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Abstract—Distributed matrix multiplication is widely used in More specifically, the work of ]1] considers the distributed
several scientific domains. It is well recognized that compation  computation of the product of two large matricas’ and
times on distributed clusters are often dominated by the shwest B. Matrices A and B are first partitioned intg x m and

workers (called stragglers). Recent work has demonstratethat blocks of submatri f | size by th ¢ d
straggler mitigation can be viewed as a problem of designing P * 7* DIOCKS O submalrices ot equal size Dy the master node.

erasure codes. For matricesA and B, the technique essentially Each worker is assumed to have enough memory to store the
maps the computation of AT B into the multiplication of smaller  equivalent of a single submatrix & and a single submatrix
(coded) submatrices. The stragglers are treated as eraswgén this  of B. The master node does some basic processing on its end
process. The computation can be completed as long as a certai 5 sends appropriately coded submatrices to each woitker. T
number of workers (called the recovery threshold) completeheir . - )
: workers multiply their stored (coded) submatrices andrretu

assigned tasks.

We present a novel Coding Strategy for this pr0b|em when the I‘esu|t to the master. The key I’eSU|t Of [1] ShOWS that the
the absolute values of the matrix entries are sufficiently smil. productA” B can be recovered as longasy 7 = pmn+p—1

We demonstrate a tradeoff between the assumed absolute valu workers complete their computation; the valués called the
bounds on the matrix entries and the recovery threshold. At ae recovery threshold of the computation.

extreme, we are optimal with respect to the recovery threshd - . . . . A
and on the other extreme, we match the threshold of prior work Interestingly, similar ideas (relating matrix multipliazn

Experimental results on cloud-based clusters validate theenefits 0 Polynomial interpplation) were investigated in a di_ﬁﬁt_
of our method. context by Yaglel[?] in the mid 90’s. However, the motivation

for that work was fast matrix multiplication using pseudo-
number theoretic transforms, rather than fault toleraimbere
I. INTRODUCTION have been other contributions in this ariela [3]-[7] as welins

The multiplication of large-dimensional matrices is a ke§' ':’AVh.'Cthr?qgt?. [1]. n th ‘ d rrate that
problem that is at the heart of several big data computations an Lontributions. In this work, we demonstrate that as

For example, high-dimensional deep learning probIemsnoftL?ng”aS thg entrlt(]es i and Bharehboundedb by_suf?menfly
require matrix-vector products at every iteration. In most small numbers, the recovery threshold ¢an be significantly

these problems the sheer size of the matrices precludes c6ﬁﬁj—uced as compared to the approachiof [1]. Specifically, the

H /
putation on a single machine. Accordingly, the computaticfﬁﬁovery.threzmld in (f)ur_\lf\;]ork can be of thr? foph:;]nﬂ;] _Idl
is typically performed in a distributed fashion across salve WNETEP IS @ AVISOT Olp. 1hus, We can achieve thresholds as
computation units (or workers). The overall job executiomet low asimn (which is optimal), depending on our assumptions

in these systems is typically dominated by the slowest work&" the matrix entries. We show that the r_equwed upper boqnd
this is often referred to as the “straggler problem”, on the matrix entries can be traded off with the correspandin

%eshold in a simple manner. Finally, we present experiaien

In recent years, techniques from coding theory have beresults that demonstrate the superiority of our method wia a
efficiently utilized in mitigating the effect of stragglerfs . . .
y gating 99 Amazon Web Services (AWS) implementation.

pointed out in [[1] ¢f. Appendix B in [1]), this issue can
be viewed as equivalent to coding for fault tolerance over a Il. PROBLEM FORMULATION
channel where the stragglers can be viewed as erasures.

IE . . .
the erasure coding context,(a, k) Reed-Solomon (RS) code e_t A (size v X_T) and B .(S'Ze v x .t) be two mt_eger
g (8 k) (RS) gjnatnce@. We are interested in computing £ A”B in a

allows for the recovery of all information symbols as long,. tributed fashion. Specificall h K d
as anyk of the coded symbols are recovered (via polyn Istributed fashion. specitically, €ach worker node carnes
1/mp fraction of matrix A and al/np fraction of matrix

mial interpolation). The innovative aspect of [1] is in i . . i
P ) pect of [1] He B. The job given to the worker node is to compute the

distributed matrix-vector and matrix-matrix multipligan in a d t th b ) ianed it Th q
form that is similar to an RS code. At a top Ievel,thetechﬁiqLPro uct of the submatrices assigned to it. The master node

assigns the worker nodes the job of computing the proddif?its for a sufficient number of the submatrix products to be
énmunicated to it. It then determines the final result after

of smaller (coded) submatrices; these can be viewed as h . ) d M ol Aeand
symbols of a codeword. As long as enough coded symb ther processing at its end. More precisely, matrigean
are first block decomposed as follows:

are received, decoding the required result is possible.
A =14;],0<i<p,0<j<m, and
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where theA;;’s and theBy,;’s are of dimension:; x = and useful and interference terms even in the presenck of 4

% X % respectively. The master node forms the polynomialg€rasures.
Now, suppose that the absolute value of each entfy and

A(s, z) = ZAijstzP”, and of each of the interference terms<sL. Furthermore, assume
i, thats > 2L. TheCj;'s can then be recovered by exploiting the
B(s,z) = ZBMS’YMZ&M, fact thats > 2L, eq., for non-negative matrices andB, we
7 can simply extract the integer part of ea&h; and compute

) ) its remainder upon division by. The case of general and
where \;, pij, v and dy; are suitably chosen integers. FolB s treated in Sectiof II=B.

lowing this, the master node evaluatelgs, z) and B(s,z) ~ To summarize, under our assumptions on the maximum
at a fixed positive integes and carefully chosen pointsapsolute value of the matri and the interference matrix
z € {z1,..., 2k} (which can be real or complex) whef€¢ products, we can obtain a scheme with a threshold.dh

is the number of worker nodes. Note that this only requirggntrast, the scheme dfl[1] would have a threshold.of
scalar multiplication and addition operations on the pdrt o

the master node. Subsequently, it sends matribesz;) and Remark 1. We emphasize that the choice of polynomi-

B(s, 2) to thei-th worker node. als A(s,z) and B(s,z) are quite different in our work as

The ith worker node computes the producgompared to[[l]; this can be verified by setting= 1
AT (s,2)B(s,z) and sends it back to the master nodd? the expressions. In particular, our choice of polynosial
Llet 1 < + < K denote the minimum number of workerdeliberately creates the controlled superposition of ulsafd
nodes such that the master node can determine the requifégrference terms (the choice of coefficientslin [1] exiic
product (i.e., matrixC) once any r of the worker nodes &v0ids the superposition). We unentangle the superpoditjo
have completed their assigned jobs. We calihe recovery ~USing our assumptions on the matrix entries later. To out bes

threshold of the scheme. I [1]; is shown to beymn+p—1. Knowledge, this unentangling idea first appeared in the work
. of [2], though its motivations were different.

[1l. REDUCED RECOVERY THRESHOLD CODES .
o B. General code construction
A. Motivating example
We now present the most general form of our result. Let

Let m = n = p = 2 so that the following block {he plock decomposed matriceéls and B be of sizep x m
decomposition holds andp x n respectively. We form the polynomial(s, z) and
A Ao Ao andB — Boo Boi . B(s, z) as follows
Ao An By Bu m_1  p-1
We let A(s,2) =Y 2" > Auis™, and
~ 1=0 u=0
A(s,z) = Ago + Alos_l + (Ao1 + Alls_l)z, and ~ n—1 p-1
B(S,Z) :B00+B108+(B01+3118)22. B(S,Z) :ZZWJZB»UJ'SU.
i=0 v=0

The productA” (s, z) B(s, z) can be verified to be

AT(&Z)B(S’Z) - m—1n—1p—1p—1
s 1 (ATyBoo + AT, Booz + Al Bo12* + AT, Bo12%) (1) AT (s,2)B(s, 2) = Z Z Z Z AL B, j2miTisv T (4)
+ Coo + Croz + 0012’2 + 0112’3 (2) =0 j=0 u=0v=0

+ s(AdyBio + Al Bioz + AfyB112* + Al B11z*).  (3) To better understand the behavior of this sum, we divide it

. . into the following cases.
Evidently, the product above contains the useful terms in g

@) as coefficients of* for k = 0, ..., 3. The other two lines ¢ Case 1. Useful terms. These are the terms with co-

Under this choice of polynomiald(s, z) andB(s, z), we have

contain terms (coefficients of 12 and sz*, k = 0,...,3) efﬂmentsp(_)f thTe formA?“-BuJ. They are useful since
that we are not interested in; we refer to theséntesference CzTy = > u—o AuiBuj- Itis eis)iito check that the term
terms. Rearranging the terms, we have A,iBuj is the coefficient of:™/7". _
_ ~ « Case 2: Interference terms. Conversely, the terms if](4)
AT(s,2)B(s,2) = with coefficientA”; B, ;, u # v are theinterference terms
(%571 + Coo + *8) + (xs 7L + Cho + *s) 2+ and they are the coefficients of*/**s"=% (for v # u).
o X Based on the above discussion, we obtain
(#5714 Cor +%s) 22 + (k57 + Cu1 + %) 2°, ~ i mlnl
AT (s,2)B(s, z) = PUCARSY
~ ~ (B = 33
wherex denotes an mterf_ere_nce term. _ (k5= 4.y gsl O+ x5+ +xsPY), ()
As the above polynomial is of-degree 3, equivalently we
have presented a coding strategy where we recover supdrpose Xij
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wherex denotes an interference term. Note thdt (5) consistesheme, i.e., we can loosen the requirementLoand p at
of consecutive powers® for k =0,...,mn — 1. the cost of an increased threshold.

We choose distinct values for worker: (real or complex).  Assume thapy’ is an integer that dividep. We form the
Suppose that the absolute value of eagh and of each polynomialsA(s,z) and B(s, z) as follows,
interference term (marked witf) is at mostZ — 1. We choose

m—1p —1 P/P -1

=X Y A and
C. Decoding algorithm i=0 j=0

We now show that as long as at least. of the worker N n-1p'-1 PPl
nodes return their computations, the master node can recové (s, z) Z Z mput(p ~1—) Z Bz Zv)ud s
the matrixC. u=0 v=0
_Suppose the master node obtains the resilt = Note that in the expressions above we ukg to represent
AT (s, 2;)B(s, z;) from any mn workersiy, is, . . ., imn. Then, the (i, 7)-th entry of A (rather than4;;). Next, we have

it can recoverX;;, i = 0,...,m—1,7 =0,...,n—1 by V1 /1 p/p -1
- —ln—1p —1p/p —

solving the following equations, - m 1y lp/v
vi Wi uati A(s.2) ZQZZZZZ
=07

Yi, 1oz, 22 .. 2t Xoo k=0 u=0 v=0 w=0

i1 v=0
}/12 _ 1 Zig Zi22 A Zz?;lnfl )(.01 ' A(k+ B(w+ 2 ) u? +(p' —1—v)+j+p 1Sk7w. (6)
Yi;m 1oz, 22 - Z?;271 X(m_i)(n—l) To better understand the behavior Bf (6), we again divide it

into useful terms and interference terms.

The Vandermfotrrl]de f?rrtr_] of ;frl]e abgve matri:;] gléa;anti;s tthe Case 1. Useful terms. These are the terms with

uniqueness of the solution. This is because the determafan

v q > coefficients of the form AT (h+25), 1B(k+_J) The
andermonde matrix can be expressed §s, <., (%i. — :

z;,), which is non-zero since;,, j = 1,--- ,mn, are distinct. (et 274), Bt 2g)u 1S "the  coefficient  of
Note thatX;; = xs= =D ... f st 4+ Cjj 455+ + gmplutpitp’ =1

xsP~1. The master node can recov@y; from X;; as follows. o Case 2: Interference terms. The interference terms

We first roundX;; to the closest integer. This allows us to  are associated with the terms with coefficient

recoverC;; + *s + - - - + xsP~1. This is because Aﬁ+§j)7i3(w+§v),u’ k # w andlorj # wv. They

-1 can be written as
<1/2.

term AT

L
—(p—1) -1
| * s o rsT < oy

Next, we determin€;; = Cy; +*s+---+*s"~1 mod s (we v that the interf . 4 useful t
work under the convention that the modulo output always Iié@e now verity that the interierence terms and usetul terms

between0 and s — 1). It is easy to see that if’;; < 5/2 then are distinct. This is evident wheh # w by examining the
Ci = CZJ, otherwiseCy; is negative and’;; _7__(8 ) - exponent ofs. Whenk = w but j # v we argue as follows.

If sis a power of2, the modulo operation can be performeglJppose that there exist somg us, iy, i Such thatmp'u, +

i1 +p —1=mpus+p +p'ia—v+j—1. Then,mp (ul—
by simple bit-shifting; this is the preferred choice. u2)+p (i1—i3) = j—v. This is impossible sinc —v| < p'.

D. Discussion of precision issues Next, we discuss the degree of(s,z)"B(s,z) in the
riable z. In (@), the terms with maximat-degree are the
ms withu =n—1,v=0,7 =p'—1 andi = m — 1. Thus,
e maximal degree of in the expression imnp’+p’ —2.1t

T mp'u+(p’' —1—v)+j+p'i k—w
A(k+§,j),iB(w+frv),uZ S .

The maximum and the minimum values (integer or floatin
point) that can be stored and manipulated on a comput

have certain limits. Assuming = 2L, it is easy to see ‘. A
g 4 can be verified that terms withrdegree fron® to mnp’+p’—2

that | X;;| is at most(2L)?/2. Therefore, large values of
andp can potentially cause numerical issues (overflow and/Wﬂ" appear in [6) and the-degree of the useful terms;,
mpu+pi+p —-1,i=0,--- ,m—1,u=0,--- ,n—1.

underflow). We note here that a simple but rather conservatf' €
) P Likewise thes-degree ofA(s, z)TB(s, z) varies from—(p—

way to estimate the value of would be to set it equal to - .
v - max|A| x max |B| + 1 ),...,0,...,(p— 1) with the useful terms corresponding to

sY. Based on the above discussion, we obtain
IV. TRADING OFF PRECISION AND THRESHOLD

mnp’+p' -2
The method presented in Sectlor Il achieves a threshold ' (5 .)5(s, 2) = Z X,z where
mn while requiring that the LHS of {5) remain with the range o

of numeric values that can be represented on the machine.

—Gr=h -1, .. w1
In general, the terms ifl(5) will depend on the choice of the *8 totxs T Oy txs e das ’

z’s and the values of theX;,['s, e.g., choosing the;’s to - _ it k=mp'j+pi+p—1

be complex roots of unity will imply that our method requires ws Y L b ks ok bas *55*1,
P

mn x (2L)P/2 to be within the range of values that can be otherwise

represented.

We now present a scheme that allows us to trade off tBidently, the recovery threshold ianp’ + p’ — 1, which is
precision requirements with the recovery threshold of thdgher than that of the construction in Section 1lI-B. Howev
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17 T T
—©— Proposed TABLE |
16 ,m EFFECT OF BOUND(L) ON THE DECODING ERROR
A pr------ o-------
2 5l / Bound(L) S Error
I /
g / 100 228 | 6.31-10~7
Rl / 200 230 | 8.87-10~7
g | ) 500 232 6.40 - 10~ ©
= 13
i I 1000 23795210 ©
Bup 2000 || 2% 1
8 ’ . . . L .
2ur ) time. The decoding time for our method is slightly higher
I owing to the modulos operation ¢f. Section1I1-C).
& It can be observed in Fidl 1 that for our method there is
9 - - - - . . .
0 1 2 3 4 5 6 7 no significant change in the latency for the valuesSofe

Fig. 1.
stragglers

let s = 2L, the maximum value ofX ;| is at most(2L)?/?’ /2

S, Number of stragglers

Comparison of total computation latency by simulgtiup to 8

which is less than the previous construction/if> 1.

Example 1. Letm =n =2, p =4 andp’ = 2 so that

Ao Ao By Boi

Ay A By Bu
A= andB =

A20 A21 BQO BQl

A30 A31 B30 B31

We let

A(S, Z) :AOO —|— AloSil + (AQO + A30571)Z—|—

{0,2,4,6} and it remains around 9.83 seconds. Wlites 7,

as expected the straggler effects start impacting oursyatel

the latency jumps to approximately 16.14 seconds. In centra
the performance of [1] deteriorates in the presence of two or
more stragglers (average lateney15.65 seconds).

Real Vandermonde matrices are well-known to have bad
condition numbers. The condition number is better when we
consider complex Vandermonde matrices with entries fraen th
unit circle [10]. In our method, théX;;| and|Y;;| values can
be quite large. This introduces small errors in the decoding
process. LeC be the decoded matrix and 2 A”B be the
actual product. Our error metric is= % (subscriptF
refers to the Frobenius norm). The resu‘ts in Fig. 1, had an
error e of at most10~". We studied the effect of increasing

(A01 + A11871)22 + (AQl + Aglsfl)zg, and
B(s,z) =(Boo + B108)2 + Bag + Bags+
(Bo1 + B115)2° 4 (B + Bsys)z*.

the average value of the entries i and B in Table 1.
The error is consistently low up to a bound 6f = 1000,
following which the calculation is useless owing to numatic
overflow issues. We point out that in our experiments thererro

e was identically zero if the;;’s were chosen from the unit

The product of the above polynomials can be verified to co
tain the useful terms with coefficients 23, 2%, 27; the others

|X;;| can at most beL?, though the recovery threshold is
9. Applying the method of Sectidn TI[1B would result in the [1]
|X;;| values being bounded WBZ* with a threshold ofd.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We ran our experiments on AWS EC2 r3.large instances.
Our code is available onlingl[8]. The input matricksandB 3]
were randomly generated integer matrices of Siz@) x 8000
with elements in the sef0,1,...,50}. These matrices were [4]
pre-generated (for the different straggler counts) andareed
the same for all experiments. The master node was respensibl
for the 2 x 2 block decomposition ofA and B, computing
A(s,z;) and B(s, z;) for i = 1,...,10 and sending them to [g)
the worker nodes. The evaluation poinigg) were chosen as
10 equally spaced reals within the interyall, 1]. The strag-
glers were simulated by having randomly chosen machines
perform their local computation twice.

We compared the performance of our methofl $ection (8]
[ with [1]. For fairness, we chose the same evaluatiomsi
in both methods. In fact, the choice of points in their codd9]
available online[[B] (which we adapted for the case when
1), provides worse results than those reported here. [10]

Computation latency refers to the elapsed time from the
point when all workers have received their inputs until egtou
of them finish their computations accounting for the decgdin

4

Bircle. However, this requires complex multiplication, iath

X ) increases the computation time.
are interference terms. For this scheme the corresponding
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