
Algorithms for Asynchronous Coded Caching
Hooshang Ghasemi and Aditya Ramamoorthy

Department of Electrical and Computer Engineering, Iowa State University, Ames IA 50011 U.S.A.
Email:{ghasemi,adityar}@iastate.edu

Abstract—The original formulation of the coded caching prob-
lem assumes that the file requests from the users are synchro-
nized, i.e., they arrive at the server at the same time. Several
subsequent contributions work under the same assumption.
Furthermore, the majority of prior work does not consider
a scenario where users have deadlines. In our previous work
we formulated the asynchronous coded caching problem where
user requests arrive at different times. Furthermore, the users
have specified deadlines. We proposed a linear program for
obtaining its optimal solution. However, the size of the LP
(number of constraints and variables) grows rather quickly with
the number of users and cache sizes. In this work, we explore
a dual decomposition based approach for solving the LP under
consideration. We demonstrate that the dual function can be
evaluated by equivalently solving a number of minimum cost
network flow algorithms. Minimum cost network flow algorithms
have been the subject of much investigation and current solvers
routinely solve instances with millions of nodes in minutes. Our
proposed approach leverages these fast solvers and allows us
to solve several large scale instances of the asynchronous coded
caching problem with manageable time and memory complexity.

I. INTRODUCTION

Caching is a core component of solving the problem of large
scale content delivery over the Internet. Traditional caching
works by placing popular content closer to the end users. The
work of [1] considered the usage of coding in the caching
problem and demonstrated that significant reductions in the
induced network traffic were possible.

However, the original formulation of the coded caching
problem assumes that all file requests from the users arrive
at the server at the same time, i.e., it works with an (ide-
alized) synchronized model. From a practical perspective, it
is important to consider the case when the requests of the
users are not synchronized. We studied this “asynchronous
coded caching” problem in [2]. In the asynchronous scenario,
a simple strategy would be to wait for the last request to arrive
and then apply the scheme of [1]. While such a strategy will
result in low overall rate of transmission from the server, the
delay experienced by the users will essentially be dominated
by the arrival time of the last request. Thus, certain end users
may experience unacceptable delays.

In our prior work [2] we considered both the offline and
the online variants of this problem. Each user has a specific
deadline by which his/her demand needs to be satisfied. In
the offline scenario, where the server knows the arrival times
and deadlines of each user in advance, we posed a linear
programming (LP) problem which if feasible, allows the server

This work was supported in part by the National Science Foundation by
grants CCF- 1320416, CCF- 1149860 and CCF-1718470.

to determine a schedule of transmissions, such that each user
can be satisfied within its deadline. In this work we make
further progress on this problem.

1) Main contributions: Fast algorithms based dual decom-
position. The size of the LP in [2] grows very quickly with the
problem parameters and solving it is impractical for large scale
instances. In this work we demonstrate that we can instead
work with the dual of an equivalent LP. The dual function can
be evaluated by solving a set of minimum cost network flow
problems. Minimum cost network flow problems have been
the subject of much investigation in the optimization literature
and large scale instances can be solved very quickly [3].
We present results that indicate that significant time savings
are obtained by applying our approach. Moreover, our results
indicate that the coded caching rate degrades quite gracefully
in the presence of asynchronism.

2) Related Work: The delay sensitive coded caching prob-
lem was first studied in [4]. They considered the decentralized
coded caching model, and considered a situation where each
subfile has a specific deadline. Only the online case was
considered and heuristics for transmission from the server
were proposed. The heuristics are found to have good per-
formance. However, the transmission time for each packet
was not considered in their formulation. Our LP formulation
can be viewed as a bound on the possible performance of
any online scheme. The work of [5] investigated the problem
of updating the cache content in the coded caching context;
however synchronous file requests were considered. We note
that another important practical issue within the coded caching
domain includes subpacketization [6], i.e., the requirement that
each file needs to be subdivided into a large number of parts
in the original scheme. Some recent work addressing these
issues can be found in [7]–[11].

II. PROBLEM FORMULATION

A coded caching system contains a server with N files,
denoted Wi, i = 1, . . . , N , each of size F subfiles, where a
subfile is a basic unit of storage. The system also contains
K users each connected to the server through an error free,
broadcast shared link. Each of the users is equipped with a
local cache of size MF subfiles; we denote the cache content
of user i by Zi which is a function of W1, . . . ,WN . The
system operates in two distinct phases. In the placement phase
the content of the caches is populated by the server. This phase
does not depend on the future requests of the users which are
assumed to be arbitrary. In the delivery phase each user makes
a request and the server transmits potentially coded signals to
satisfy the requests of the users.

636978-1-5386-1823-3/17/$31.00 ©2017 IEEE Asilomar 2017

Our assumption is that a specific uncoded placement scheme
is being used by the coded caching system. It is known that
the delivery phase in this case corresponds to an index coding
problem [12]. In general, the optimal solution for an arbitrary
index coding problem is known to be hard [12]. However, tech-
niques such as clique cover on the side information graph are
well-recognized to have good performance [12]. In particular,
the delivery phase in [1] is precisely a clique cover on their
side information graph, assuming worst case demands. Each
transmitted equation is such that a certain number of users
benefit from it simultaneously. We assume that our delivery
phase in the asynchronous setting also transmits equations of
this type.

We describe our approach by assuming that the system
works with the placement and delivery scheme of [1]. How-
ever, our proposed approach is general and can work with any
uncoded placement scheme. In particular, we assume a system
with K users where each user has a cache of size MF subfiles.
The server contains N ≥ K files1 denoted Wn, n = 1, . . . , N .
Let t = KM/N be an integer. For this system, F =

(
K
t

)
, i.e.,

each file is divided in
(
K
t

)
subfiles corresponding to t-sized

subsets of [K]. Thus file Wn = {Wn,A : A ⊂ [K], |A| = t}.
User i caches all subfiles Wn,A where i ∈ A.

We assume that time τ ≥ 0 is slotted. Let [n] denote the set
{1, . . . , n} and the symbol ⊕ represent the XOR operation.
We say that an equation E is of type all-but-one if E =
⊕`l=1Wdil ,Ail

where for each l ∈ [`], we have il /∈ Ail and
il ∈ Aij for all j ∈ [`]\{l}. It is easy to see that the equations
transmitted in the delivery phase in [1] are of the all-but-one
type. With this specified placement, the asynchronous coded
caching problem with deadlines can be formulated as follows.
Inputs.
• User requests. User i requests file Wdi , with di ∈ [N].

User i’s request arrives at the server at time Ti.
• Deadlines. The i-th user needs to be satisfied by time
Ti + ∆i, where ∆i is a positive integer.

• Transmission delay. We assume that the size of each
subfile is such that it needs r time-slots to be transmitted
over the shared link, i.e., each subfile can be treated
as equivalent to r packets, where each packet can be
transmitted in one time slot.

As the problem is symmetric with respect to users, w.l.o.g. we
assume that T1 ≤ T2 ≤ . . . ≤ TK . Let Tmax = maxi(Ti+∆i).
Note that upon sorting the set of arrival times and deadlines,
i.e., ∪Ki=1{Ti, Ti + ∆i}, we can divide the interval [T1, Tmax)
into at most 2K − 1 intervals. Let the integer β, where 1 ≤
β ≤ 2K − 1 denote the number of intervals. Let Π1, . . . ,Πβ

represent the intervals where Πi appears before Πj if i < j.
The intervals are left-closed and right-open. An easy to see
but very useful property of the intervals that we have defined
is that for a given i, either [Ti, Ti+∆i)∩Π` = Π` or [Ti, Ti+
∆i) ∩Π` = ∅. We define

U` = {i ∈ [K] : [Ti, Ti + ∆i) ∩Π` = Π`}, and
D` = {di ∈ [N] : i ∈ U`}.

1We assume that N ≥ K as it corresponds to the worst case rate and is
also the more practical scenario.

Thus, U` is the set of active users in time interval Π` and D`

is the corresponding set of active file requests.
Outputs.
• Transmissions at each time slot. If the problem is fea-

sible, the schedule specifies which equations need to be
transmitted at each time. The equations need to be of the
all-but-one type. The schedule is such that each user can
recover all its missing subfiles within its deadline. The
equations transmitted at time τ ∈ Π` only depend on D`.

We work with fractional solutions, i.e., we assume that each
packet that is transmitted over the shared edge can be sub-
divided as finely as needed. Thus, in each time slot we
could transmit multiple equations that may serve potentially
different subsets of users. This assumption is reasonable if the
underlying subfiles and hence the packets are quite large. In
this work we only consider the offline scenario, i.e., we assume
that the server is aware of {Ti,∆i, di}Ki=1 at τ = 0. However,
at time τ ∈ Π` the transmitted equation(s) will only depend
on D`, i.e., the server cannot start sending missing subfiles
for a given user until its request arrives.

III. OFFLINE ASYNCHRONOUS CODED CACHING

We present the following example to clarify the problem
inputs and outputs.

Example 1: Consider a scenario with N = K = 3, M = 1,
and r = 1. We assume that Ti = i and ∆i = 2 for
i ∈ {1, 2, 3}. The server contains three files A, B, and C.
According to placement scheme in [1], each file is divided
to
(
K
t

)
= 3 subfiles and user i caches Zi = {Ai, Bi, Ci}.

We assume that the first user requests file A, the second user
requests file B, and the third user requests file C.

There are four time intervals with Πi = [i, i + 1) for i =
1, . . . , 4. An offline solution for this problem corresponds to
the server transmitting equations A3 at Π1, A2 ⊕ B1 at Π2,
B3 ⊕C2 at Π3, and finally C1 at Π4. It can be observed that
each user can recover the missing subfiles that they need. The
solution is shown in Fig. 1.
In our prior work [2], we proposed a LP for the asynchronous
coded caching problem. This LP is discussed below.

A. Linear programming formulation

Let Ω = {A : A ⊂ [K], |A| = t}, so that it represents the
indices of all the subfiles. Let Ω(i) = {A : A ∈ Ω, i /∈ A}
represent the indices that are not cached by user i. Recall
that U` is the set of active users in time interval Π` and D`

represents their file requests. Let U` be the set of all nonempty
subsets U ⊆ U` with |U | ≤ t+1. In the subsequent discussion
we call such a U , a user group. In time interval Π`, a user
group U ∈ U` represents a collection of users that can be
serviced simultaneously by the server. For any U ⊆ [K], let IU
be the set of indices of all time intervals where the users in U
are simultaneously active, i.e., IU = {` : [Ti, Ti+∆i)∩Π` 6=
∅, ∀ i ∈ U}.

For each missing subfile Wdi,A (where A ∈ Ω(i)) we let
U{i,A} be the set of user groups where it can be transmitted,
i.e., U{i,A} = {U ∈ ∪β`=1U` : i ∈ U, U \{i} ⊆ A}. We note
here that for a fixed i, there are potentially multiple subfiles

637

A1,A2, . . . ,Al ∈ Ω(i) such that U ∈ U{i,Aj} for j = 1, . . . , l.
For example, suppose that K = 4, t = 2 and let U = {1, 2}.
In this case U ∈ U1,{2,3} and U ∈ U1,{2,4}. Thus, user group
U can be used to potentially transmit different missing subfiles
needed by user i.

We let |Π`| denote the length of the time interval Π`. For
each time interval Π` with ` = 1, . . . , β and for each U ∈ U`
we define variable xU (`) ∈ [0, |Π`|] that represents the portion
of time interval Π` that is allocated to an equation that benefits
user group U (more details on the reasoning underlying the
variables in the LP can be found in [2]).

For each missing subfile Wdi,A and each U ∈ U{i,A} we
define variable y{i,A}(U) ∈ [0, r] that represents the portion
of the missing subfile Wdi,A transmitted within some or all
of the equations associated with xU (`) for ` ∈ IU . As
pointed out before, for a fixed i, U can be used to transmit
different missing subfiles needed by user i. However, a single
equation can only help recover one missing subfile needed by
i. Thus,

∑
`∈IU xU (`) must be shared between the appropriate

y{i,A}(U)’s.
Example 2: For the system in Example 1, we have

Ω(1) = {A2, A3}, Ω(2) = {B1, B3}, and Ω(3) = {C1, C2}.
Also, the active users at Π2 are U2 = {1, 2} thus U2 =
{{1}, {1, 2}, {2}}.

In [2], we proposed the following LP that minimizes the
overall rate of transmission from the server in the offline
scenario.

min

β∑
`=1

∑
U∈U`

xU (`) (1)

s.t.
∑
U∈U`

xU (`) ≤ |Π`|, ∀ ` = 1, . . . , β,∑
A∈B{i,U}

y{i,A}(U) ≤
∑
`∈IU

xU (`), ∀ U ∈ Vi, ∀i ∈ [K],

∑
U∈U{i,A}

y{i,A}(U) = r, ∀ A ∈ Ω(i), ∀i ∈ [K],

0 ≤ xU (`) ≤ |Π`|, and
0 ≤ y{i,A}(U) ≤ r.

where Vi = {U ∈ ∪β`=1U` : i ∈ U and |U | ≤ t + 1} and
B{i,U} = {A : A ∈ Ω(i), U ∈ Vi, U \ {i} ⊆ A}.

In Section III.A.1. of [2], we show that a feasible solution
of the above LP can be interpreted as a coding solution for
the offline asynchronous problem. In particular, assuming that
subfiles can be subdivided finely enough, we show that the LP
can be used to arrive at a set of all-but-one equations that can
be transmitted by the server such that each user is satisfied.

The main issue with the LP formulation presented above
is complexity. The number of variables and constraints grows
very quickly with the problem parameters. Both the number
of variables and the number of constraints grows proportional
to K

(
K−1
t

)∑t+1
j=0

(
K
j

)
; a more precise analysis can be found

in [2]. The worst case complexity of solving a LP is cubic in
the problem size. Therefore, the solving the LP in (1) is not
practical for a large values of K and t.

Π1 Π2 Π3 Π4

A3 A2 ⊕B1 B3 ⊕ C2 C1
τ

1 2 3 4 5
T1

T2
T3

Fig. 1: Offline solution corresponding to the Example 1. The
double-headed arrows show the active time slots for each user. The
transmitted equations are shown above the timeline. The intervals
Π1, Π2, Π3, and Π4 are allocated in entirety to user groups {1},
{1, 2}, {2, 3}, and {3} respectively; therefore, x{1}(1), x{1,2}(2),
x{2,3}(3), and x{3}(4) are set to one. Furthermore, the solution
of Example 1 (where r = 1) is such that missing subfiles of the
first user (A3 and A2) are transmitted within user groups {1} and
{1, 2} respectively so that y{1,A3}({1}) = y{1,A2}({1, 2}) = 1.
Similarly, we have y{2,B1}({1, 2}) = y{2,B3}({2, 3}) = 1 and
y{3,C2}({2, 3}) = y{3,C1}({3}) = 1.

The main contribution of our work is to demonstrate that the
complexity can be made quite manageable by instead solving
the dual of an equivalent LP.

IV. DUAL DECOMPOSITION BASED APPROACH

The overall idea of reducing the complexity of the LP in
(1) is to formulate an equivalent LP and work with its dual.
The structure of the corresponding dual function is such that it
can be evaluated by solving a system of decoupled minimum
cost network flow optimizations. Minimum cost network flow
is a well investigated problem and optimized solutions for
it routinely allow problems with over a million nodes to be
solved in a few minutes [3].

As it stands, the LP in (1) cannot be interpreted as network
flow. Yet, intuitively one can view the missing subfiles from
each user as flowing through the user groups and getting
absorbed in sinks that correspond to their valid time slots.
However, the flows corresponding to different users can be
shared as the all-but-one equations allow different users to
benefit from the same equation. We note here that a similar
sharing of flows also occurs in the problem of minimum cost
multicast with network coding [13]. The LP in (1) can however
be modified slightly so that an appropriate decoupling can be
exploited in the dual program. Towards this end, we introduce
new variables x(i)U (`) in the original LP. For i = 1, . . . ,K, let
Ci denote the set of constraints:

∑
(i,A)∈B{i,U}

y{i,A}(U) =
∑
`∈IU

x
(i)
U (`), ∀ U ∈ Vi, i ∈ [K],

∑
U∈U{i,A}

y{i,A}(U) = r, ∀ A ∈ Ω(i), i ∈ [K],

0 ≤ x(i)U (`) ≤ |Π`|, ∀ i ∈ U, U ∈ U`, ` ∈ [β],

0 ≤ y{i,A}(U) ≤ r, ∀ U ∈ U{i,A}, A ∈ Ω(i), i ∈ [K].

638

s

Missing sub-files

B1

B3

User Groups

U = {2}

U = {1, 2}

U = {2, 3}

Time Intervals

Π2

Π3

t

Fig. 2: Minimum cost flow network associated with subproblem (5)
corresponding to the second user. The edges from s to Bi, i = 1, 3

have a capacity of r = 1 and the edges from Πi, i = 2, 3 to t have
a capacity of |Πi|, which in this case equals 1.

Then, the original LP can be compactly rewritten as

min

β∑
`=1

∑
U∈U`

xU (`) (2)

s.t. x
(i)
U (`) ≤ xU (`) ∀ i ∈ U, ∀ U ∈ U`, ∀ ` ∈ [β],∑

U∈U`

xU (`) ≤ |Π`|, ∀ ` ∈ [β],

C1, C2, . . . , CK .

The only difference in the above LP is the introduction of
variables x(i)U (`) (for appropriate ranges of i, U and `) such
that the second set of inequality constraints in (1) are replaced
by equality constraints. Moreover, the original constraints are
maintained by setting x

(i)
U (`) ≤ xU (`). It is not too hard to

see that the two LPs are equivalent.

A. Dual problem

We proceed by considering the dual of the LP in (2) with
respect to the constraints that involve the variables xU (`).
The Lagrangian L(x, {λ(i)U (`)}i∈U,U∈U`,`∈[β], {ζ`}`∈[β]) can
be expressed as

L =

β∑
`=1

∑
U∈U`

xU (`) (3)

+

β∑
`=1

∑
U∈U`

∑
i∈U

λ
(i)
U (`)

(
x
(i)
U (`)− xU (`)

)

+

β∑
`=1

ζ`

(∑
U∈U`

xU (`)− |Π`|

)

where x represents all the primal variables in the LP in (1)
and λ

(i)
U (`)’s and ζ`’s are nonnegative. The dual function

g({λ(i)U (`)}i∈U,U∈U`,`∈[β], {ζ`}`∈[β]) is therefore obtained by
solving for

min L (4)
s.t. C1, C2, . . . , CK ,

where the minimization is over the primal variables. It is
evident that the dual function g takes a nontrivial value only
if ∑

i∈U
λ
(i)
U (`) = 1 + ζ`, ∀ U ∈ U`, ` ∈ [β].

The evaluation of g at a fixed set of dual variables
{λ(i)U (`)}i∈U,U∈U`,`∈[β], {ζ`}`∈[β]) can therefore be written as

min

β∑
`=1

∑
U∈U`

∑
i∈U

λ
(i)
U (`)x

(i)
U (`)−

β∑
`=1

ζ`|Π`|

s.t. C1, C2, . . . , CK .

This minimization can be addressed by solving K independent
minimum cost network flow problems corresponding to each
of the constraints Ci, i = 1, . . . ,K. This can be seen as
follows. Each subproblem for i = 1, . . . ,K has the following
structure.

min
∑
U∈Vi

∑
`∈IU

λ
(i)
U (`)x

(i)
U (`) (5)

s.t. Ci.

The subproblem in (5) is a standard minimum-cost flow
problem. The associated flow network contains a source node
and three intermediate layers followed by a terminal node (see
Fig. 2). The layers are such that the nodes in the first layer
correspond to missing subfiles in Ω(i), the nodes in the second
layer correspond to user groups in Vi and the nodes in the third
layer correspond to the time interval Π`, ` = 1, . . . , β.

In this flow network a zero cost is assigned to all edges
except those from the user group nodes to the time intervals.
For the i-th flow network (corresponding to the constraints
in Ci) the cost of the edge between user group U and time
interval Π` is λ(i)U (`). The edges between time interval Π` and
the terminal node have a capacity constraint of |Π`| and the
edges between the source node and the missing subfiles have
a capacity constraint of r; the other edges have no capacity
constraints. The variable x

(i)
U (`) is the amount of the flow

carried by the edge from user group U to time interval Π`.
Furthermore, the supply of the source node and terminal node
are |Ωi|r and −|Ωi|r respectively. The supply of the other
nodes are zero. An instance of this flow network for a user in
asynchronous coded caching of system in Example 1 is shown
in Fig. 2.

Finally, the dual function g is maximized by a subgradient
search and the original primal variables are recovered by the
methods described in [14]; these were also used in [13]. It
turns out that even this subgradient search can be simplified
by using the underlying structure of the problem. The details
are omitted owing to lack of space.

639

(K, t) # nodes # edges exe. time
(min)

exe. time
original (min)

(100, 2) 986, 161 17, 643, 986 8, 026 —
(20, 4) 178, 542 1, 778, 703 1065 —
(40, 2) 61, 959 567, 780 63 —
(20, 2) 7, 542 43, 507 1.9 21.9
(10, 4) 3, 917 29, 369 0.8 5.33
(10, 2) 915 3, 866 0.08 0.03

TABLE I: Execution time for solving the LP using our approach;
we run 1000 iterations of subgradient ascent. Columns 2 & 3 indicate
the size of the associated flow network. The table is ordered by the
number of nodes in the flow network.

V. SIMULATIONS RESULTS

In our experiments we generate the arrival times,
T1, . . . , TK , according to a Poisson process with parameter λ
and then quantize them to the nearest integer. The deadlines,
∆1, . . . ,∆K are generated from a uniform distribution so that
∆i’s, i = 1, . . . ,K are uniformly chosen from integers in the
interval [∆min, ∆max].

In the first set of simulations we examine the execution
time of our approach for various values of (K, t). In these
simulations we set r = 1, λ = 0.4, ∆min =

(
K−1
t

)
, and

∆max =
(
K
t+1

)
. Note that each user needs

(
K−1
t

)
subfiles.

Therefore, it needs at least ∆min time slots to receive the
its missing subfiles and otherwise the problem will certainly
be infeasible. On the other hand, the delivery scheme of the
synchronized scenario allows all users to be supported within
∆max time slots. This explains the choice of ∆min and ∆max.
Table I shows the details of the overall execution time and
the size of the corresponding flow networks for the various
instances. The last column of the table corresponds to the ex-
ecution time (in MATLAB) of the LP in (1), while the second-
last column corresponds to the execution time of the proposed
approach above. It is evident that the proposed approach is
significantly faster. Furthermore, memory requirements make
infeasible to even formulate the problems corresponding to the
first three rows in MATLAB.

In the next set of simulations, we explore the average
rate for different values of λ. The value of λ is inversely
proportional to the average spacing between the request arrival
times. As can be seen in Fig. 3, the rate gradually increases
when the spread in arrival times increases. Thus, under mild
asynchronism much of the gains of coded caching can be
leveraged. Finally, Fig. 4 shows the convergence of the primal
recovery to the actual rate for a system with N = K = 10,
t = 4, and r = 1. It can be observed that there is a clear
convergence of the solution to the optimal value.

REFERENCES

[1] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. on Info. Th., vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] H. Ghasemi and A. Ramamoorthy, “Asynchronous coded caching,” IEEE
Intl. Symposium on Info. Th., 2017.

[3] P. Kovacs, “Minimum-cost flow algorithms: an experimental evaluation,”
Optimization Methods and Software, vol. 30, no. 1, pp. 94–127, 2015.

[4] U. Niesen and M. A. Maddah-Ali, “Coded caching for delay-sensitive
content,” in IEEE Intl. Conf. Comm., 2015, pp. 5559–5564.

[5] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded
caching,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 836–845, 2016.

10−4 10−3 10−2 10−1 100

1

2

3

4

5

6

λ

R
at

e

Asynchronous rate
Synchronous rate

Fig. 3: Rate of an asynchronous system (blue line) and a synchronous
system (red line) vs. λ. System parameters are K = 10, t = 4.

200 400 600 800 1,000
250

260

270

280

290

Iterations

Pr
im

al
So

lu
tio

n

Primal value over iters.
Optimal value

Fig. 4: Convergence of primal recovery to the optimal solution for
a system with N = K = 10, r = 1, and t = 4. Dashed line is the
optimal value obtained by solving (1).

[6] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis,
“Finite length analysis of caching-aided coded multicasting,” in 52nd
Annual Allerton Conference on Communication, Control, and Comput-
ing (Allerton). IEEE, 2014, pp. 914–920.

[7] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design in centralized coded caching scheme,” 2015 [Online]
Available: http://arxiv.org/abs/1510.05064.

[8] L. Tang and A. Ramamoorthy, “Coded Caching with Low Subpacketi-
zation Levels,” in Workshop on Network Coding (NetCod), 2016.

[9] ——, “Low Subpacketization Level Schemes for Coded Caching,” in
IEEE Intl. Symposium on Info. Th., 2017.

[10] ——, “Low Subpacketization Schemes for Coded Caching,” 2017 [On-
line] Available: https://arxiv.org/abs/1706.00101.

[11] ——, “Coded caching for networks with the resolvability property,” in
IEEE Intl. Symposium on Info. Th., 2016.

[12] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side
information,” IEEE Trans. on Info. Th., vol. 57, no. 3, pp. 1479–1494,
March 2011.

[13] D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, and F. Zhao, “Minimum-cost multicast over coded packet
networks,” IEEE Trans. on Info. Th., vol. 52, no. 6, pp. 2608–2623,
2006.

[14] H. D. Sherali and G. Choi, “Recovery of primal solutions when using
subgradient optimization methods to solve Lagrangian duals of linear
programs,” Operations Research Letters, vol. 19, no. 3, pp. 105–113,
1996.

640

