
C3LES: Codes for Coded Computation that
Leverage Stragglers

Anindya B. Das, Li Tang and Aditya Ramamoorthy
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA 50010, U.S.A.

{abd149,litang,adityar}@iastate.edu

Abstract—In distributed computing systems, it is well recog-
nized that worker nodes that are slow (called stragglers) tend
to dominate the overall job execution time. Coded computation
utilizes concepts from erasure coding to mitigate the effect of
stragglers by running “coded” copies of tasks comprising a job.
Stragglers are typically treated as erasures in this process.

While this is useful, there are issues with applying, e.g.,
MDS codes in a straightforward manner. Specifically, several
applications such as matrix-vector products deal with sparse
matrices. MDS codes typically require dense linear combinations
of submatrices of the original matrix which destroy their inherent
sparsity. This is problematic as it results in significantly higher
processing times for computing the submatrix-vector products
in coded computation. Furthermore, it also ignores partial
computations at stragglers.

In this work, we propose a fine-grained model that quantifies
the level of non-trivial coding needed to obtain the benefits of
coding in matrix-vector computation. Simultaneously, it allows
us to leverage partial computations performed by the straggler
nodes. For this model, we propose and evaluate several code
designs and discuss their properties.

Index Terms—Distributed computing, stragglers

I. INTRODUCTION

Distributed computation plays a major role in several prob-
lems in machine learning. For example, large scale matrix-
vector multiplication is repeatedly used in gradient descent
which is typically used in high dimensional machine learning
problems. The size of the underlying matrices makes it imprac-
tical to perform the computation on a single computer (both
from a speed and a storage perspective). Thus, the computation
is typically subdivided into smaller tasks that are run in parallel
across multiple worker nodes.

In these systems the overall execution time is typically
dominated by the speed of the slowest worker. Thus, the
presence of stragglers (as these slow workers are called) can
negatively impact the performance of distributed computation.
In recent years, techniques from coding theory [1]–[4] have
been used to mitigate the effect of stragglers for problems
such as matrix-vector and matrix-matrix multiplication. For
instance, the work of [1] proposes to partition the computation
of Ax by first splitting AT = [AT

1 AT
2]T into an equal number

This work was supported in part by the National Science Foundation (NSF)
under grant CCF-1718470.

of rows and assigning three workers, the task of computing
A1x, A2x and (A1 + A2) x, respectively. Evidently, the load
on each node is half of the original job. Furthermore, it is easy
to see that Ax can be recovered as soon as any two workers
complete their tasks (with some minimal post-processing).
Thus, this system is resilient to one straggler. The work of
[3], poses the multiplication of two matrices in a form that is
roughly equivalent to a Reed-Solomon code. In particular, each
worker node’s task (which is multiplying smaller submatrices)
can be imagined as a coded symbol. As long as enough tasks
are complete, the master node can recover the matrix product
by polynomial interpolation.

For such systems we can define a so-called recovery thresh-
old, which is defined as the minimum value of τ , such that
the master node can obtain the result as long as any τ workers
complete their tasks. Thus, at the top level, in these systems
stragglers are treated as the equivalent of erasures in coding
theory, i.e., the assumption is that no useful information can
be obtained from the stragglers.

While these are interesting ideas, there are certain issues
that are ignored in the majority of prior work (see [5]–[7] for
some exceptions). Firstly, several practical cases of matrix-
vector or matrix-matrix multiplication involve sparse matrices.
Using MDS coding strategies in a straightforward manner will
often destroy the sparsity of the matrices being processed by
the worker nodes. In fact, as noted in [7], this can cause the
overall job execution time to actually go up rather than down.
Secondly, in the distributed computation setting, we make the
observation that it is possible to leverage partial computations
that are performed by the stragglers. Thus, a slow worker may
not necessarily be a useless worker.

A. Main Contributions

• In this work we present a more fine-grained model of the
distributed matrix-vector multiplication that allows us to
(i) leverage partial computations performed by stragglers
and (ii) impose constraints on the extent to which coding
is allowed in the solution. Our formulation leads to some
new questions in the domain of code design that to our
best knowledge have not been investigated systematically
in the literature before.

Fig. 1: Matrix A is divided into three submatrices. Each worker is
assigned two of the submatrices.

• We present two models in our work. In the first model,
the tasks assigned to the workers are uncoded, whereas in
the second model we allow for a user specified fraction
of coded tasks. In both cases, we present bounds on the
amount of computation that the workers need to perform
in the worst case and the straggler resilience of the
system. We also present matching construction schemes
in some cases. We emphasize that the uncoded model
applies in general to any computation problem, and the
bounds and constructions hold in significant generality
for that case.

II. PROBLEM FORMULATION

We consider a scenario where a master node has a matrix
A and a vector x and needs to compute Ax. The computation
needs to be carried out in a distributed fashion over n nodes.
Each node receives a certain fraction (denoted by γ) of the
rows of A and the vector x. The node is responsible for
computing the product of its assigned submatrix and x.

We assume that the storage fraction γ can be expressed as
`/∆ where both ` and ∆ are integers. In this work, we assume
that A is large enough so that we can choose any large enough
value of ∆. Following this, we partition the rows of A into ∆
submatrices denoted A1, . . . ,A∆; we will also refer to these
as the blocks of A. Each node is assigned the equivalent of `
block rows. The assigned block rows can simply be subsets of
{A1, . . . ,A∆}; in this case we call the solution “uncoded”.
Alternatively, the assigned block rows can be suitably chosen
functions of {A1, . . . ,A∆}; in this case we call the solution
“coded”. Each worker node processes its assigned block rows
sequentially from the top to the bottom. In particular, if a node
is currently processing the i-the block row (1 ≤ i ≤ l), then
it has already processed blocks 1 through i − 1. As we shall
show, the processing order matters in this problem.

We assume that each time a node computes the block
product (with x) it transmits the result to the master node. We
enforce the requirement that the master node should be able to
recover Ax as long it receives any Q block products from the
worker nodes. This formulation subsumes treating stragglers
as non-working nodes. Indeed, suppose that we want a system
that is resilient to s stragglers. Then, a sufficient condition
would be that Q ≤ (n− s)` in our system.

Example 1. Consider a system with n = 3 worker nodes
with γ = 2/3. We partition A into ∆ = 3 row blocks and
the assignment of blocks to each node is shown in Fig. 1

Fig. 2: Matrix A is divided into three submatrices. Each worker is
assigned two submatrices one of which is coded.

(this is an uncoded solution). We emphasize that the order of
the computation also matters here, i.e., worker node 1 (for
example) computes A1x first and then A2x. For the specific
assignment it is clear that the computation is successful as
long as any four block products are returned. Thus, for this
system Q = 4.

On the other hand, Fig. 2 demonstrates a coded solution,
where the assignment in the second block rows of the work-
ers are some suitably chosen functions of the elements of
{A1x,A2x,A3x}. For this assignment, it is obvious that the
master can recover Ax as long as any three block products
are returned by the workers, so in this system Q = 3.

For any time t, we let wi(t) represent the state of compu-
tation of the i-th worker node, i.e., wi(t) is a positive integer
between 0 and ` which represents the number of block rows
that have been processed by worker node i. Thus, our system
requirement states as long as

∑n
i=1 wi(t) ≥ Q, the master

node should be able to determine Ax. As ∆ is a parameter
that can be chosen, our objective is to minimize the value
of Q/∆ for such a system. This formulation minimizes the
overall computation performed by the worker nodes.

Remark 1. It is important to note that the uncoded formula-
tion applies to any computation job that can be subdivided
into ∆ tasks. In particular, the structure of matrix-vector
multiplication is not important in this context. Thus, the
discussion in the subsequent sections for the uncoded setup
applies in significantly more generality.

III. UNCODED SCHEME

The advantage of an uncoded scheme is that it does not
require any computation from the master to recover Ax
because the assignment to any worker is simply a subset of
{A1x,A2x, . . . ,A∆x}.

To avoid trivialities, we emphasize that each worker node
only contains at most one copy of each block row. In what
follows, we use r to represent the replication factor of each
Ai. Thus, each Ai appears r times across all worker nodes.
We use the notation 〈n, `,∆, r〉-uncoded system to represent
an uncoded system with the corresponding parameters.

Theorem 1. Consider an 〈n, `,∆, r〉-uncoded system. If the
system needs to be resilient to s stragglers, then r ≥ s + 1
and nγ = r.

Proof. It is evident that r ≥ s+ 1 since we need at least one
copy of each block row to be present even in the presence

Fig. 3: A 〈n, `,∆, r〉 = 〈5, 3, 5, 3〉-uncoded system designed using
Algorithm 1. The dotted blocks show the blocks that can be

processed in the worst case without processing A5.

of s stragglers. Next, the total number of symbols across all
nodes equals ∆r. A simple double counting argument, yields
the equality n` = ∆r which further implies that nγ = r by
the definition of γ. �

Theorem 2. Consider an 〈n, `,∆, r〉-uncoded system. Then,
Q ≥ max(∆,∆r − r

2 (l + 1) + 1).

Proof. For the system under consideration the master node
requires each block product, Ajx where j = 1, 2, ...,∆ to be
computed at least once by the n worker nodes. It is evident
that the system needs to process at least ∆ blocks, so that
Q ≥ ∆. Let Qj represent the maximum number of block
rows that are processed in the worst case without obtaining
Ajx (see Fig. 3 for an example). It is evident in this case that
Q = maxj=1,...,∆Qj + 1.

Our strategy is to calculate the average Q =
∆∑
j=1

Qj/∆

and use the simple bound Q ≥ Q+ 1. Toward this end, note
that for any uncoded solution, we can calculate

∑∆
j=1Qj in

a different way. For a worker i, there are ` assigned block
rows and ∆ − ` do not appear in it. Thus, in the calculation
of
∑∆
j=1Qj , worker node i contributes

∑̀
k=1

(k − 1) + (∆− `)`,

which is clearly independent of i. Therefore,

Q = n

∑̀
k=1

(k − 1) + (∆− `)`

∆

= n`− n`

2∆
(`+ 1) = ∆r − r

2
(`+ 1),

where we used n` = ∆r in the last step above. �

Thus, Theorem 1 gives an upper bound on the number of
stragglers that a system tolerates and Theorem 2 provides
a lower bound on Q. Both these results can be treated as
benchmarks for an uncoded scheme. We now propose a

Algorithm 1: Cyclic Uncoded Scheme
Input : Matrix A and vector x, n-number of worker

nodes, replication factor r.
1 Set ∆ = n and ` = r. Partition A into ∆ block rows

A1, . . . ,A∆;
2 for i← 1 to n do
3 Assign Ai,Ai+1, . . . ,Ai+`−1 from top to bottom

(subscripts reduced modulo ∆) to worker node i
4 end

Output: 〈n, `,∆, r〉 uncoded system with stragger
resilience r − 1 and optimal Q/∆.

construction (see Algorithm 1) which meets both these bounds.
The basic idea in Algorithm 1 is to set ∆ = n and place the
block rows in a cyclic fashion (see Fig. 3).

Theorem 3. The Cyclic Uncoded Scheme (cf. Algorithm 1) is
resilient to (r−1) stragglers and meets the bound in Theorem
2.

Proof. It is evident from the cyclic nature of the construction
that each block row appears r times in r different worker
nodes. Thus, the scheme is resilient to r− 1 stragglers. Next,
we show that Qj (defined in the proof of Theorem 2) in this
construction is the same for all block rows Aj , j = 1, . . . ,∆.
To see this we note that the maximum number of block rows
that can be processed without processing Aj can be calculated
as follows.
• We can process the (i− 1) rows in worker node [(j − i)

mod n] + 1 for i = 1, . . . , r.
• All the block rows in other n−r workers can be processed

as well.
Thus, we have

Qj = [1 + 2 + 3 + ...+ (`− 1)] + (n− r)`

=
(`− 1)`

2
+ n`− `2 (as r = `)

= n`− `

2
(`+ 1).

Again, using the fact that n = ∆ and ` = r, we have

Qj = ∆r − r

2
(`+ 1).

Thus, Qj is independent of j and therefore Q = ∆r − r
2 (`+

1) + 1. �

Example 2. As an example, consider Fig. 3, where we have
∆ = n = 5 and ` = r = 3. The scheme is resilient to
(r − 1) = 2 stragglers and it can be verified that Ax can be
computed once any Q = 10 block rows have been processed.

IV. CODED SCHEME

We now explore coded schemes in our setting. As demon-
strated in Example 1, the value of Q in the coded scenario can
be strictly lesser than in the uncoded case. A simple solution
to this problem is to use MDS (maximum distance separable)
codes as was done in some of the inital papers [1] in this

area. Namely, one could use an (n`,∆)-MDS code for some
value of ∆ and n` ≥ ∆. The block rows A1, . . . ,A∆ will
be combined using the corresponding generator matrix (with
an appropriate mapping from the finite field to the real field).
It is clear that in this case, the master node can compute Ax
as long as any ∆ rows are processed. However, such codes
may require rather dense linear combination of the rows of A
and this may incur a significant overhead in the computation
performed by the worker nodes, especially in the practical case
when A is sparse to begin with.

Accordingly, in this part of the work we are interested in
examining schemes where we can specify the fraction of coded
blocks. We now assume that each node receives a γ = γu+γc
fraction of the rows of A, where γu and γc correspond to the
uncoded and coded parts respectively. The replication factor
for the uncoded portion is ru and the number of uncoded block
assignments in a worker is denoted as `u = ∆γu. This implies
that n`u = ∆ru. We let `c = ∆γc represent the number of
coded blocks in each worker.

For our bounds we assume that each processed coded block
is useful to the master node. This can be ensured by our choice
of coding coefficients that are obtained from Cauchy matrices
of appropriate dimension. In what follows, we consider two
different schemes. In one case the coded blocks appear at the
bottom of each node while in the other case the coded blocks
appear at the top. The first case leans towards easier decoding
by the master node, whereas the second one aims to minimize
the computation performed by the worker nodes. We use the
notation 〈n, `u, `c,∆, ru〉-bottom and 〈n, `u, `c,∆, ru〉-top to
refer to the corresponding systems. The value of Q for these
systems will be denoted by Qcb and Qct respectively (the
subscripts are self-explanatory).

A. Coded blocks at the bottom

In this case, the results of Section III (See Theorem 2)
immediately imply that Qcb ≥ max(∆,∆ru − ru

2 (`+ 1) + 1)
(the subscript denotes that the coded blocks appear at the
bottom). This follows by applying the previous arguments to
the uncoded part of the solution. A construction that meets
these bounds is outlined in Algorithm 2. The algorithm uses
a Cauchy matrix of dimension n`c ×∆.

Theorem 4. The scheme in Algorithm 2 satisfies Qcb =
max(∆,∆ru − ru

2 (`u + 1) + 1). Furthermore, it is resilient

to
⌊
n2γc+nγu−1

nγc+1

⌋
stragglers.

Proof. We need to show that for any pattern of Qcb blocks
the master node can decode Ax. Towards this end, from
the discussion in Section III, we know that any pattern
of Qcb uncoded blocks allows the recovery of ∆ distinct
blocks. In other words for any computation state vector
w(t) = [w1(t) w2(t) . . . wn(t)] such that wi(t) ≤ `u and∑n
i=1 wi(t) ≥ Qcb the master node can decode. Now, consider

a vector w′(t) such that (w.l.o.g.) w′1(t) . . . w′α(t) ≥ `u + 1
and w′α+1(t), . . . , w′n(t) ≤ `u and

∑n
i=1 w

′
i(t) ≥ Qcb, i.e., the

first α worker nodes process coded blocks whereas the others

Algorithm 2: Cyclic Coded at Bottom Scheme
Input : Matrix A and vector x, n-number of worker

nodes, total storage capacity fraction γ,
replication factor for uncoded portion ru.

1 Set ∆ = n, `u = ru, ` = γ∆, `c = `− `u. Determine
a Cauchy matrix C of dimension n`c ×∆;

2 Partition A into ∆ block rows A1, . . . ,A∆;
3 for i← 1 to n do
4 Assign Ai,Ai+1, . . . ,Ai+`u−1 from top to bottom

(subscripts reduced modulo ∆) to worker node i;
5 for j ← 1 to `c do
6 Define T = {i, i+ 1, . . . , i+ `u − 1} mod ∆;
7 Pick a row c of C and assign coded block∑∆

k=1 ck1k/∈TAk;
8 Remove c from C, so C ← C\{c} ;
9 end

10 end
Output: 〈n, `u, `c,∆, ru〉-bottom system.

do not. It is not too hard to determine a different vector w̃(t)
with the following properties.

w̃i(t) =

{
`u 1 ≤ i ≤ α,
w′i(t) + βi α+ 1 ≤ i ≤ n,

where βi’s are positive integers such that w′i(t) +βi ≤ `u and∑n
i=1 w̃i(t) = Qcb. Thus, w̃(t) corresponds to a pattern of

Qcb uncoded blocks that recovers ∆ distinct blocks.
Now, we compare the vectors w′(t) and w̃(t). Let the

uncoded symbols in w′(t) be denoted by the set A. Then the
set of uncoded symbols in w̃(t) can be expressed as A ∪ B
where the set B results from the transformation above. It is
evident that for computation state vector w′(t) the master node

has
α∑
i=1

(w′i(t)− `u) equations with ∆− |A| variables. Now,

α∑
i=1

(w′i(t)− `u) ≥ |B| ≥ |B \ A| = ∆− |A|.

In particular, this establishes that we have at least as many
equations as variables. As, any square submatrix of a Cauchy
matrix is invertible, we have the required result.

To establish the straggler resilience of our construction we
identify the set of worker nodes that contain the least number
of uncoded blocks. With some work (the details appear in
the full version of the paper) it can be established that any k
workers have at least min(`u+k−1,∆) uncoded blocks. For
our construction, these correspond to picking k consecutive
worker nodes. Thus, we are trying to determine the minimum
value of k such that

`u + (k − 1) + k(`− `u) ≥ ∆

which further implies

k ≥ n− `u + 1

`− `u + 1
=

n− nγu + 1

nγ − nγu + 1

as n = ∆. So, if the system is resilient to s stragglers then

s ≤
⌊
n− n− nγu + 1

nγ − nγu + 1

⌋
=

⌊
n2γc + nγu − 1

nγc + 1

⌋
.

�

Remark 2. We emphasize that the construction in Algorithm
2 is not isomorphic to a MDS code, even if ru = 1.

Example 3. Consider again the setting of Example 2 where
∆ = n = 5, γ = 3

5 . Suppose that we set γu = 2
5 and γc = 1

5 .

This scheme is resilient to
⌊
n2γc+nγu−1

nγc+1

⌋
= 3 stragglers and

it can be verified that Ax can be computed once any Q =
∆ru − ru

2 (`u + 1) + 1 = 8 block rows have been processed.
Thus, we can conclude that introducing a single coded block in
each worker (at the bottom), helps to improve both Q and the
straggler resilience of the system as compared to an uncoded
system.

B. Coded blocks at the top

The situation is quite different when we consider the place-
ment of the coded blocks at the top of the worker nodes. In this
case a given worker node only processes uncoded blocks after
having processed `c coded blocks. Thus, if x coded blocks
have been processed by the worker nodes before starting
work on the uncoded blocks, it suffices if any ∆− x distinct
uncoded blocks are processed. This weaker requirement allows
us to potentially improve the Qct/∆ ratio as compared to the
previous constructions.

We now develop a lower bound on Qct. Suppose that we
consider an arbitrary set of β worker nodes that process
all their blocks and another set of worker nodes that only
contribute x coded blocks. Evidently, in this case the total
number of coded blocks is x + `cβ. Let A denote the set of
distinct uncoded blocks obtained from the chosen set of β
worker nodes. We note that

Qct ≥ x+ `β + 1, when
x+ `cβ + |A| < ∆.

This is because, we do not have enough equations to decode
the ∆− |A| unknowns.

Next, we use another averaging argument. We calculate the
average size of A when considering all possible

(
n
β

)
worker

nodes via a double counting argument.
Consider a bipartite graph G, whose vertex set is U ∪ V .

Each element of U is the set of uncoded blocks contained in
a particular set of β workers. Thus, the cardinality of U is
|U| =

(
n
β

)
. The set V is the set of all possible uncoded blocks

so that |V| = ∆. There is an edge between u ∈ U and v ∈ V
if v ∈ u. The degree of v ∈ V in G can be computed by
observing that there are

(
n−ru
β

)
sets that do not contain v.

Therefore, the degree of v is
(
n
β

)
−
(
n−ru
β

)
. Thus, the average

degree of the nodes in U is given by

d̄U = ∆×

[
1−

(
n−ru
β

)(
n
β

)]
.

It follows that if

x+ `cβ + d̄U < ∆,

there is at least one choice of β worker nodes that will not
allow the decoding of Ax. Our lower bound on Qct can be
derived by solving the following optimization problem.

maximize x+ `β + 1

subject to (x+ `cβ) < ∆

[(
n−ru
β

)(
n
β

)]
.

(1)

Example 4. We can consider a 〈n, `u, `c,∆, ru〉 =
〈15, 3, 1, 15, 3〉-top system and derive the bound Qct ≥ 18 >
∆ = 15 by solving the optimization problem in (1). The
optimal setting turns out to be x = 1 and β = 4.

Example 5. Continuing our discussion of the setting in
Examples 2 and 3, if we assign the coded blocks at the top
rows of the workers and apply cyclic scheme for the uncoded
portion, we can show that Qct = 6 while being resilient to
s = 3 stragglers. Thus, moving the coded rows to the top
provides the best construction in terms of Q and straggler
resilience.

V. CONCLUSION

In this paper we have formulated a new model for dis-
tributed coded matrix-vector multiplication. Our model allows
us to leverage partial work performed by stragglers while
controlling the level to which coding is utilized in the solution.
We propose lower bounds on the required computation from
the worker nodes in the worst case and present matching con-
structions in certain cases. Our proposed model demonstrates
that the ordering of the computations within different worker
nodes plays an important role in the overall job execution time.
This in turn leads to new (to our best knowledge) code design
problems that should be interesting to investigate.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans. on
Info. Th., vol. 64, no. 3, pp. 1514–1529, 2018.

[2] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. of
Advances in Neural Information Processing Systems (NIPS), 2016, pp.
2100–2108.

[3] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal
design for high-dimensional coded matrix multiplication,” in Proc. of
Advances in Neural Information Processing Systems (NIPS), 2017, pp.
4403–4413.

[4] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. of Intl. Conf.
on Machine Learning (ICML), 2017.

[5] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers in
coded computation,” in IEEE Intl. Symposium on Info. Th., 2018, pp.
1988–1992.

[6] A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes for near-perfect
load balancing in distributed matrix-vector multiplication,” preprint, 2018,
[Online] Available: https://arxiv.org/abs/1804.10331.

[7] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in
Proc. of Intl. Conf. on Machine Learning (ICML), 2018.

