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Abstract—We study the rate region of variable-length source-
network codes that are used to compute a function of messages
observed over a network. The particular network considered here
is the simplest instance of a directed acyclic graph (DAG) that
is not a tree. Existing work on zero-error function computation
in DAG networks provides bounds on the computation capacity,
which is a measure of the amount of communication required
per edge in the worst case. This work focuses on the average
case: an achievable rate tuple describes the expected amount of
communication required on each edge, where the expectation is
over the probability mass function of the source messages.

We describe a systematic procedure to obtain outer bounds to
the rate region for computing an arbitrary demand function at
the terminal. Our bounding technique works by lower bounding
the entropy of the descriptions observed by the terminal condi-
tioned on the function value and by utilizing the Schur-concave
property of the entropy function.

I. INTRODUCTION

Zero-error function computation over a graphical network
using network coding was studied in [1]. There they consid-
ered two variants of the communication load on the network,
called worst-case and average-case complexity, depending on
whether the probability information of the source messages
was used or not. They characterized the rate region of achiev-
able rate tuples that allowed zero-error function computation
in tree-networks, each entry in a rate tuple was the rate of a
code employed on the corresponding edge in the tree-network.
They also made the observation that finding the rate region
of a DAG network is challenging because of multiple paths
between a source node and the terminal, which allows for
different ways of combining information at the intermediate
nodes.

Worst-case zero-error function computation was also studied
in [2], where the authors defined the computation capacity
of a function computation problem instance. This is a gen-
eralization of the coding capacity of a network, which is the
supremum of the ratio k

n over all achievable (k, n) fractional
coding solutions for that communication network. A (k, n)
fractional network code is one in which k source messages are
block encoded at each encoder and every edge in the network
transmits n symbols from the alphabet in one channel use. The
authors in [2] characterized the computation capacity of multi-
stage tree-networks by finding the necessary and sufficient
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amount of information that must be transmitted across all
graph cuts that separate one or more source nodes from the
terminal. Upper bounds on the computation capacity of DAG
networks are more complicated and have been obtained in
[3], [4]. These upper bounds were shown to be unachievable
for a function computation problem on a particular DAG
in recent work [5, Sec. V]. A qualitatively different line
of work considers the computation of simple functions such
as finite-field sum [11]–[13] over arbitrary acyclic networks
with multiple terminals. Furthermore, [14]–[16]) discuss the
multiple unicast problem which is an important special case
of function computation

In this paper, we focus on average-case complexity of
computing a general demand function over the DAG network
shown in figure 1. We summarize our contributions below.
• For an arbitrary demand function, we give a procedure

to obtain lower bounds on the rates that must be used on
the edges of the DAG in figure 1 in order to compute
the function with zero-error at the terminal. The key fact
used in this is the Schur-concavity of entropy and the
equivalence relations given in [3], [4], [5].

• Applying this procedure for the arithmetic sum demand
function gives us a tighter lower bound to the sum rate
than that implied by the work in [6].

The paper is organized as follows. Section II formulates
the problem and defines its rate region. Section III gives a
procedure to find an outer bound to the rate region; we evaluate
this outer bound for arithmetic sum computation in Section
IV. Due to space constraints, some proofs and calculations
are omitted and can be found in the full paper [10].

II. PROBLEM FORMULATION

The edges in figure 1 model error-free communication links
and are later denoted by an ordered pair of vertices. In what
follows, logarithms are to the base 2 unless specified other-
wise. Suppose that Z is the alphabet used for communication,
and |Z| > 1. Vertices s1, s2, s3 are the three source nodes that
observe random variables X1, X2, X3 respectively, each from
a discrete alphabet A with size |A| > 1. The source r.v.s are
assumed to be i.i.d. uniformly distributed over A. Terminal
node t wants to compute B , f(X1, X2, X3) with zero error
and zero distortion for a known demand function:

f : A×A×A → B.
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Fig. 1. A directed acyclic network with three sources and one terminal.

An example f is shown in table I. We use variable-length
network codes to compute it. To do that, we use the Source-
Network Code as described in [7] and use it in the function
computation setting described above. The quantity of interest
here is the rate region R, which is a region containing all
achievable rate tuples R. Each rate tuple has four components,
one for each edge in the network. We define the source-
network code and the admissible rate tuples below. We denote
a k-length vector r.v. as Bk , (B(1), B(2), . . . , B(k)), where
B(i) indicates the i-th r.v. in Bk. Lowercase boldface are used
to denote vector realizations, i.e., b , (b(1), b(2), . . . , b(k)).

Definition 1: Let Z∗ denote the set of all finite-length
sequences with alphabet Z . A source-network code Cf,k for
computing Bk in the network of Figure 1 consists of:

1) Encoding functions for edges in Figure 1:

φ(s3,s1)(X
k
3 ) : Ak → Z∗

φ(s3,s2)(X
k
3 ) : Ak → Z∗

φ(s1,t)
(
Xk

1 , φ(s3,s1)(X
k
3 )
)
: Ak ×Z∗ → Z∗

φ(s2,t)
(
Xk

2 , φ(s3,s2)(X
k
3 )
)
: Ak ×Z∗ → Z∗

For brevity, we denote φ(s1,t)
(
Xk

1 , φ(s3,s1)(X
k
3 )
)

by
the random variable Z1, and similarly define the r.v.s
Z2,Z31,Z32.

2) Decoding function for terminal t: ψt : Z∗×Z∗ → Bk is
such that Pr{ψt(Z1,Z2) 6= Bk} = 0, where the sample
space of the probability consists of all realizations of the
i.i.d. messages Xk

1 , X
k
2 and Xk

3 .

Thus the outputs of the encoders are variable length, and the
terminal has a decoder that takes in a pair of variable length
inputs and returns the block of k function computations on
the message tuple. The rate tuple of a source-network code is
defined below, taking into account the different alphabets in
which the messages and the codewords reside.

Definition 2: R = (R31, R32, R1, R2) is an admissible
rate tuple for the code Cf,k if for any ε > 0 there exists a
sufficiently large k such that

E `(Z1) log |Z| ≤ k(R1 + ε) log |A|,

where E `(Z1) is the expected length (in symbols from Z ,
over the probability mass function of the source messages) of
the codeword Z1. A similar definition is used for the rates
R31, R32 and R2.

III. OUTER BOUND TO THE RATE REGION

We use C?NS : SZ → Z? to denote a non-singular code for
a r.v. Z supported on SZ having minimum expected length.

Lemma 1 (Adapted from Theorem 3 in [8]): Let H|Z|(·)
denote entropy in base |Z|. The expected length of the best
non-singular code C?NS(Z) for a r.v. Z has the lower bound:

E ` (C?NS(Z)) ≥ H|Z|(Z)− 2 log|Z|
(
H|Z|(Z) + |Z|

)
.

Since the identity mapping is also a non-singular code for Z,

E `(Z) =
∑
z

Pr{Z = z}`(z) ≥ E ` (C?NS(Z)) . (1)

Lemma 2: Consider an equivalence relation on Ak for which
x3 ≡ x′3 if and only if for all (x1,x2) ∈ Ak × Ak, we
have that f(x1,x2,x3) = f(x1,x2,x

′
3). Define the function

g(Xk
3 ) which returns the equivalence class that Xk

3 belongs
to under the above relation. Then the range of g(Xk

3 ) is a
subset of {1, 2, . . . , |A|k} and we have that R31 + R32 ≥
H(g(Xk

3 ))/k log |A|.
Proof: Suppose that H|Z|(g(Xk

3 )|Z31,Z32) > 0, then
one cannot obtain g(Xk

3 ) from the pair (Z31,Z32), i.e., there
exist x3 6≡ x′3 but their associated codewords satisfy z31 =
z′31 and z32 = z′32. There exists a pair (x1,x2) ∈ Ak ×
Ak such that f(x1,x2,x3) 6= f(x1,x2,x

′
3). However, since

z31 = z′31 and z32 = z′32, the codewords transmitted on the
edges (s1, t), (s2, t) in the two cases satisfy z1 = z′1 and
z2 = z′2. Thus the decoder receives the same input arguments
in both the cases and consequently causes an error.

Thus we have that H|Z|(g(Xk
3 )|Z31,Z32) = 0. That gives

us H|Z|(g(Xk
3 )) ≤ H|Z|(Z31) + H|Z|(Z32), and using the

upper bound to the entropy in terms of the expected codeword
length (c.f. equation 1 and lemma 1), we have the following.

H|Z|(g(X
k
3 )) ≤E `(Z31) + 2 log|Z|(H|Z|(Z31) + |Z|)+

E `(Z32) + 2 log|Z|(H|Z|(Z32) + |Z|),
=⇒ H(g(Xk

3 )) ≤ k(R31 +R32 + 2ε+ δ) log |A|,

the second inequality uses the same ε for both rates, and
δ can be made small enough for large k as H|Z|(Z31) ≤
H|Z|(X

k
3 ) = k log|Z| |A| and similarly for H|Z|(Z32).

In the rest of the paper, we outline a systematic procedure
to get a lower bound for the sum rate R1 +R2. We can also
use a similar process to get lower bounds for R1 and R2

individually; the details can be found in [10]. There are two
key parts in the proof of lemma 2: (i) an equivalence relation
for the message values, which gives (ii) a lower bound to the
entropy of the codewords transmitted. The same two ideas
will also be used in bounding the sum rate. The equivalence
relation used for Xk

1 and Xk
2 is originally given in [3], [4]

and we adapt them to our particular network instance. This
equivalence relation allows us to give a lower bound to the
relevant entropy as follows.

H|Z|(Z1)+H|Z|(Z2) ≥ H|Z|(Z1,Z2|Bk, Xk
3 )+H|Z|(B

k)

≥ αk +H|Z|(B
k),



where the first inequality is true by the zero-error criterion and
α is a quantity that can be evaluated for a general demand
function as described in the sequel (c.f. (6)). The lower bound
to the sum rate can then be given in terms of α as

αk +H|Z|(B
k) ≤E `(Z1) + 2 log|Z|(H|Z|(Z1) + |Z|)+

E `(Z2) + 2 log|Z|(H|Z|(Z2) + |Z|),
≤ k(R1 +R2 + 2ε+ δ) log|Z| |A|. (2)

A. Equivalence relation and its associated classes

Definition 3: For all possible realizations (x1, x2, x3),
(y1, y2, y3) ∈ A3 such that x3 = y3 , a3, we say1 that
x1

a3≡ y1|1 if and only if f(x1, x2, a3) = f(y1, y2, a3) for
all x2 = y2 ∈ A. Similarly, for all possible realizations
(x1, x2, x3), (y1, y2, y3) ∈ A3 such that x3 = y3 , a3, we
say that x2

a3≡ y2|2 if and only if f(x1, x2, a3) = f(y1, y2, a3)
for all x1 = y1 ∈ A.
Note that for both u = 1, 2 and any value of a3 , x3 = y3,

• xu = yu implies xu
a3≡ yu|u,

• xu
a3≡ yu|u implies yu

a3≡ xu|u, and
• xu

a3≡ wu|u and wu
a3≡ yu|u implies xu

a3≡ yu|u.

Thus
a3≡ |u is an equivalence relation on A for any demand

function f(X1, X2, X3), choice of u ∈ {1, 2} and a3 ∈ A.
The number of equivalence classes of A induced by

a3≡ |u is
denoted as Vu(a3) for both u = 1 and 2.

The above equivalence relation gives the minimum number
of Zu codewords that must be transmitted on the edges,
because of the following lemma, which can also be obtained
by adapting lemma 3 in [4] to the network here.

Lemma 3: Consider a block of k independent realizations
of X1, X2 and X3 and let a3 ∈ Ak be the realization for Xk

3 .
Then for u ∈ {1, 2}, the number of distinct Zu-labels that
must be transmitted on the edge (su, t) to allow the terminal to
recover Bk with zero error is at least Vu(a3) ,

∏k
i=1 Vu(a

(i)
3 ).

Let
a3≡ |u denote the collection of equivalence relations of

definition 3 for each component of a3. In this notation,

xu
a3≡ yu ⇔ x(j)u

a
(j)
3≡ y(j)u , ∀j ∈ {1, 2, . . . , k}.

If x1

a3

6≡ y1, then φ(s1,t)(x1,a3) 6= φ(s1,t)(y1,a3), i.e., their
Z1 labels must be different. An analogous statement is true
for the Z2 label as well.

For either u = 1 or 2 and each i ∈ {1, 2, . . . , k}, the

equivalence classes under
a
(i)
3≡ |u are denoted as Cl(j)u (a

(i)
3 ),

where the superscript j ∈ {1, 2, . . . , Vu(a(i)3 )} indexes the
classes such that

|Cl(1)u (a
(i)
3 )| ≥ |Cl(2)u (a

(i)
3 )| ≥ · · · ≥ |Cl(Vu(a

(i)
3 ))

u (a
(i)
3 )|.

Based on the value of a3 at each component, the set Ak can
be partitioned into Vu(a3) =

∏k
i=1 Vu(a

(i)
3 ) partitions. These

partitions of Ak under
a3≡ |u can be represented using a index

1Read as ‘x1 is a3-equivalent to y1 for the message at s1’.

TABLE I
FUNCTION TABLE FOR A DEMAND FUNCTION TO BE COMPUTED OVER THE
NETWORK IN FIGURE 1. THE MESSAGE ALPHABET IS A = GF (3). TABLE

IA SHOWS THE FUNCTION VALUES FOR ALL (X1, X2) PAIRS WHEN
X3 = 0, TABLE IB SHOWS THE FUNCTION VALUES WHEN X3 = 1 AND

TABLE IC SHOWS THE FUNCTION VALUES WHEN X3 = 2.

X3 = 0
X2

0 1 2
0 0 2 1

X1 1 1 0 2
2 2 1 0

(a)

X3 = 1
X2

0 1 2
0 0 0 0

X1 1 0 0 0
2 1 0 0

(b)

X3 = 2
X2

0 1 2
0 1 1 0

X1 1 1 1 1
2 1 1 1

(c)

vector v having k components, each of which satisfies v(i) ∈
{1, 2, . . . , Vu(a(i)3 )} and

xu ∈ Cl(v)u (a3)⇔ x(i)u ∈ Cl(v
(i))

u (a
(i)
3 ), ∀i ∈ {1, 2, . . . , k}.

Like in the scalar case, we add a subscript t ∈
{1, 2, . . . , Vu(a3)} to get the index vector vt such that the
equivalence classes under

a3≡ |u satisfy the ordering

|Cl(v1)
u (a3)| ≥ |Cl(v2)

u (a3)| ≥ · · · ≥ |Cl
(vVu(a3))
u (a3)|.

From the definition, for every t ∈ {1, 2, . . . , Vu(a3)}, we have
that Cl(vt)

u (a3) =×k

i=1
Cl(v

(i)
t )

u (a
(i)
3 ), i.e., a cartesian product

of k scalar equivalence classes and accordingly |Cl(vt)
u (a3)| =∏k

i=1 |Cl
(v

(i)
t )

u (a
(i)
3 )|.

We characterize the family of valid conditional p.m.f.s for
the pair (Z1,Z2) given the values of the demand function
f(Xk

1 , X
k
2 , X

k
3 ) and the realization of the message Xk

3 . To-
wards this end we first find the number of distinct (Z1,Z2)-
labels that must be assigned by the network code to message
tuples that result in a particular value, say, b ∈ Bk of the
demand function. The set A3(b) has all possible realizations
a3 of Xk

3 that can result in the value of b for the demand
function, i.e.,

A3(b) , {a3 ∈ Ak : ∃ x1,x2 ∈ Ak s.t. f(x1,x2,a3) = b}.

Let M(a3, b) be the number of distinct (Z1,Z2) pair labels
used for message tuples that have Xk

3 = a3 and Bk = b.
Consider two message tuples (x1,x2,a3) and (y1,y2,a3)
which satisfy f(x1,x2,a3) = f(y1,y2,a3) = b. If either

x1

a3

6≡ y1|1 or x2

a3

6≡ y2|2, then the pair of labels (Z1,Z2)
assigned to the two message tuples must be different. This
motivates us to define the pair index set:

V12(a3, b)

,

(Cl
(vj)
1 ,Cl

(wt)
2 ) :

∃ x1 ∈ Cl
(vj)
1 (a3),x2 ∈

Cl
(wt)
2 (a3) s.t. f(x1,x2,a3) = b,

1 ≤ j ≤ V1(a3), 1 ≤ t ≤ V2(a3).

 .

Then for any b ∈ Bk,a3 ∈ A3(b), M(a3, b) ≥ |V12(a3, b)|.
Example 1: Consider block size k = 1 and a realization

b = 0 of the demand function of table I. We can evaluate that

Cl
(1)
1 (1) = {0, 1},Cl(2)1 (1) = {2}, and

Cl
(1)
2 (1) = {1, 2},Cl(2)2 (1) = {0}.



The pair index set V12(1, 0) = {(Cl(1)1 ,Cl
(1)
2 ), (Cl

(1)
1 ,Cl

(2)
2 ),

(Cl
(2)
1 ,Cl

(1)
2 )}. Note that (Cl

(2)
1 ,Cl

(2)
2 ) /∈ V12(1, 0) as the

elements of that pair of equivalence classes do not result in
the demand function value of 0, i.e.,

Cl
(2)
1 (1) = {2}, Cl(2)2 (1) = {0},

but for x1 = 2, x2 = 0, x3 = 1, f(x1, x2, x3) = 1 6= 0.

Thus in this case we have that |V12(1, 0)| = 3. The other pair
index sets for this demand function are given in table II.

B. Lower bound for conditional entropy

We now explicitly derive a p.m.f. whose entropy is a lower
bound to H|Z|(Z1,Z2|Bk = b, Xk

3 = a3). Let A123(b) ⊆
A3k contain all message tuples that are present in the pre-
image of the demand function value of b. For a a3 ∈ A3(b)
we define an associated subset of the pre-image set as follows.

A123(b,a3) , {(x1,x2,a3) : f(x1,x2,a3) = b}.

Let (Cl
(v)
1 ,Cl

(w)
2 ) ∈ V12(a3, b). The number of different

message tuples that cause the membership of the equivalence
class pair (Cl(v)1 ,Cl

(w)
2 ) ∈ V12(a3, b) is denoted as follows.

ha3(v,w),

∣∣∣∣{(x1,x2) :
x1∈Cl(v)1 (a3), x2∈Cl(w)

2 (a3),
and f(x1,x2,a3) = b.

}∣∣∣∣
= |Cl(v)1 (a3)| · |Cl(w)

2 (a3)|. (3)

Equality (3) is true above as by definition 3 every element
of an equivalence class under

a3≡ |1 results in the same
demand function value (while the other message x2 is held
constant), and since (Cl

(v)
1 ,Cl

(w)
2 ) ∈ V12(a3, b), there is at

least one x1 ∈ Cl
(v)
1 (a3) and one x2 ∈ Cl

(w)
2 (a3) such that

f(x1,x2,a3) = b. Hence every other pair of elements in
Cl

(v)
1 (a3)×Cl

(w)
2 (a3) would also result in the same demand

function value with Xk
3 = a3.

Example 2: For block size k = 1 and demand function
realization b = 0, from table I, A3(0) = {0, 1, 2}. Following
the indexing of the equivalence partitions and Table II we
have that h1(1, 1) = |Cl(1)1 (1)| · |Cl(1)2 (1)| = 4 as Cl

(1)
1 (1) =

{0, 1} and Cl
(1)
2 (1) = {1, 2}. One can similarly check that

h1(1, 2) = h1(2, 1) = 2 and for other values of a3, that
h0(1, 1) = h0(2, 2) = h0(3, 3) = 1 and h2(2, 2) = 1.

The following notation is useful in stating a necessary
condition for any valid p.m.f. for the (Z1,Z2) pair label.

Definition 4: For any index i of a vector p, we use p[i] to
denote the ith component of p when it is arranged in non-
increasing order. For two vectors p, q of the same length l,
the vector p is majorized by q, denoted as p ≺ q, if

t∑
i=1

p[i] ≤
t∑

i=1

q[i] ∀t ≤ l − 1, and
l∑

i=1

p[i] =

l∑
i=1

q[i].

As an example, the vector [0.5 0.5] is majorized by
[0.25 0.75]. Note that any vector p is majorized by itself.
Interpreting p.m.f.s as vectors over non-negative real numbers
(denoted as R≥0), we have the following.

Lemma 4: For any a3 ∈ A3(b), define a vector hb,a3
as

hb,a3
,[

ha3
((v,w)1) ha3

((v,w)2) · · · ha3
((v,w)|V12(a3,b)|) 0t

]>
where 0t indicates a vector of zeros of length t ,M(a3, b)−
|V12(a3, b)| and subscript j in (v,w)j indexes all the equiv-
alence class pairs in V12(a3, b) such that

ha3
((v,w)1) ≥ ha3

((v,w)2) ≥· · ·≥ ha3
((v,w)|V12(a3,b)|).

Then all conditional p.m.f.s p ∈ RM(a3,b)
≥0 on M(a3, b) valid

(z1, z2)-labels given the value b of the demand function and
the realization a3 of Xk

3 satisfy p ≺ hb,a3
/|A123(b,a3)|.

Proof: We first note that hb,a3
/|A123(b,a3)| is a valid

p.m.f. as its components are non-negative and sum up to
1. Suppose that there is an encoding scheme for Z1 and
Z2 such that Pr{Z1,Z2|Xk

3 = a3, B
k = b} , p ⊀

hb,a3
/|A123(b,a3)|. Furthermore let p be supported on

L12(a3) components. Then the assumption implies that there
is a m < L12(a3) such that

m∑
j=1

p[j] >
1

|A123(b,a3)|

m∑
j=1

ha3
((v,w)j). (4)

Since each realization of the pair (Xk
1 , X

k
2 ) is equally likely,

the RHS in the above equation is the conditional probability
given the value of Xk

3 = a3 and Bk = b of the event that
(Xk

1 , X
k
2 ) belongs to one of the m largest equivalence class

pairs under the pair of relations (
a3≡ |1,

a3≡ |2). The LHS is
the conditional probability of observing any of the m most
probable (Z1,Z2) pair labels. Thus equation (4) implies such
an encoding scheme gives a total of m distinct (Z1,Z2) pair
labels to as many (Xk

1 , X
k
2 ) pairs for which the pair belongs to

at least m+ 1 different equivalence class pairs in V12(a3, b).
By the pigeonhole principle, this contradicts lemma 3.

To find a lower bound to the conditional entropy, we use
the order-preserving property of the entropy function with
respect to the majorization relation. The entropy function
H : RL12(a3) → R is a strictly Schur-concave function [9,
Chap. 3], i.e., for two p.m.f.s p, q ∈ RL12(a3) that are not
equal to each other under any permutation of their components,

p ≺ q =⇒ H(p) > H(q).

Using this and lemma 4, we obtain

H|Z|(Z1,Z2|Xk
3 =a3, B

k=b) ≥ H|Z|
( hb,a3

|A123(b,a3)|

)
. (5)

Having evaluated H|Z|(hb,a3/|A123(b,a3)|), we can find the
value of α as follows.

H|Z|(Z1,Z2|Bk, Xk
3 )

=
∑
b,x3

Pr{Xk
3 =x3, B

k=b}H|Z|(Z1,Z2|Bk=b, Xk
3 =x3)

≥
∑
b,x3

Pr{Xk
3 =x3, B

k=b}H|Z|
( hb,a3

|A123(b,a3)|

)
, αk, (6)



TABLE II
THE SETS V12(a3, b) FOR DIFFERENT VALUES OF THE DEMAND FUNCTION REALIZATION b AND DIFFERENT VALUES OF a3 IN DIFFERENT ROWS.

a3 b = 0 b = 1 b = 2

0 {(Cl
(1)
1 ,Cl

(1)
2 ), (Cl

(2)
1 ,Cl

(2)
2 ), (Cl

(3)
1 ,Cl

(3)
2 )} {(Cl

(1)
1 ,Cl

(3)
2 ), (Cl

(2)
1 ,Cl

(1)
2 ), (Cl

(3)
1 ,Cl

(2)
2 )} {(Cl

(1)
1 ,Cl

(2)
2 ), (Cl

(2)
1 ,Cl

(3)
2 ), (Cl

(3)
1 ,Cl

(1)
2 )}

1 {(Cl
(1)
1 ,Cl

(1)
2 ), (Cl

(1)
1 ,Cl

(2)
2 ), (Cl

(2)
1 ,Cl

(1)
2 )} {(Cl

(2)
1 ,Cl

(2)
2 )} ∅

2 {(Cl
(2)
1 ,Cl

(2)
2 )} {(Cl

(1)
1 ,Cl

(1)
1 ), (Cl

(1)
1 ,Cl

(2)
2 ), (Cl

(2)
1 ,Cl

(1)
2 )} ∅

where the above inequality is true by the lower bound in (5).
By the i.i.d. uniform assumption on the message tuples, the
value of Pr{Xk

3 = x3, B
k = b} is given by |A123(b,x3)|

|A|3k . We
calculate α for the example demand function in [10, Sec. IIIB].

IV. ARITHMETIC SUM DEMAND FUNCTION

Suppose the message alphabet is A = {0, 1}, such that the
messages X1, X2, X3 are independent bits each equally likely
to be 0 or 1. The demand function B = f(X1, X2, X3) =
X1 +X2 +X3 is the sum of the messages over the integers,
such that B = {0, 1, 2, 3}. We use the codeword alphabet
Z = {0, 1}. This case of arithmetic sum computation in the
variable-length network code framework was considered in [6]
and we recover the results there in our general framework.

For any value of Xk
1 , X

k
3 and Bk the value of Xk

2 is fixed by
Xk

2 = Bk−Xk
1 −Xk

3 , where the subtraction over the integers
operates componentwise. Hence, for every (Cl

(v)
1 ,Cl

(w)
2 ) ∈

V12(a3, b) there is exactly one message tuple whose Xk
1 and

Xk
2 belong to the equivalence classes Cl(v)1 (a3) and Cl

(w)
2 (a3)

respectively. Thus we have that

ha3
(v,w) = 1 ∀a3∈A3(b), (Cl

(v)
1 ,Cl

(w)
2 )∈V12(a3, b). (7)

Consider an arithmetic sum realization b with t0 zeros,
t1 ones, t2 twos and k − t0 − t1 − t2 threes. For every
p ∈ {0, 1, 2, 3} and q ∈ {0, 1}, define tp,q , |{i : b(i) =

p,X
(i)
3 = q, 1 ≤ i ≤ k}|. Then for any choice of b and

a3 ∈ A3(b), t0,1 = t3,0 = 0. The cardinality of the pre-
image set |A123(b,a3)| = 2t1,0+t2,1 . Using (7) the entropy
H(hb,a3

/|A123(b,a3)|) = t1,0 + t2,1. From the function
definition, we can check that |A123(b)| = 3t1+t2 . Hence,

Pr{Xk
3 = a3|Bk = b} = |A123(b,a3)|

|A123(b)|
=

2t1,0+t2,1

3t1+t2
.

For a given b, the number of different a3 ∈ A3(b) that have
the same value for t1,0 and t2,1 are

(
t1
t1,0

)
·
(

t2
t2,1

)
. Using these

in (6), the value of α can be found as follows.

αk =
∑
b

Pr{Bk=b}
∑

a3∈A3(b)

Pr{Xk
3 =a3|Bk=b}H

( hb,a3

|A123(b,a3)|

)

=
∑
b

Pr{Bk=b}
t1∑

t1,0=0

t2∑
t2,1=0

(
t1
t1,0

)(2
3

)t1,0(1
3

)t1−t1,0
·
(
t2
t2,1

)(2
3

)t2,1(1
3

)t2−t2,1
(t1,0 + t2,1)

=

k∑
t1=0

k−t1∑
t2=0

k!2k−t1−t23t1+t2

t1!t2!(k − t1 − t2)!8k
2(t1 + t2)

3

=
2/3

4k

k∑
t1=0

k−t1∑
t2=0

k!(t1 + t2)

t1!t2!(k − t1 − t2)!

(
3

2

)t1+t2

=
k

2
.

Using α = 0.5 and H(Bk)/k = 3− 0.75 log 3 in (2), we get

R1 +R2 + ε ≥ 0.5 + 3− 0.75 log 3 ≈ 2.31128.

Remark 1: We note that the lower bound for the sum rate
shown above is tighter than the bound R1 + R2 > 2.25
obtained in [6] for the same problem.

Remark 2: For computing arithmetic sum, a source-network
code having sum rate R1+R2 = 2.5 was given in [6, Sec. IV].
Thus there is currently a gap between the lower bound and the
achieved sum rate for this function computation problem.
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