

Only requires scalar multiplication and addition.

W1 W2 W3 W4 W5

(A1 + 1A2)(
B1 + 12 B2

) (A1 + 2A2)(
B1 + 22 B2

) (A1 + 3A2)(
B1 + 32 B2

) (A1 + 4A2)(
B1 + 42 B2

) (A1 + 5A2)(
B1 + 52 B2

)
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Coded Matrix-Matrix Multiplication

6

W1 W2 W3 W4 W5

(A1 + 1A2)(
B1 + 12 B2

) (A1 + 2A2)(
B1 + 22 B2

) (A1 + 3A2)(
B1 + 32 B2

) (A1 + 4A2)(
B1 + 42 B2

) (A1 + 5A2)(
B1 + 52 B2

)

Worker node i equivalently calculates

AT1B1 + i AT2B1 + i2 AT1B2 + i3 AT2B2

Degree sequence chosen carefully ...



Figures of merit for Coded Computation

• Coding for matrix computations essentially embeds the
computation into a Reed-Solomon code.

• Schemes are clearly resilient to the maximum number of node
failures.

• Follows directly from RS-like structure.

• Recovery threshold τ is the minimum number of nodes that need
to return their results to the master node for successful decoding.
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Issues with current approaches: Partial Stragglers
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Stragglers are not the same as erasures ...

Unless they are complete node failures

Partial stragglers can be useful ...
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Avg. times for multiplying 2000× 2000 matrices

On 16 AWS t2.micro machines

Approximately 10% of machines are slow stragglers, but not failures ...



Issues with current approaches: Partial Stragglers
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Modeling the speeds of different stragglers is not easy ...



Issues with current approaches: Numerical Stability
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Vandermonde matrices have very bad condition numbers ...

Condition number of 10` ≈ loss of ` bits of numerical precision
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Results of interpolating a noisy degree-9 polynomial.

Even at 100 dB, over 5% error ...
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Problematic for machine learning applications ...

Gradient computations are often noisy.
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Issues with curent approaches: Structured matrices

11

Many practical situations involve sparse matrices.

Embedding into polynomial of deg-(k− 1) increases sparsity level k times.

May even cause computation times to go up [Wang et al. ’18] ...



A Fine Grained Model
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We divide matrix A into ∆ blocks, row-wise.

Each worker has a storage capacity of γ = `
∆ .

Workers sequentially process blocks from top to bottom.

Computation is complete when any Q blocks are processed.



A Fine Grained Model

12

We divide matrix A into ∆ blocks, row-wise.

Each worker has a storage capacity of γ = `
∆ .

Workers sequentially process blocks from top to bottom.

Computation is complete when any Q blocks are processed.

Allows for simple way of capturing different worker speeds!

Ratio Q/∆ : worst-case computation that needs to take place.



A Fine Grained Model
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Ordering of blocks matters!
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A scheme with Q = 5
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W1 W2 W3 W4

A1 x

(A2 + 2A3 ) x

A2 x

(A3 + 2A4 ) x

A3 x

(A4 + 2A1 ) x

A4 x

(A1 + 2A2 ) x

A scheme with Q = 5

Placing the coded blocks first, reduces Q ...
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A1 x

(A3 + 2A4 ) x

A2 x
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A scheme with Q = 4



Dealing with sparsity & numerical stability issues
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Constrain the fraction of coded blocks in each worker

Uncoded fraction γu

Coded fraction γc



Key Questions under consideration
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For the fine grained model

Bounds on Q/∆?

Achievability schemes for Q/∆?



Uncoded Scheme
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Uncoded Scheme
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Definitely need one copy of each uncoded block ...



Uncoded Scheme: Failure resilience

• Let r be the number of occurrences of each block. Then

n` = r∆

Failure resilience
Consider an 〈n, `,∆, r〉-uncoded system. If the system needs to be
resilient to s stragglers, then r ≥ s+ 1 and nγ = r.

19
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Uncoded Scheme: Lower bound on Q/∆
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• At least one copy of each Ajx needs to be obtained by the master
node.

• Qj : number of blocks processed in the worst case without
processing Ajx.

Example: Q5 = 9
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Uncoded Scheme: Lower bound on Q/∆
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Q = 1+maxj=1,...,∆ Qj

Basic Averaging argument yields

Q ≥ 1+
∑∆

j=1 Qj
∆



Uncoded Scheme: Lower bound on Q/∆

Uncoded Q/∆ bound
In an 〈n, `,∆, r〉-uncoded system, Q ≥ max(∆,∆r − r

2 (`+ 1) + 1).

21

Combinatorial argument: Counting Q̄ two ways ...



Uncoded Scheme: Matching Constructions Exist
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Choosing ∆ = n and placing blocks in a cyclic shift manner ..

W1 W2 W3 W4 W5

A1 x
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A4 x

A5 x

A4 x

A5 x

A1 x

A5 x

A1 x

A2 x

∆ = n = 5, ` = 3

Resilient to two failures and meets the Q/∆ = 2 bound.
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Uncoded Scheme: Matching Constructions Exist
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Choosing ∆ = n and placing blocks in a cyclic shift manner ..

With cyclic construction Qj is the same for each j!



Mix of uncoded and coded blocks

• Depends on where the coded and uncoded symbols appear in
the worker nodes.

• If we expect stragglers to be somewhat infrequent, then it makes
sense to put uncoded on top and coded blocks at the bottom.
Most of the time decoding complexity will be low.

• Placing coded blocks at the top may reduce the worst-case
computation at the expense of decoding complexity.

24



Mix of coded and uncoded blocks

• We now assume that each node receives a γ = γu + γc fraction of
the rows of A, where γu and γc correspond to the uncoded and
coded parts respectively.

• A 〈n, `u, `c,∆, ru〉 system means
• n workers, ` total blocks in a worker: `u-uncoded and `c-coded.
• Each block appears ru times in the uncoded part.

25



Coded Blocks at the Bottom: Lower Bound on Q
∆

26

In the best case each coded block is “useful” to the master node

Coded blocks at bottom Q/∆ bound
Consider a 〈n, `u, `c,∆, ru〉 system with coded blocks at the bottom. Then,

Qcb ≥ max(∆,∆ru −
ru
2
(`u + 1) + 1)

. Furthermore, it is resilient to
⌊
n2γc+nγu−1

nγc+1

⌋
failures.

Lower bound follows from uncoded bound discussed earlier ...
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Coded Blocks at the Bottom: Matching Construction
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• We consider the same scenario with n = 5 and γ = 3
5

• The scheme is resilient to 3 stragglers and Qcb = 8 if `u = 2.

W1 W2 W3 W4 W5

A1 x

A2 x

C1 x

A2 x

A3 x

C2 x

A3 x

A4 x
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A5 x

A1 x

C5 x
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Coded Blocks at the Bottom: Matching Construction
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Requires the usage of Cauchy matrices for the coded blocks.

Cauchy
An m× n matrix with elements aij = 1

xi−yj
where xi and yj are sequences of

distinct elements, where xi 6= yj for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Any square submatrix is full-rank.

W1 W2 W3 W4 W5

A1 x

A2 x

C1 x

A2 x

A3 x

C2 x

A3 x

A4 x

C3 x

A4 x

A5 x

C4 x

A5 x

A1 x

C5 x



Coded Blocks at the Bottom: Matching Construction
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Basic Idea: Place uncoded blocks in a cyclic manner at the top

Cauchy matrices of appropriate dimension at the bottom.

W1 W2 W3 W4 W5

A1 x

A2 x

C1 x

A2 x

A3 x

C2 x

A3 x

A4 x

C3 x

A4 x

A5 x

C4 x

A5 x

A1 x

C5 x



Coded Blocks at the Top

28

• A given worker node only processes uncoded blocks after having
processed `c coded blocks.

• If x coded blocks are processed by workers, then it suffices if any
∆− x blocks are processed in the uncoded part

• The any ∆− x fact makes things a lot harder.

• Have lower bounds, but not matching constructions in general ...



Coded Blocks at the Top
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• Consider scenario where ∆ = n = 5 and ` = 3. Here, `u = ru = 2 and
`c = 1.

• Once again, lower bound corresponds to case where each coded
symbol is useful.

W1 W2 W3 W4 W5

C1 x

A1 x

A2 x

C2 x

A2 x

A3 x

C3 x

A3 x

A4 x

C4 x

A4 x

A5 x

C5 x

A5 x

A1 x



Coded Blocks at the Top: Lower bound on Q
∆

• Consider an arbitrary set of β worker nodes that process all their
blocks and another set of worker nodes that only contribute x
coded blocks.

• The total number of coded blocks is x + `cβ. Let A denote the set
of distinct uncoded blocks from those β workers.

Qct ≥ x + `β + 1, when
x + `cβ + |A| < ∆.

This is because, we do not have enough equations to decode the
∆− |A| unknowns.

• Next, we use another averaging argument. We calculate the
average size of A considering all possible

(n
β

)
worker nodes.

30



Coded Blocks at the Top

• A lower bound on Qct can be derived by solving the following
optimization problem.

maximize x + `β + 1

subject to (x + `cβ) < ∆

[(n−ru
β

)(n
β

) ]

31



Summary of Bound Examples
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Uncoded Coded at bottom Coded at top MDS

6

8

10

Q

Q decreases as more coding is introduced.

Matching constructions in two of the cases.



Questions?


