
4388 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

Improved Lower Bounds for Coded Caching
Hooshang Ghasemi and Aditya Ramamoorthy, Member, IEEE

Abstract— Caching is often used in content delivery networks
as a mechanism for reducing network traffic. Recently, the
technique of coded caching was introduced whereby coding in
the caches and coded transmission signals from the central server
were considered. Prior results in this area demonstrate that
carefully designing the placement of content in the caches and
designing appropriate coded delivery signals from the server
allow for a system where the delivery rates can be significantly
smaller than conventional schemes. However, matching upper
and lower bounds on the transmission rate have not yet been
obtained. In this paper, we derive tighter lower bounds on the
coded caching rate than were known previously. We demonstrate
that this problem can equivalently be posed as a combinatorial
problem of optimally labeling the leaves of a directed tree. Our
proposed labeling algorithm allows for significantly improved
lower bounds on the coded caching rate. Furthermore, we study
certain structural properties of our algorithm that allow us to
analytically quantify improvements on the rate lower bound for
general values of the problem parameters. This allows us to
obtain a multiplicative gap of at most four between the achievable
rate and our lower bound.

Index Terms— Coded caching, directed tree, optimal labeling,
lower bounds, multiplicative gap.

I. INTRODUCTION

CONTENT distribution over the Internet is an important
problem and is the core business of several enterprises

such as YouTube, Netflix, Hulu etc. The operation of such
large scale systems presents several challenges, including (but
not limited to) storage of the data, ensuring reliable availability
and efficient content delivery. One commonly used technique
to facilitate delivery is content caching [1]. The main idea in
“conventional content caching” is to store relatively popular
content in local memory either on the desired device or in
a device at the edge of the network such as an intermediate
router. This local memory is referred to as the cache. Upon
request, this cached content is used to serve the clients, thus
reducing the number of bits transmitted from the server and
thereby reducing overall network congestion. Note that even
web browsers, routinely cache the content of popular websites
on a local machine to speed up the loading of webpages.

Manuscript received February 12, 2016; revised January 5, 2017; accepted
April 7, 2017. Date of publication May 17, 2017; date of current version
June 14, 2017. This work was supported by NSF under Grant CCF-1320416
and Grant CCF-1149860. This paper was presented in part at the 2015
IEEE International Symposium on Information Theory and the 2016 IEEE
International Symposium on Information Theory.

The authors are with the Department of Electrical and Computer
Engineering, Iowa State University, Ames, IA 50011 USA (e-mail:
ghasemi@iastate.edu; adityar@iastate.edu).

Communicated by K. Narayanan, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2017.2705166

Fig. 1. Block diagram of coded caching system.

Historically, content caching algorithms have attempted to
optimize the placement of content in the caches so that
the average number of bits that are transmitted from the
central server to the end users is minimized [2]–[5]. This
often requires some knowledge on the popularity of file
requests [6]–[8] made by the users. Moreover, the typical
approach is to cache a certain fraction of the file and to
obtain the remaining parts from the server when the need
arises. Coding in the content of the cache and/or coding in
the transmission from the server are typically not considered.

The work of [9] introduced the problem of coded caching,
where there is a server with N files and K users each with a
cache of size M . The users are connected to the server by a
shared link (see Fig. 1). In each time slot each user requests
one of the N files. There are two distinct phases in coded
caching.
• Placement phase. In this phase, the content of caches is

populated. This phase should not depend on the actual
user requests (which are assumed to be arbitrary). Typi-
cally, the placement phase can be executed in the off-peak
hours where the amount of network traffic is low.

• Delivery phase. In this phase, each of the K users request
one of the N files. The server transmits a signal of rate R
over the shared link that simultaneously serves to satisfy
the demands of each of the users.

The work of [9] demonstrates that a carefully designed place-
ment scheme and a corresponding delivery scheme achieves
a rate that is significantly lower than conventional caching.
While coded caching promises very significant gains in trans-
mission rates, at this point we do not have matching upper
and lower bounds on the (R,M) pairs for a given N and K .

In this work our main contribution is in developing
improved lower bounds on the required rate for the coded

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4389

caching problem. We demonstrate that the computation of this
lower bound can be posed as a combinatorial labeling problem
on a directed tree. In particular, our method generates lower
bounds on αR + βM , where α and β are positive integers.
We demonstrate that a careful analysis of the underlying
combinatorial structure of the problem allows us to obtain
significantly better lower bounds than those obtained in prior
work [9]–[11]. In addition, our machinery allows us to show
that the achievable rate of [9] is within a multiplicative factor
of four of our proposed lower bound.

This paper is organized as follows. Section II discusses
the background, related work and summarizes the main con-
tributions of our work. Section III presents our proposed
lower bound technique. The multiplicative gap between the
achievable rate and our lower bound is outlined in Section IV.
Our proposed strategy also applies to certain variants of
the coded caching problem that have been discussed in the
literature; this is explained in Section V. There have been
some other approaches presented in the literature [9]–[11]
for improving the lower bound on the coded caching rate.
We present comparisons between our approach and the other
approaches in Section VI. We conclude the paper with a
discussion of opportunities for future work in Section VII.

II. BACKGROUND, RELATED WORK AND

SUMMARY OF CONTRIBUTIONS

In a coded caching system there is a server that contains N
files, denoted Wi , i = 1, . . . , N , each of size F bits. There are
K users that are connected to the central server by means of
a shared link. Each user has a local cache memory of size
M F bits; we denote the cache content by the symbol Zi

(which is a function of W1, . . . ,WN). In each time slot, the i -th
user demands the file Wdi where di ∈ {1, . . . , N}. The coded
caching problem has two distinct phases. In the placement
phase, the content of caches is populated; this phase should
not depend on the actual user requests (which are assumed
to be arbitrary). In the delivery phase, the server transmits
a potentially coded signal that serves to satisfy the demands
of each of the users. A pair (M, R) is said to be achievable
if for every possible request pattern (there are N K of them),
every user can recover its desired file with high probability
for large enough F . We let R�(M) denote the infimum of all
such achievable rates for a given M .

The coded caching problem can be formally described
as follows. Let [m] = {1, . . . ,m}, where m is a positive
integer. Let {Wn}Nn=1 denote N independent random variables
(representing the files) each uniformly distributed over [2F].
The i -th user requests the file Wdi , where di ∈ [N]. A (M, R)
system consists of the following.
• K caching functions, Zi � φi (W1, . . . ,WN) where φi :
[2F] → [2�F M�].

• A total of N K encoding functions ϕd1,...,dK

(W1, . . . ,WN), so that the delivery phase signal
Xd1,...,dK � ϕd1,...,dK (W1, . . . ,WN). Here, ϕd1,...,dK :
[2F]N → [2�F R�].

• For each delivery phase signal and each user, we
define appropriate decoding functions. There are a

total of K N K of them. For the k-th user, we define
μd1,...,dK ;k(Xd1,...,dK , Zk), where k = 1, . . . , K so that
decoded file Ŵd1,...,dK ;k � μd1,...,dK ;k(Xd1,...,dK , Zk).
Here μd1,...,dK ;k : [2�RF�] × [2�F M�] → [2F].

The probability of error is defined as

max
(d1,...,dK)∈[N]K

max
k∈[K] P(Ŵd1,...,dK ;k �= Wdk).

Definition 1: The pair (M, R) is said to be achievable if
for ε > 0, there exists a file size F large enough so that there
exists a (M, R) caching scheme with probability of error at
most ε. We define

R�(M) = inf{R : (M, R) is achievable}.
In this setting, it is not too hard to see that the best that
a conventional caching system can do is to simply store an
M/N fraction of each file in each of the caches. In order to
satisfy the demands of the user, the server has to transmit the
remaining (1− M/N) fraction of each of the requested files.
Thus, the transmission rate (normalized by F) is given by

RU (M) = min(N, K)

(
1− M

N

)
. (1)

Note that min(N, K) is the transmission rate in the absence
of any caching. In [9], the factor (1 − M/N) is referred to
as the local caching gain as it is gain that is obtained purely
from the cache, without any optimization of the transmission
from the server. In the setting where we perform nontrivial
coding in the cache and delivery phase encoding functions,
[9] demonstrates that a carefully designed placement scheme
and a corresponding delivery scheme achieves a rate

RC (M) = K

(
1− M

N

)
·min

{
1

1+ K M/N
,

N

K

}
, (2)

where M ∈ {0, N/K , 2N/K , . . . , N}. Other values of M are
obtained by time-sharing between the solutions for integer
multiples of N/K .

The factor 1
1+K M/N which definitely dominates when

N ≥ K is referred to as the global caching gain. It is to
be noted that the global caching gain depends on the overall
cache size across all the users (owing to the term K M/N in
the denominator) whereas the local caching gain only depends
on the per-user cache size (owing to the term 1 − M/N).
Furthermore, they compare their achievable rate (cf. eq. (2))
to a cutset bound that can be expressed as follows.

R�(M) ≥ max
s∈{1,...,min(N,K)}

(
s − s

�N/s�M

)
. (3)

The work of [9] also shows that the rate RC (M) is within
a factor of 12 of the cutset bound for all values of N, K
and M .

A. Related Work

Coded caching is related to but different from the index
coding problem [12]. In the index coding problem, there
are N ′ sources such that i -th source has message Wi ,
i = 1, . . . , N ′. There are K terminals, each of which
has some subset of {W1, . . . ,WN ′ } available. In addition,

4390 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

each terminal requests a certain subset of the messages
{W1, . . . ,WN ′ }. The aim in the index coding problem is to
minimize the number of bits that are transmitted on the
shared link so that the demands of each user are satisfied.
It is well recognized that the index coding problem for
arbitrary side information is a computationally hard prob-
lem where nonlinear codes may be necessary [12], [13].
In particular, the optimal linear index code corresponds to
minimizing the rank of an appropriately defined matrix over a
finite field. This so called minrank problem [12] is also known
to be computationally hard. It can be observed that for a fixed
but uncoded cache content and a fixed set of demands of the
various users, the problem of determining the optimal delivery
phase signal in the coded caching problem is equivalent to an
index coding problem. Note however, that in the coded caching
problem, we allow the cache content to be coded.

Since the original work of [9], there have been sev-
eral aspects of coded caching that have been investigated.
Reference [14] considers the scenario of decentralized caching
where the placement phase is driven by the users who ran-
domly populate their caches with subsets of the files stored
at the server. Approaches for updating the cache content
are considered in [15] and the case of files with different
popularity scores are considered in [16]–[18]. Security issues
in this domain are considered in [19]. The work of [20]
considers the more general case of hierarchical coded caching,
where certain intermediate nodes in the network are equipped
with potentially larger caches and investigates methods for
minimizing the overall traffic in such networks (see also [21]).
Coded caching where each user requests multiple files was
investigated in [22]. The case of device-to-device (D2D)
wireless networks where there is no central server was exam-
ined in [23] and [24]. Systems with files of differing sizes
were examined in [25]. The work of [26]–[28], considers
the problem of leveraging the rate gains of coded caching
with reduced subpacketization levels. Synchronization issues
and the problem setting where end users have deadlines was
investigated in [29] and [30].

In addition to these contributions, there have been other
lines of work that deal with content caching. In a parallel line
of work [23], [31], [32] consider the problem of femtocaching
in a wireless setting where in addition to a central server
(or base station), there are helpers (with caches) interspersed
in a cell that help the end users satisfy their demands. The
goal is again to consider caching strategies that minimize the
overall rate, but the solution approaches do not consider
the worst case rate over all possible demand patterns; instead
the popularity scores of the different files are explicitly taken
into account. Moreover, while coding is considered, it is
conceptually different in the sense that the coding is only
restricted to parts of the same file and coding across different
files is not considered. More recently, techniques inspired by
coded caching have been employed for speeding up distributed
computing [33], [34].

There has also been parallel work on establishing lower
bounds for the coded caching problem. In [10], Han’s inequal-
ity [35] was leveraged to obtain an improved lower bound.
A multiplicative gap of eight between their lower bound and

the achievable rate in eq. (2) was established. The work
of [11] also presents a lower bound technique. As discussed in
Section VI, their technique can be considered as a special case
of our work. The specific case of N = K = 3 was considered
in [36] via a computational approach. We present a detailed
comparison of our technique with these other approaches in
Section VI.

B. Summary of Our Contributions

In this work our main contribution is in developing
improved lower bounds on the required rate for the coded
caching problem. We show that the cutset based bound in
eq. (3) is significantly loose and propose a larger class of lower
bounds that are significantly tighter. Our specific contributions
include the following.
• We demonstrate that the computation of our lower bound

can be posed as a combinatorial labeling problem on
a directed tree. Our method generates lower bounds on
αR� + βM , where α, β are positive integers. While the
cutset bound only optimizes over at most min(N, K)
choices, our technique allows us to consider many more
(α, β) pairs.1

• We perform a careful analysis of the underlying combi-
natorial structure of the problem that allows us to obtain
significantly better lower bounds than those obtained
in prior work. For a given pair (α, β) and number of
users K , it is intuitively clear that the lower bound on
αR�+βM will be large if the number of files N is large.
We define the notion of a saturated instance, which are
directed trees and corresponding labelings that give the
largest possible lower bound (using our technique) using
as few files as possible. An analysis of saturated instances
allows us to always improve on the cutset bound and in
most ranges of M , our bound is strictly better.

• Our machinery allows us to show that the achievable rate
of [9] is within a multiplicative factor of four of our
proposed lower bound for all values of N and K . This is
possible by analyzing some combinatorial properties of
saturated instances.

• Our proposed technique also applies to other variants of
coded caching problem. We discuss the application of our
work to the case of D2D wireless networks and coded
caching with multiple requests as well.

As an example, Fig. 2 illustrates the tightness of the pro-
posed lower bound for a coded caching system with a server
that contains N = 9 files and K = 3 users. Specifically, our
proposed bound demonstrates the optimality of the achievable
scheme for values of M that are integer multiples of N/K in
this specific case.

III. LOWER BOUND ON R�(M)

In this section we present our proposed lower bound
on R�(M). We begin with an example that demonstrates the
core idea of our approach.

Example 1: Consider a coded caching system with
N = K = 3. Then, the following sequence of information

1The cutset bound can be considered as a special case of our bound.

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4391

Fig. 2. An example of a coded caching system with N = 9 files, K = 3
users. Note that the proposed lower bound is better than the cutset bound and
matches the achievable rate points at multiples of N/K .

theoretic inequalities hold.

2R�F + 2M F

≥ H (Z1, X123)+ H (Z2, X312)
(a)= I (W1; Z1, X123)+ H (Z1, X123|W1)

+ I (W1; Z2, X312)+ H (Z2, X312|W1)

= H (W1)− H (W1|Z1, X123)+ H (Z1, X123|W1)

+ H (W1)− H (W1|Z2, X312)+ H (Z2, X312|W1)
(b)≥ F(1− ε)+ F(1− ε)+ H (Z1, Z2, X123, X312|W1)

= 2F(1− ε)+ I (W2,W3; Z1, Z2, X123, X312|W1)

+ H (Z1, Z2, X123, X312|W1,W2,W3)
(c)≥ 2F(1− ε)+ 2F(1− ε) = 4F(1− ε),

where equality (a) holds by the definition of mutual informa-
tion. Inequality (b) holds by Fano’s inequality since the file
W1 can be recovered with ε-error from the pairs (Z1, X123)
and (Z2, X312) and by the fact that conditioning reduces
entropy. Similarly, inequality (c) holds by Fano’s inequality
since the files W2 and W3 can be recovered with ε-error
from (Z1, Z2, X123, X312). This holds for arbitrary ε > 0
and F large enough. Dividing throughout by F we have the
required result.

Thus, the key idea of the above bound is to choose the
delivery phase signals in such a manner so that the various
terms that are combined allow the “reuse” of the same file
multiple times. For instance, in step (a) of the above bound,
we use the definition of mutual information to rewrite the
terms H (Z1, X123) and H (Z2, X312). Note that both pairs
(Z1, X123) and (Z2, X312) allow the recovery of the same
file W1, resulting in a contribution of 2F to the lower bound.
On the other hand, the files W2 and W3 are recovered only
once. The overall result is a lower bound of 4F .

Thus, our lower bound works with judiciously chosen labels
for the delivery phase signals and combines them with the
cache signals in an appropriate way such that a given file is
recovered a large number of times. It turns out that doing
this systematically and tractably requires the development of
several new ideas. For instance, the aforementioned chain

Fig. 3. Problem instance for Example 1. For clarity of presentation, only
the Wnew(u) label has been shown on the edges.

of inequalities can be equivalently represented in terms of a
directed tree with appropriate labels on its leaves and edges as
shown in Fig. 3. In particular, the leaves of the tree are labeled
with cache signals Z1 and Z2 and delivery phase signals
X123 and X312. Each internal node of the tree corresponds to
the operation of combining the signals and its outgoing edge
is labeled by the newly recovered file(s), e.g., at node u1,
the file W1 is recovered. Likewise at node u∗, the files W2
and W3 are recovered. The lower bound can be obtained by
summing the cardinalities of the edge labels. We note here that
[9, Appendix] considers an application of a similar bound in
the specific case of K = N = 2.

The next example shows another crucial point that is
key to our approach. Namely, one can get the same lower
bound by using different number of files. It turns out that
using less files to obtain a specific lower bound can in turn
be leveraged to improve the overall lower bound on the
rate.

Example 2: Consider a coded caching system with N = 4,
K = 3. Suppose that we are interested in deriving a lower
bound of type 4R� + 4M ≥ L. Using the cutset bound in (3)
for s = 2 we get 2R� + 2M ≥ 4, which in turn yields
4R� + 4M ≥ 8. The corresponding information theoretical
inequalities to derive such a lower bound can be equivalently
presented by the directed tree and labeled leaves and edges in
Fig. 4 (b) (this is formalized in the Appendix). Note that there
are no files labeled on the last edge (u∗, v∗).

On the other hand, consider the directed tree and the
corresponding labels in Fig. 4 (a). The crucial difference is that
the edge (u∗, v∗) recovers the file W4 in Fig. 4 (a). Summing
the cardinalities of the labels allows us to obtain the inequality
4R� + 4M ≥ 9 which is strictly better than the cutset bound.
Intuitively, this can be explained as follows. It is not too hard
to see that each subtree of the original directed tree can in
turn yield an inequality by itself. For instance, consider the
left subtree rooted at u∗, i.e., the subtree with v1, v2, v5 and
v6 as leaves and (u5, u∗) as its last edge. This subtree allows
us to lower bound 2R∗+2M . Summing the cardinalities of the
edges of this subtree yields the value 4; crucially, this subtree
only uses three files W1,W2 and W3. A similar statement holds
for the right subtree rooted at u∗. This allows the remaining
file W4 to be recovered on the edge (u∗, v∗).

On the other hand an examination of Fig. 4 (b) shows
that its subtrees also yield the value 4, but use four files
W1, . . . ,W4. Thus, we conclude that the subtrees of Fig. 4 (a)
are more efficient in using files. This allows one more file to

4392 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

Fig. 4. Problem instances discussed in Example 2 where N = 4 and K = 3.
The instance (a) has reused more files than the corresponding cutset bound
derived from instance (b).

be recovered on the last edge (u∗, v∗) and translates into an
overall better lower bound.
The key idea of our improved lower bounding technique is
thus, to consider directed trees with appropriate labels that
are efficient in using the number of files. We will formalize
these notions in the subsequent discussion. As we have seen,
there are new concepts that are needed in working with the
directed trees with labeled leaves and edges. In what follows,
we formally define these concepts.

Definition 2 (Directed in-Tree): A directed graph T =
(V , A), is called a directed in-tree if there is one designated
node called the root such that from any other vertex v ∈ V
there is exactly one directed path from v to the root.

The nodes in a directed in-tree that do not have any
incoming edges are referred to as the leaves. The remaining
nodes, excluding the leaves and the root are called inter-
nal nodes. Each node in a directed in-tree has at most
one outgoing edge. We have the following definitions for a
node v ∈ V .

out (v) ={u∈V : (v, u)∈ A}, (outgoing neighbor) and,

in(v) ={u∈V : (u, v)∈ A} (incoming neighbor set).

in−edge(v) ={e∈ A : e = (u, v)} (incoming edge set).

In this work, we exclusively work with trees which are such
that the in-degree of the root equals 1. There is a natural
topological order in T whereby for nodes u ∈ T and v ∈ T ,
we say that u
 v if there exists a sequence of edges that
can be traversed to reach v from u. This sequence of edges is
denoted path(u, v).

Algorithm 1 Lower Bound Algorithm

Input: T = (V , A) with leaves v1, . . . , v� and {label(vi)}�i=1,
such that W(vi) = ∅, i = 1, . . . , �.

Initialization:
1: for i ← 1, . . . � do
2: Wnew(vi) = 	(vi , vi).
3: x(vi ,out (vi)) = Wnew(vi).
4: y(vi ,out (vi)) = |Wnew(vi)|.
5: end for
6: while there exists an unlabeled edge do
7: Pick an unlabeled node u ∈ V such that all edges in

in − edge(u) are labeled.
8: W(u) = ∪v∈in(u)W(v) ∪Wnew(v).
9: Z(u) = ∪v∈in(u)Z(v).

10: D(u) = ∪v∈in(u)D(v).
11: Wnew(u) = 	(u, u) \W(u).
12: x(u,out (u)) = Wnew(u).
13: y(u,out (u)) = |Wnew(u)|.
14: end while
Output: L =∑

e∈A ye.

Definition 3: Meeting point of nodes in a directed tree.
Consider nodes v1 and v2 in a directed in-tree T = (V , A).
We say that v1 and v2 meet at node u if there exist path(v1, u)
and path(v2, u) in T such that path(v1, u)∩ path(v2, u) = ∅.
As there exists a path from any node in T to the root node,
it follows that the existence of node u is guaranteed.

Let D = ∪d1∈[N],...,dK∈[N]{Xd1,...,dK }.
Definition 4 (Labeling of Directed in-Tree): Each node

v ∈ T is assigned a label, denoted label(v), which is a subset
of {W1, . . . ,WN } ∪ {Z1, . . . , Z K } ∪ D. Moreover, we also
specify W(v) ⊆ {W1, . . . ,WN }, Z(v) ⊆ {Z1, . . . , Z K } and
D(v) ⊆ D so that label(v) =W(v) ∪Z(v) ∪D(v).

In our formulation, the leaf nodes are denoted vi ,
i = 1, . . . , � are such that W(vi) = ∅.

Definition 5 (Recoverability): We say that a singleton
source subset {Wi } is recoverable from the pair (Z j , Xd1,...,dK)
if d j = i . Similarly, for a given set of caches Z ′ ⊆
{Z1, . . . , Z K } and delivery phase signals D′ ⊆ D, we define
Rec(Z ′, D′) ⊆ {W1, . . . ,WN } to be the subset of the sources
that can be recovered from pairs of the form (Zi , X J) where
Zi ∈ Z ′ and J is a multiset of cardinality K with entries from
[N] such that X J ∈ D′.

We let the entropy of a set of random variables equal the
joint entropy of all the random variables in the set. We also
let [x]+ = max(x, 0).

Given a directed tree T with appropriate labels on its leaves
we present an algorithm (see Algorithm 1) that generates an
inequality of the form αR� + βM ≥ L(α, β). For nodes u,
v ∈ T , we define the following.

	(u, v) = Rec(Z(u),D(v)), and

Wnew(u) = 	(u, u) \W(u). (4)

Algorithm 1 operates as follows. It takes as input a directed
in-tree T where each leaf vi , i = 1, . . . , � has labels Z(vi)
and D(vi) (W(vi) is set to ∅). The algorithm determines the

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4393

files that are recovered at each vi and labels the corresponding
outgoing edge with Wnew(vi) and |Wnew(vi)|. Following this,
the algorithm propagates the labels further down the tree in
the following manner. For a given node u whose incoming
edges are labeled, we set Z(u) = ∪v∈in(u)Z(v) and D(u) =
∪v∈in(u)D(v), i.e., each of these labels is set to the union of the
corresponding labels of the nodes that belong to the incoming
node set of u. Next, it sets W(u) = ∪v∈in(u)W(v)∪Wnew(v),
i.e., in addition to the W-labels of the incoming node set,
W(u) also contains the new files that are recovered on the
incident edges. Note that at each internal node certain cache
signals and delivery phase signals meet, e.g., Z1 and X123
meet at node u1 in Fig. 3. The outgoing edge of an internal
node is labeled by the new files that are recovered at the
node, e.g., at u1 the signals Z1 and X123 recover the file W1.
We call a file new if it has not been recovered upstream of a
given node. In a similar manner at u∗ one can recover all the
files W1, . . . ,W3; however only the set {W2,W3} is labeled on
edge (u∗, v∗) as W1 was recovered upstream. This process is
continued recursively, i.e., we label the outgoing edges with
the new files that are recovered at node u, propagate the labels
and continue thereafter. The algorithm continues until it labels
the last outgoing edge.

It can be seen that the operation of Algorithm 1 is in one
to one correspondence with the new files recovered in the
sequence of inequalities in the lower bound. For example, the
outgoing labels of u1 and u2 in Fig. 3 correspond to step (a) in
the inequalities in Example 1. We formalize this statement in
the Appendix (Lemma 5) where we show that a valid lower
bound is always obtained when applying Algorithm 1. The
complexity of this algorithm and the other algorithms used in
this paper are discussed in Appendix E.

Definition 6 (Problem Instance): Consider a given tree T
with leaves vi , i = 1, . . . , � that are labeled as discussed
above. Let α = ∑�

i=1 |D(vi)| and β = ∑�
i=1 |Z(vi)|.

Suppose that the lower bound computed by Algorithm 1
equals L. We define the associated problem instance as
P(T , α, β, L, N, K). We also define α̂ = | ∪�i=1 D(vi)| and
β̂ = | ∪�i=1 Z(vi)|. A problem instance P(T , α, β, L, N, K)
is said to be optimal if all instances of the form
P ′(T ′, α, β, L ′, N, K) are such that L ′ ≤ L.

It is worth emphasizing that α̂ ≤ α and β̂ ≤ β as some
cache and delivery phase signals may be repeated.

In the subsequent discussion, we focus on understanding the
characteristics of optimal problem instances. Towards this end,
we shall often start with a problem instance P and modify it
in appropriate ways to arrive at another instance P ′. For ease
of presentation, when needed we shall refer to quantities in
instance P(P ′) by using the corresponding superscripts. For
example, for a node u in P (P ′), we will denote the set of
new files by W P

new(u) (W P ′
new(u)).

It is not too hard to see that it suffices to consider directed
trees whose internal nodes have an in-degree at least two.
In particular, if u has in-degree equal to 1, it is evident that
Wnew(u) = ∅ and thus, |Wnew(u)| = 0. In addition, we claim
that w.l.o.g. it suffices to consider trees where internal nodes
have in-degree at most two. Therefore, we will assume that
all internal nodes have degree equal to two. More specifically,

Fig. 5. For a given node u ∈ T , its in-neighbors are denoted ul and ur . The
corresponding subtrees are denoted Tu(l) and Tu(r) and are shown enclosed
in the dotted boxes.

we can show the following property of problem instances (the
proof appears in the Appendix).

Claim 1: Consider a problem instance P(T , α, β, L, N, K)
such that there exists a node u ∈ T with |in(u)| ≥ 3. Then,
there exists another instance P ′(T ′, α, β, L ′, N, K) where
L ′ ≥ L and |in(u)| ≤ 2 for all nodes u ∈ T ′.
Henceforth, we assume that all internal nodes in the problem
instances under consideration have in-degree equal to two.
Claim 1 can also be used to conclude that each leaf v in
an instance P is such that either |Z(v)| = 1 or |D(v)| = 1
but not both. Indeed, if there exists a leaf v that violates this
condition, we can use the modification in the proof of Claim 1
to replace v by a directed in-tree so that the condition is
satisfied. If |Z(v)| = 1, we call v a cache node; if |D(v)| = 1
we call it a delivery phase node. In the subsequent discussion
we will assume that the delivery phase nodes are labeled
in an arbitrary order v1, . . . , vα and the cache nodes from
vα+1, . . . , vα+β , where we note that α+β = �. Moreover, we
let D = {v1, . . . , vα} and C = {vα+1, . . . , vα+β}.

In the tree T corresponding to problem instance
P(T , α, β, L, N, K), consider an internal node u and the
edge e = (u, v). In the subsequent discussion, we shall
use Tu to refer to the subtree that has its last edge as
(u, out (u)), i.e., the subtree that is rooted at out (u). The
incoming edges into u, denoted (ul , u) and (ur , u) are the
last edges of the disjoint left and right subtrees denoted Tu(l)

and Tu(r) respectively (see Fig. 5). Each of these subtrees
defines a problem instance Pl = P(Tu(l), αl , βl , Ll , N, K) and
Pr = P(Tu(r), αr , βr , Lr , N, K). We denote the set of delivery
phase nodes and cache nodes in Tu(r) by

Du(r) = {v ∈ D : v ∈ Tu(r)} and

Cu(r) = {v ∈ C : v ∈ Tu(r)},
with similar definitions for Du(l) and Cu(l). We also let

Du = Du(l) ∪Du(r), and

Cu = Cu(l) ∪ Cu(r).

Let
l = ∪v∈Tu(l)Wnew(v) and
r = ∪v∈Tu(r)Wnew(v), i.e.,

l and
r are the subsets of {W1, . . . ,WN } that are used up
in the problem instances Pl and Pr respectively. It can be
observed that
l = 	(ul, ul) and
r = 	(ur , ur).

4394 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

We shall often need to reason about the files recovered at
the node u from the different subtrees. For instance, the set
of cache nodes in Tu(r) and the delivery phase signals in Tu(l)

meet and recover a subset of the files at u. This set of files
corresponds to those recovered from Z(ur)\Z(ul) and D(ul),
and can be informally thought of as the files recovered when
going from right to left. Accordingly, we have the following
definitions.

	rl(u) = Rec(Z(ur) \ Z(ul),D(ul)), and

	lr (u) = Rec(Z(ul) \ Z(ur),D(ur)).

Note that by definition, we have

	(u, u)

= Rec(Z(u),D(u))

= Rec(Z(ul) ∪Z(ur),D(ul) ∪D(ur))

= Rec(Z(ul),D(ul)) ∪ Rec(Z(ur),D(ur))

∪ Rec(Z(ul),D(ur)) ∪ Rec(Z(ur),D(ul))
(a)= Rec(Z(ul),D(ul)) ∪ Rec(Z(ur),D(ur))

∪ Rec(Z(ul) \ Z(ur),D(ur)) ∪ Rec(Z(ur) \Z(ul),D(ul))

= 	(Z(ul),D(ul))︸ ︷︷ ︸
from Tu(l)

∪	(Z(ur),D(ur))︸ ︷︷ ︸
from Tu(r)

∪	lr (u) ∪	rl(u),

and W(u)

= 	(Z(ul),D(ul)) ∪	(Z(ur),D(ur)),

where (a) follows since the Rec(Z(ul),D(ur)) potentially
contains some files that have already been recovered in
Rec(Z(ur),D(ur)). The other equality holds because of sim-
ilar reasoning. Therefore, it follows that

Wnew(u) = 	(u, u) \W(u)

= 	rl(u) ∪	lr (u) \W(u). (5)

Note that based on Algorithm 1, we can conclude that

W(u) = ∪v∈{ur ,ul }W(v) ∪Wnew(v)

= ∪v
uWnew(v) (by arguing inductively). (6)

For the subsequent discussion, it will be useful to
express the value of the lower bound L for an instance
P(T , α, β, L, N, K) in a functional form. In particular, we
define the function ψ : D × C → {0, 1} that allows us to
express L in another way. For nodes vi ∈ D, v ′ ∈ C we can
define their meeting point u ∈ T . The function ψ(vi , v

′) is
determined by means of Algorithm 2, where the sequence in
which we pick the nodes v1, . . . , vα is fixed. Each element of
Wnew(u) can be recovered from multiple pairs of nodes that
meet there. The array �(u, δu) keeps track of the first time
the file δu is encountered. The function ψ(vi , v

′) takes the
value 1 if the file W∗ recovered from the pair (Z(v ′),D(vi))
at u belongs to Wnew(u) and has not been encountered before
and 0 otherwise. A formal description is given in Algorithm 2.

Claim 2: For an instance P(T , α, β, L, N, K) the follow-
ing equality holds

L =
α∑

i=1

∑
v ′∈C

ψ(vi , v
′). (7)

Algorithm 2 Computing ψ
Input: P(T , α, β, L, N, K), Array �(u, δu), where u ∈ T ,
δu ⊆ Wnew(u), |δu| = 1.

1: Initialization
2: for all u ∈ T , δu ⊆ Wnew(u) where |δu | = 1 do
3: �(u, δu)← 0,
4: end for
5: end Initialization
6: for i ← 1 to α do
7: for all v ′ ∈ C do
8: Let u be the meeting point of vi and v ′.
9: δu = 	(v ′, vi).

10: if δu ∈ Wnew(u) and �(u, δu) == 0 then
11: ψ(vi , v

′)← 1, and �(u, δu)← 1.
12: else
13: ψ(vi , v

′)← 0.
14: end if
15: end for
16: end for

Fig. 6. Problem instance corresponding to Example 3. There are three users
and the server contains four files.

Proof: We first note that at the end of Algorithm 2, we
have �(u, δu) = 1 for all u ∈ T and all δu ⊆ Wnew(u) such
that |δu| = 1. To see this suppose that there is a u1 ∈ T and
a singleton subset δu1 of Wnew(u1) such that �(u1, δu1) = 0.
Now δu1 is recovered from some delivery phase node and
cache node, otherwise it would not be a subset of Wnew(u1).
As our algorithm considers all pairs of delivery phase nodes
and cache nodes, at the end of the algorithm it has to be the
case that �(u1, δu1) = 1.

Next, we note that for each pair (u1, δu1) where u1 ∈ T
and δu1 is singleton subset of Wnew(u1), we can identify a
unique pair of nodes (vi , v

′) where vi ∈ D and v ′ ∈ C
such that ψ(vi , v

′) and �(u1, δu1) are set to 1 at the same
step of the algorithm. The remaining pairs (vi , v

′) that
cannot be put in one to one correspondence with a pair
(u1, δu1) are such that ψ(vi , v

′) are set to 0. Moreover as∑
u∈T

∑
δu⊆Wnew(u),|δu |=1�(u, δu) = ∑

u∈T |Wnew(u)| = L,

it follows that L =∑α
i=1

∑
v ′∈C ψ(vi , v

′).
We now illustrate the definitions introduced above by means

of the following example.
Example 3: The problem instance in Fig. 6 has seven

internal nodes, {u1, . . . , u6, u∗}. In the initialization step,
Algorithm 2 sets �(ui , {W1}) = 0 for 1 ≤ i ≤ 4,

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4395

TABLE I

THE STEPS IN ALGORITHM 2 AFTER INITIALIZATION WHEN APPLIED TO

EXAMPLE 3. THE STEPS FLOW FROM THE LEFTMOST TO THE

RIGHTMOST COLUMN, AND IN EACH COLUMN

FROM THE TOP TO THE BOTTOM ROW

�(ui , {W2}) = �(ui , {W3}) = 0 for i = 5, 6 and
�(u∗, {W4}) = 0. In the next step, for node v1 it sets
ψ(v1, v5) = 1, �(u1, {W1}) = 1 (for v5 ∈ C) and ψ(v1, v6) =
1, �(u5, {W2}) = 1 (for v6 ∈ C). For v7 ∈ C we have
δu∗ = 	(v7, v1) = {W3} and since W3 /∈ Wnew(u∗) = {W4}
therefore ψ(v1, v7) = 0. By the same argument we have
ψ(v1, v8) = 0. Thus, the contribution of v1 to the lower
bound, namely

∑
v ′∈C ψ(v1, v

′) = 2. The complete description
of the steps after the initialization, is shown in Table I. The
table should be read in column order from left to right.
Within a column, the order of the operations is from top
to bottom. Note that there are two cases, v3 ∈ D, v6 ∈ C
and v4 ∈ D, v6 ∈ C where ψ(·, ·) value is set to 0 (since
the corresponding �(·, ·) values are already 1). In both cases
δu∗ = {W4} and since W4 is recovered already, �(u∗, {W4})
has already been set to 1 when considering v2 ∈ D, v7 ∈ C.
Therefore ψ(v4, v6) = ψ(v3, v6) = 0. Another point to be
noted is that delivery phase node v2 contributes three files
towards L while the other delivery nodes contribute only two
files each.

Corollary 1: For an instance P(T , α, β, L, N, K), we have
L ≤ αmin(β, K). Moreover, if N ≥ αmin(β, K) there exists
an instance such that L = αmin(β, K).

Proof: For a node vi , where 1 ≤ i ≤ α, we have∑
v ′∈C

ψ(vi , v
′) ≤ | ∪v ′∈C Z(v ′)|

= β̂,
≤ min(β, K). (8)

Let u denote the meeting point of v ′ and vi . The first inequality
above holds since ψ(vi , v

′) = 1 implies that δu = 	(v ′, vi) ⊆
Wnew(u) and∑
v ′∈C

ψ(vi , v
′) ≤ | ∪v ′∈C Rec(D(vi),Z(v

′))|

= |Rec(D(vi),∪v ′∈CZ(v ′))| ≤ | ∪v ′∈C Z(v ′)|.
From eq. (8) we can conclude that L =∑α
i=1

∑
v ′∈C ψ(vi , v

′) ≤ αmin(β, K). If N ≥ αmin(β, K),
it is easy to construct an instance with L = αmin(β, K).
We simply pick any directed tree on α + β leaves. Let the
cache node indices be Z1 repeated β − min(β, K)+ 1 times
and Z2, Z3, . . . , Zmin(β,K)−1, Zmin(β,K). Suppose that node
v ∈ D, v ′ ∈ C ′ meet at node u. We label the delivery phase

Fig. 7. (a) Problem instance P ′(T ′, α, β, L , N ′, K), (b) problem instance
P(T , α, β, L , N, K) where α = 2, β = 2 and K = 2. Both instances reach
L = αmin(β, K) = 4 with different number of files N = 3 and N ′ = 4.

leaves such that | ∪(v,v ′)∈D×C′ 	(v ′, v)| = αmin(β, K). This
can be done since N is large enough so that we can choose the
labels such that Rec(Z(v ′1),D(v1))∩ Rec(Z(v ′2),D(v2)) = ∅
for v ′1, v ′2 ∈ C ′ and v1, v2 ∈ D. For instance, initialize
D(v) = X1,1,...,1 for all v ∈ D and then set D(vi) = Xd1,...,dK ,
d j = (i − 1)min(β, K) + j for j = 1, . . . ,min(β, K), and
i = 1, . . . , α.

We illustrate the construction outlined above by means of
the following example.

Example 4: Let α = β = 2, K = 2, and N = 4.
We arbitrarily pick a directed tree with v1, v2 as delivery
nodes and v3, v4 as cache nodes. We label Z(v3) = Z1
and Z(v3) = Z2, and delivery nodes as D(v1) = X1,2 and
D(v2) = X3,4. Such a problem instance is illustrated in
Fig. 7 (a). It is evident that applying Algorithm 1 on this
instance yields a lower bound of 4. However, as we will see
later, this instance is not efficient in reusing files.

At this point we have established that for a given problem
instance P(T , α, β, L, N, K), we can always generate an
inequality of the form αR�+βM ≥ L. It is natural to therefore
consider optimal problem instances that maximize the lower
bound for a given value of α, β, N and K .

Definition 7: For given α, β, N and K , we say that a prob-
lem instance P(T ∗, α, β, L∗, N, K) is optimal if all problem
instances P ′(T , α, β, L, N, K)) are such that L∗ ≥ L.

Recall that β̂ = | ∪�i=1 Z(vi)|. For a problem instance
P(T , α, β, L, N, K), it may be possible that β̂ < min(β, K).
However, given such an instance, we can convert it into
another instance where β̂ = min(β, K) without reducing the
value of L. In fact, the following stronger statement holds (see
Appendix B for a proof).

Claim 3: For a problem instance P(T , α, β, L, N, K) sup-
pose that there exists an internal node u∗ with associated
problem instance P∗ = P(Tu∗ , α∗, β∗, L∗, N∗, K) such that
the following condition holds.

β̂∗ < min(β∗, K).

Then, there exists another problem instance P ′(T ′, α,
β, L ′, N, K) where L ′ ≥ L such that the above condition
does not hold.

The next claim formalizes the intuitive fact that permuting
the cache nodes and the delivery phase signals by the same
permutation does not change the W labels and the lower bound
of the instance.

4396 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

Claim 4: Let P(T , α, β, L, N, K) to be a problem instance
and let π : [K] −→ [K] to be a permutation with inverse σ .
Assume that the problem instance P ′(T ′, α, β, L ′, N, K) is
obtained from P by the following changes for all v ∈ D and
v ′ ∈ C.
• Let ZP (v ′) = Zi , then set ZP ′(v ′) = Zπ(i).
• Let DP(v) = Xd1,...,dK , then set DP ′(v) = Xdσ(1),...,dσ(K) .

Then W P ′
new(u) = W P

new(u), W
P ′(u) =WP (u) for u ∈ T , and

L ′ = L.
Proof: We note that

Rec(Zi , Xd1,...,dK) = Wdi

= Wdσ(π(i)) = Rec(Zπ(i), Xdσ(1),...,dσ(K))

for i = 1, . . . , K . Therefore, for any v ∈ D and v ′ ∈ C, we
have 	P ′(v ′, v) = 	P(v ′, v) and more generally 	P ′(u, u) =
	P(u, u). Furthermore, WP (u) = 	P(ul , ul) ∪ 	P (ur , ur)
and we have WP (u) =WP ′(u) for any u ∈ T . Using eq. (4),
we have W P ′

new(u) = W P
new(u) for all u ∈ T ′. It follows

that L ′ = L.
Henceforth, we will assume w.l.o.g. that β̂ = min(β, K)

and that Claim 3 holds. Our next lemma shows a structural
property of problem instances. Namely for an instance where
L < αmin(β, K), increasing the number of files allows us
to increase the value of L. This lemma is a key ingredient
in our proof of the main theorem (the proof appears in the
Appendix).

Lemma 1: Let P = P(T , α, β, L, N, K) be an instance
where L < αmin(β, K). Then, we can construct a new
instance P ′ = P(T ′, α, β, L ′, N + 1, K), where L ′ = L + 1.

Informally, another property of optimal problem instances is
that the same file is recovered as many times as possible at the
same level of the tree. For instance, in Fig. 3, W1 is recovered
in both Tu∗(l) and Tu∗(r). In fact, intuitively it is clear that the
same set of files can be reused in any subtrees of an internal
node. Our next claim formalizes this intuition. Recall that for
a node u,
l = ∪v∈Tu(l)Wnew(v) and
r = ∪v∈Tu(r)Wnew(v).

Claim 5: Consider an instance P = P(T , α, β, L, N, K).
For all nodes u ∈ T , suppose w.l.o.g. that |
l | ≥ |
r |. Suppose
that there exist a node u ∈ T such that such that
r �
l . Then
there exists another instance P ′(T ′, α, β, L ′, N ′, K) such that
N ′ ≤ N , L ′ ≥ L, and
r ⊆
l for all u ∈ T ′.
Next, we upper bound the maximum value of |Wnew(u)| for
a node u ∈ T .

Claim 6: In instance P(T , α, β, L, N, K), consider an
internal node u. Let ρ(u) = α̂l [min(βr , K − βl)]+ +
α̂r [min(βl , K − βr)]+. We have

|Wnew(u)| ≤ min
(
ρ(u), [N − |
l ∪
r |]+

)
.

Proof: From eq. (5) it follows that

|Wnew(u)| ≤ |	rl(u) \W(u)| + |	lr (u) \W(u)|.
Next, we observe that

|	rl(u) \W(u)| = |Rec(Z(ur) \ Z(ul),D(ul)) \W(u)|
≤ |D(ul)| × |Z(ur) \Z(ul)|
(a)≤ α̂l ×min(β̂r , K − β̂l),
(b)= α̂l × [min(βr , K − βl)]+,

Fig. 8. Problem instances with N = K = 3. Instance P1 is non-atomic as
the corresponding lower bound can be obtained by summing the lower bounds
from P2 and P3.

where inequality (a) holds, since |D(ul)| = α̂l and |Z(ur) \
Z(ul)| ≤ min(β̂r , K − β̂l). Inequality (b) holds under the
conditions β̂l = min(βl , K) and β̂r = min(βr , K) (see
Claim 9 in Appendix). We can bound |	lr (u) \W(u)| in a
similar manner.

To conclude the proof we note that instances Pl and Pr

recover a total of |
l ∪
r | sources. As the total number of
sources is N , |Wnew(u)| ≤ [N − |
l ∪
r |]+.

Definition 8 (Saturation Number): Consider an instance
P∗(T ∗, α, β, L∗, N∗, K), where L∗ = αmin(β, K), such that
for all problem instances of the form P(T , α, β, L∗, N, K),
we have N∗ ≤ N . We call N∗ the saturation number
of instances with parameters (α, β, K) and denote it by
Nsat (α, β, K).

In essence, for given α, β and K , saturated instances are
most efficient in using the number of available files. It is
easy to see that Nsat (α, β, K) ≤ αmin(β, K) since one can
construct an instance with lower bound αmin(β, K) when
αmin(β, K) ≤ N (see Corollary 1).

Example 5: Consider the two problem instances P and P ′
with α = 2, β = 2 and K = 2 that are shown in Fig. 7.
The lower bound for both instances is L = αmin(β, K) = 4.
However, instance P uses one less file than P ′. This reduction
is accomplished by reusing file W1 at both Tu∗(l) and Tu∗(r).
The instance P ′ can be treated as a trivial instance constructed
by the procedure suggested in the proof of Corollary 1 as
it uses N ′ = αmin(β, K) = 4 files. It can be verified by
Algorithm 4 in Section III-B that P is one of the
problem instances associated with Nsat (2, 2, 2); therefore,
Nsat (2, 2, 2) = 3.

Definition 9 (Atomic Problem Instance): For a given opti-
mal problem instance P(T , α, β, L, N, K) it is possi-
ble that there exist other optimal problem instances
Pi (αi , βi , Li , N, K), i = 1, . . . ,m with m ≥ 2 such that∑m

i=1 αi = α,∑m
i=1 βi = β and

∑m
i=1 Li = L, i.e., the value

of L follows from appropriately combining smaller problems.
In this case we call the instance P non-atomic. Conversely,
if such smaller problem instances do not exist, we call P an
atomic problem instance.

Example 6: Consider the problem instance P1 shown in
Fig. 8 with N = K = 3. The lower bound associated with this
instance, 3R� + 3M ≥ 5, can be obtained by combining the
lower bounds acquired by P2 and P3. Specifically, instance P2
yields R�+M ≥ 1 and instance P3 yields 2R�+2M ≥ 4. Note
that in P1 the last edge (u∗, v∗) is such that Wnew(u∗) = ∅.

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4397

Thus, the tree can be split into two separate instances at u∗.
Thus it is non-atomic.

It is evident that instances where no new file is recovered
in the last edge are non-atomic. However, we emphasize
that there are other instances that are non-atomic as well.
For example, consider instance P ′1, obtained from P1 where
we change the label D(v3) to X221. In P ′1, the labels of
edges (u4, u∗) and (u∗, v∗) will change to {W2} and {W3}
respectively; none of the other labels will change. Even though
Wnew(u∗) is nonempty in P ′1, but we still call it non-atomic
since the associated lower bound does not change.

The following theorem and its corollary are the main results
of our paper and can be used to identify optimal problem
instances.

Theorem 1: Suppose that there exists an optimal and atomic
problem instance Po(T = (V , A), α, β, Lo, N, K). Then,
there exists an optimal and atomic problem instance P∗(T ∗ =
(V ∗, A∗), α, β, L∗, N, K) where L∗ = Lo with the fol-
lowing properties. Let us denote the last edge in P∗ with
(u∗, v∗). Let P∗l = P(T ∗u∗(l), αl , βl , L∗l , |
l |, K) and P∗r =
P(T ∗u∗(r), αr , βr , L∗r , |
r |, K). Then, we have

L∗l = αl min(βl, K),

L∗r = αr min(βr , K), and

L∗ = min
(
αmin(β, K), L∗l + L∗r + [N − N0]+

)
, (9)

where N0 = max(Nsat (αl , βl , K), Nsat (αr , βr , K)).2 Further-
more, min(βl, βr) < K .

Proof: Note that we assume that the problem instance
Po is atomic. This implies that W Po

new(u∗) �= ∅ and, conse-
quently, N > |
l |, |
r |. Using Claim 3 we can assert that

β̂l = min(βl , K) and β̂r = min(βr , K).
We denote by (u∗, v∗), the last edge in Po. We let

Pl = P(Tu∗(l), αl , βl , Ll , |
l |, K) and Pr = P(Tu∗(r), αr ,
βr , Lr , |
r |, K). It is easy to see that Lo = Ll + Lr +
|W Po

new(u∗)|. Suppose that Ll < αl min(βl, K). We apply the
result of Lemma 1, by noting that |
l | < N , and conclude
that there exists another instance P∗∗l = P(T ∗∗u∗(l), αl , βl , L∗l +
1, |
l | + 1, K) that can replace Pl , where the new file is
denoted W∗. We also note that in Po, W∗ ∈ W Po

new(u∗). Let
us denote the new instance P ′o. We emphasize that the nature
of the modification in Lemma 1 is such that 	P ′o(u∗, u∗) =
	Po(u∗, u∗). Moreover, we note that WP ′o(u∗) =WPo(u∗) ∪
{W∗}. Thus,

W
P ′o

new(u
∗) = 	P ′o(u∗, u∗) \WP ′o(u∗)
= 	P ′o(u∗, u∗) \WPo(u∗) ∪ {W∗}
= W Po

new(u
∗) \ {W∗}.

The problem instance P ′o is also optimal since Ll is increased
by one and |W Po

new(u∗)| is decreased by one, leaving Lo

unchanged. Therefore, moving files from W Po
new(u∗) to either

Pl or Pr preserves optimality. In addition, from L ′o = Lo

and that Po is atomic, P ′o is atomic. Based on this argument,
we can immediately conclude that we cannot have Ll <
αl min(βl, K) and Lr < αr min(βr , K) as the file W∗ can

2As the instance is atomic, we have N > N0.

be used to simultaneously modify the instance Pr . Upon this
modification, we can conclude that Lo can be increased by
one, which contradicts the optimality of the instance Po. Thus
we assume that Lr = αr min(βr , K). We can repeatedly
apply the operation of moving files from W Po

new(u∗) to Pl

until we have L∗l = αl min(βl , K). It has to be the case that
|W Po

new(u∗)| > αl min(βl , K)− |
l | so that we can repeatedly
apply the operation of moving the files, for if this were not
true, the instance Po would not be atomic.

We will denote the instance that we arrive at after complet-
ing these modification by P∗ which is optimal and atomic.
We can also observe at this point that if we have βl ≥ K
and βr ≥ K so that β̂l = β̂r = K , then W P∗

new(u
∗) = ∅

(by Claim 6) which implies that the original instance Po is
not atomic. Thus, either βl or βr or both have to be strictly
smaller than K . In the discussion below we assume w.l.o.g.
that βr < K . It is easy to see that

L∗ = L∗l + L∗r + |W P∗
new(u

∗)|.
We define ρ̃(u∗) = αl × [min(βr , K − βl)]+ + αr ×
[min(βl, K − βr)]+ where ρ̃(u∗) ≥ ρ(u∗) due to the fact that
αl ≥ α̂l and αr ≥ α̂r . Using this and Claim 6, we have that

|W P∗
new(u

∗)| ≤ min
(
ρ̃(u∗),

[
N −max(|
∗l |, |
∗r |)

]+)
.

For an optimal instance, we claim that the above inequality
is met with equality. If L∗ = αmin(β, K) there is nothing to
prove. In this case, |W P∗

new(u
∗)| = αmin(β, K) − L∗l − L∗r =

ρ̃(u∗) (see Claim 10 in Appendix) and the above inequality is
met with equality.

Otherwise, we have L∗ < αmin(β, K) which implies
ρ̃(u∗) > |W P∗

new(u
∗)| and ρ̃(u∗) > N − max(|
∗l |, |
∗r |).

From the Claim 5, we can assume that either
∗l ⊆
∗r or

∗r ⊆
∗l . In P∗, Nused = max

(|
∗l |, |
∗r |) + |W P∗
new(u

∗)|
files are used so far. Now, if N > Nused , we can use
Lemma 1 to conclude that there exists a problem instance
P ′′(T ′′, α, β, L ′′, N ′′, K) where N ′′ = Nused + 1 ≤ N and
L ′′ = L∗ + 1. This is a contradiction since we assumed that
P∗ is optimal. Therefore, N ≤ Nused . In addition, since the
number of available files is N thus N ≥ Nused . As a result,
N = Nused = max

(|
∗l |, |
∗r |)+|W P∗
new(u

∗)| and the inequality
is met with equality. In both cases, we conclude that

|W P∗
new(u

∗)| = min
(
ρ̃(u∗),

[
N −max(|
∗l |, |
∗r |)

]+)
.

It follows that

L∗=min
(
αmin(β, K), L∗l + L∗r +

[
N −max(|
∗l |, |
∗r |)

]+)
.

If L∗ = αmin(β, K) the saturated instance associated with
Nsat (α, β, K) is an optimal instance. Otherwise, L∗ <
αmin(β, K), and we have

|W P∗
new(u

∗)| = [
N−max(|
∗l |, |
∗r |)

]+
≤ [N−max(Nsat (αl , βl , K), Nsat (αr , βr ,K))]

+.(10)

We claim that for P∗ to be optimal, P∗l and P∗r have to
be such that max(|
∗l |, |
∗r |) = max(Nsat (αl , βl , K), Nsat (αr ,
βr , K)). To see this we proceed as follows. Note that by the
definition of saturation number, there exist problem instances

4398 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

Fig. 9. Comparison of the proposed lower bound and the cutset bound. (a) Case I: N = 6, K = 2. (b) Case II: N = 6, K = 3. (c) Case III: N = 15, K = 4.
(d) Case IV: N = 64, K = 12.

P ′l (T ′l , αl , βl , L ′l , N ′l , K) and P ′r (T ′r , αr , βr , L ′r , N ′r , K) such
that L ′l = L∗l , L ′r = L∗r , N ′l = Nsat (αl , βl , K) and
N ′r = Nsat (αr , βr , K). W.l.o.g. let assume N ′l ≥ N ′r . By the
Claims 3 and 5 problem instances P ′l and P ′r can be modified
in such a way that β̂ ′l = min(βl , K), β̂ ′r = min(βr , K)
and
′l ⊆
′r . Also, by Claim 4 we can set ∪v∈C′lZ(v) ={Z1, . . . , Z β̂ ′l

} and ∪v∈C′rZ(v) = {Z K−β̂ ′r+1, . . . , Z K }. This

ensures that β̂l = min(βl , K), β̂r = min(βr , K), and β̂ =
min(β, K) hold in the defined problem instance. Now, con-
sider the problem instance P ′ = P(T ′, α, β, L ′, N, K) with
last edge (u′, v ′) where P ′l and P ′r are instances corresponding
to u′l and u′r respectively. The instance P ′ uses N ′l+|W P ′

new(u
′)|

files. If N − N ′l − |W P ′
new(u

′)| ≥ 1, then we are able to apply
Lemma 1 N − N ′l − |W P ′

new(u
′)| times and come up with a

modified version of P ′ so that either L ′ = αmin(β, K) or
N − N ′l − |W P ′

new(u
′)| = 0. The first case cannot happen since

by assumption P∗ is optimal and L ′ ≤ L∗ < αmin(β, K).
Therefore, |W P ′

new(u
′)| = N − N ′l and L ′ = L∗l + L∗r + N − N ′l .

Finally, as L ′ ≤ L∗ and L∗ ≤ L∗l + L∗r +N−N ′l , we conclude
that L ′ = L∗.

Corollary 2: Suppose that there exists an optimal and
atomic problem instance Po(T = (V , A), α, β, Lo, N, K).
Consider problem instances P ′l (α′l , β ′l , L ′l , N, K) and
P ′r (α′r , β ′r , L ′r , N, K) such that α′l + α′r = α and β ′l + β ′r = β
such that N ≥ N ′0 = max(Nsat (α

′
l , β
′
l , K), Nsat (α

′
r , β
′
r , K)).

Then we have

Lo ≥ min
(
αmin(β, K), L ′l + L ′r + N − N ′0)

)
.

Proof: The result follows by applying the arguments in
the proof of Theorem 1, to the problem instance where P∗l
and P∗r are replaced by P ′l and P ′r respectively.

Lemma 2: Consider the class of coded caching systems
where K = 3 and N = 3n for n = 1, 2, 3, For this
class, the achievable scheme in [9] for M ∈ {0, n, 2n, 3n} is
optimal.

Proof: From the achievable scheme in [9] we have
R�(0) ≤ 3, R�(n) ≤ 1, R�(2n) ≤ 1/3, and R�(3n) ≤ 0. It is
easy to see that Nsat (α, 1, 3) = α for any integer α. Then, the
following inequalities hold,

3n R� + M ≥ 3n,
n R� + 3M ≥ 3n, and

2n R� + 2M ≥ 4n.

These inequalities are the result of Corollary 2 for (α, β) =
(α′l , β ′l) = (3n, 1), (α, β) = (α′l , β ′l) = (n, 3) and (α, β) =
(2n, 2) with (α′l , β ′l) = (n, 1) respectively. The first two
inequalities above can also be obtained by using the cutset
bound while the third one cannot. Now, the second inequality
for M = 0 implies that the achievable rate R�(0) ≤ 3 is
optimal. Similarly, the third inequality for M = n implies
that achievable rate R�(n) ≤ 1 is optimal. Finally, the
first inequality can be used to show that achievable rates
R�(2n) ≤ 1/3 and R�(3n) ≤ 0 are optimal.

The following example demonstrates the effectiveness of
Corollary 2.

Example 7: Consider a system with N = 64, K = 12 and
cache size M = 16/3. The cut-set bound for such a system
provides a lower bound R�(M) ≥ 77/27 = 2.852. Now, using
the approach of Theorem 1 for α = 12, β = 8, (αl , βl) =
(αr , βr) = (6, 4) yields 12R� + 8M ≥ min(12× 8, 24+ 24+
64 − Nsat (6, 4, 12)). It can be shown that Nsat (6, 4, 12) =
17 (see Algorithm 4 in Section III-B). Therefore, R�(M) ≥
157/36 = 4.361. This is significantly closer to the achievable
rate of 5.5 (from [9]).

Theorem 1 can be leveraged effectively if it can also yield
the optimal values of αl , βl and αr , βr . However, currently
we do not have an algorithm for picking them in an optimal
manner. Thus, we have to use Corollary 2 with either the exact
value of Nsat (α, β, K) or an upper bound on it. Algorithm 4
in Section III-B is an algorithm to calculate the value of
Nsat (α, β, K). Setting αl = �α/2�, βl = �β/2� in Theorem 1
and using the corresponding values of the saturation numbers,
we can obtain the results plotted in Fig. 9.

A. An Analytic Bound on the Saturation Number

Recall that the saturation number for a given α, β and
K is the minimum value of N such that there exists a
problem instance P(T , α, β, L, N, K) with L = αmin(β, K).
In particular, this implies that if we are able to construct a
problem instance with N ′ files with a lower bound equal to
αmin(β, K), then, Nsat (α, β, K) ≤ N ′. In Algorithm 3, we
create one such problem instance.

The basic idea of Algorithm 3 is as follows. The first part
focuses on the construction of the tree, without labeling the
leaves. For a given α and β, we first initialize a tree that
just consists of a single edge (u∗, v∗). Following this, we

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4399

Algorithm 3 Instance Construction for Upper Bounding
Nsat (α, β, K)
Input: α, β and K .
1: Initialization
2: Let (u∗, v∗) be last edge and set Unew = {u∗}.
3: Set Z(u∗) = {Z1, Z2, . . . , Zmin(β,K)} and b(u∗) = β,

a(u∗) = α.
4: C = ∅ and D = ∅.
5: end Initialization
6: procedure TREE CONSTRUCTION & CACHE NODES

LABELING

7: while Unew is nonempty do
8: Pick u ∈ Unew , create nodes ul and ur , edges (ul , u)

and (ur , u), add them to T0.
9: Set a(ul) = �a(u)/2�, b(ul) = �b(u)/2� and a(ur) =

a(u)− a(ul), b(ur) = b(u)− b(ul).
10: Set Z(ul) and Z(ur) be subsets of Z(u) of

sizes min(b(ul), K) and min(b(ur), K) respec-
tively with minimum intersection.

11: Remove u from Unew .
12: if a(ul)+ b(ul) ≥ 2 then
13: Add ul to Unew .
14: else
15: If b(ul) == 1 add ul to D otherwise to C.
16: end if
17: if a(ur)+ b(ur) ≥ 2 then
18: Add ur to Unew .
19: else
20: If b(ur) == 1 add ur to D otherwise to C.
21: end if
22: end while
23: end procedure
24: procedure DELIVERY NODES LABELING

25: Let D = {v1, . . . , vα}.
26: for r = 1, . . . ,min(β, K) do
27: Pick a node v ∈ C with Z(v) = {Zr } and denote it

by vr+α .
28: end for
29: Let C \ {vα+1, . . . , vα+min(β,K)} =

{vα+min(β,K)+1, . . . , vβ }.
30: for t = 1, . . . , α do
31: for r = 1, . . . ,min(β, K) do
32: dr = (t − 1)min(β, K)+ r .
33: end for
34: for r = min(β, K)+ 1, . . . , K do
35: dr = 1.
36: end for
37: Set D(vt) = Xd1,...,dK

38: end for
39: end procedure
40: procedure MODIFY DELIVERY PHASE SIGNALS

41: Denote current instance by P0(T0, α, β, L0, N0, K).
42: Modify P0(T0, α, β, L0, N0, K) by Claim 5 to obtain

P(T , α, β, L, N̂sat , K).
43: end procedure
Output: N̂sat (α, β, K) = |
(v∗)|, P(T , α, β, L, N̂sat , K).

partition α into two parts αl = �α/2� and αr = α−αl . On the
other hand, β is split into βl = �β/2� and βr = β − βl .
The algorithm, then recursively constructs the left and right
subtrees of u∗. It is important to note that the split in the
(α, β) pair is done in such a manner that each subtree gets the
floor and the ceiling of the one of the quantities. Moreover,
the labeling of the cache node leaves is such that for a given
node u, |Z(ul)∩Z(ur)| is as small as possible. The underlying
reason for such a labeling is to ensure that the condition of
Claim 3 doesn’t hold for any u ∈ T .

Following the construction of the tree, the second phase of
the algorithm labels each of the delivery phase nodes, so that
the computed lower bound is L = αβ. In this step we use
N = αβ files (see the procedure discussed in the proof of
Corollary 1). In the third and final phase of the algorithm we
modify the instance so that for any node u ∈ T , we have that
either
l ⊆
r or
r ⊆
l ; we use Claim 5 to achieve this.
In the beginning all recovered files in the constructed instance
are distinct so that
(ul)∩
(ur) = ∅ for all nodes u. W.l.o.g.
assume that |
(ur)| ≤ |
(ul)|. An application of Claim 5 will
thus cause a significant reduction in the number of files that
are used. The following lemma quantifies this reduction.

Lemma 3: For given α, β and K if β ≤ K then,

Nsat (α, β, K) ≤
⌊

2αβ + α + β
3

⌋
.

Proof: We use Algorithm 3 to generate problem instance
P(T , α, β, L, N̂sat , K) so that L = αβ. By the definition of
the saturation number we have Nsat (α, β, K) ≤ N̂sat hence

we just need to show that N̂sat ≤ 2αβ+α+β
3 .

First, we need to show that L = αβ. By line 32 of the
algorithm the file W(t−1)β+r is recoverable in instance P0
by the pair (D(vt),Z(vα+r)) or equivalently 	(vt , vα+r) =
W(t−1)β+r for 1 ≤ t ≤ α and 1 ≤ r ≤ β. On the other
hand, W(v∗) = ∪αt=1 ∪βr=1 	(vt , vα+r) therefore W(v∗) =
{W1, . . . ,Wαβ }. Recall that W(v∗) = ∪u∈T0 Wnew(u) and
L0 =∑

u∈T0
|Wnew(u)| so we have L0 ≥ |W(v∗)| = αβ. But

L0 ≤ αβ, by Corollary 2, therefore L0 = αβ. In phase III of
the Algorithm (Modify Delivery Phase Signals) using Claim 5,
we have L ≥ L0 and since L ≤ αβ and L0 = αβ thus L = αβ.

W.l.o.g we set left incoming node such that
(ur) ⊆
(ul).
Starting from the root node v∗, we let the set {u0, u1, . . . , ut }
and {w0, . . . , wt−1} to be the left and right incoming nodes
respectively so that ui is topologically higher than u j for i <
j , ut = u∗ and u0 to be a leaf. This is depicted in Fig. 10.
Recall that
(u) = Wnew(u) ∪
(ul) ∪
(ur) and Wnew(u) ∩
(
(ul) ∪
(ur)) = ∅ for any u ∈ T . Therefore, recursively
we have,

N̂sat = |
(v∗)| = |
(ut)|,
= |Wnew(ut)| + |
(ut−1)|,
=

t∑
i=1

|Wnew(ui)|, (11)

where we used Wnew(u0) = ∅ since u0 is a leaf.
In Algorithm 3, a(u) and b(u) denote the number of

delivery phase nodes and the number cache nodes, respec-

4400 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

Fig. 10. Saturation path.

tively in the subtree rooted at u. Note that by definition,
we have

L = |Wnew(ut)| +
∑

u∈Tut−1

|Wnew(u)| +
∑

u∈Twt−1

|Wnew(u)|.

We conclude that
∑

u∈Tut−1
|Wnew(u)| ≤ a(ut−1)b(ut−1)

and
∑

u∈Twt−1
|Wnew(u)| ≤ a(wt−1)b(wt−1) by using

Corollary 2. Similarly, using Claim 6, we have that
|Wnew(ut)| ≤ a(ut−1)b(wt−1) + a(wt−1)b(ut−1). In fact, all
these inequalities are met with equality. This can be seen
as follows. An application of Claim 5 does not change the
lower bound, which implies that L = αβ = a(ut)b(ut). But,
a(ut) = a(ut−1) + a(wt−1) and b(ut) = b(ut−1) + b(wt−1)
so that

L = a(ut−1)b(wt−1)+ a(wt−1)b(ut−1)

+ a(ut−1)b(ut−1)+ a(wt−1)b(wt−1).

An inductive argument can be made to show a similar result
for ui , i = 1, . . . , t − 1.

Using these results and the equality in (11) yields,

αβ = L,

=
∑
u∈T
|Wnew(u)|,

=
t∑

i=0

|Wnew(ui)| +
t−1∑
i=0

∑
u∈Twi

|Wnew(u)|,

= N̂sat +
t−1∑
i=0

(a(wi)b(wi)) ,

⇒ N̂sat = αβ −
t−1∑
i=0

a(wi)b(wi). (12)

Considering our setting for a(u) and b(u) in the line 9 of
Algorithm 3 we have

a(ui+1) = a(ui)+ a(wi), b(ui+1) = b(ui)+ b(wi), (13)

for 0 ≤ i ≤ t − 1 and either (a(ui), b(ui)) =
(�a(ui+1)/2�, �b(ui+1)/2�) or (a(ui), b(ui)) =
(�a(ui+1)/2�, �b(ui+1)/2�). In any case using eq. (13)
we have

a(ui) ≤ �a(ui+1)/2�,
≤ a(ui+1)+ 1

2
,

= a(ui)+ a(wi)+ 1

2
,

⇒ a(ui) ≤ a(wi)+ 1.

By a similar argument we have b(ui) ≤ b(wi) + 1. Using
eq. (13) recursively, it is easy to see that α = a(u0) +∑t−1

i=0 a(wi) and β = b(u0) +∑t−1
i=0 b(wi). Therefore, using

eq. (12) and (11),

N̂sat = αβ −
t−1∑
i=0

a(wi)b(wi),

=
t−1∑
i=0

(a(ui)b(wi)+ a(wi)b(ui)) ,

≤
t−1∑
i=0

([a(wi)+ 1]b(wi)+ a(wi)[b(wi)+ 1]) ,

≤
t−1∑
i=0

(2a(wi)b(wi)+ a(wi)+ b(wi)) ,

≤ α + β + 2
t−1∑
i=0

a(wi)b(wi),

⇒
t−1∑
i=0

a(wi)b(wi) ≥ αβ − α − β
3

.

Finally, using the above inequality and eq. (12), we have

Nsat (α, β, K) ≤ N̂sat ,

= αβ −
t−1∑
i=0

α(wi)β(wi),

≤ αβ − αβ − α − β
3

= 2αβ + α + β
3

.

Furthermore as Nsat (α, β, K) is an integer we conclude that

Nsat (α, β, K) ≤
⌊

2αβ + α + β
3

⌋
.

The aforementioned upper bound on the saturation number
is tight. To see this, let consider β = 1. It is easy to
see that Nsat (α, 1, K) = α and using Lemma 3 we have
Nsat ≤ �α + 1/3� = α.

B. Best Lower Bound for a Fixed M

Theorem 1 and Corollary 2 characterize optimal and near-
optimal problem instances for fixed α and β. In general, the
best lower bound on the rate is obtained when we optimize
over a range of choices for α and β. In our approach we
restrict β to be less than 2K , i.e., β < 2K . Our next result
shows that an atomic problem instance with β < 2K has
α < 2N . As a result, when β < 2K the range of α, β pairs
that we need to consider is limited.

Lemma 4: Any problem instance P(T , α, β, L, N, K) with
β < 2K and α ≥ 2N is non-atomic.

Proof: We let (u∗, v∗) to be the last edge in T . If α ≥ 2N
then either αl ≥ N or αr ≥ N or both. W.l.o.g. we assume that
αl ≥ N . We note that βl < 2K as β < 2K . Claim 7 below
shows that Nsat (αl , βl , K) ≥ N for βl < 2K . Therefore,
N ≤ N0 = max{Nsat (αl , βl , K), Nsat (αr , βr , K)} and

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4401

from (10) we have |Wnew(u∗)| = 0. This implies that the
problem is non-atomic.

Claim 7: Nsat (α, β, K) ≥ α for any β < 2K .
Proof: We use an inductive argument. Clearly,

Nsat (1, β ′, K) ≥ 1 for nonzero β ′ since at least one file must
be used. Furthermore, by inspection we have Nsat (α

′, 1, K) =
α′. Therefore, the base cases are established. Now, we assume
that Nsat (α

′, β ′, K) ≥ α′ for all α′ ≤ α and β ′ ≤ β < 2K .
We will first show that Nsat (α, β + 1, K) ≥ α. Let

P(T , α, β + 1, L, Ns , K) be the problem instance associated
with Nsat (α, β + 1, K) so that Ns = Nsat (α, β + 1, K) and
L = αmin(β+ 1, K). We also let (u∗, v∗) to be the last edge
in T and Pl and Pr to be the problem instances corresponding
to Tu∗(l) and Tu∗(r) respectively. By Claim 6, |Wnew(u∗)| ≤
ρ(u∗) = αl [min(βr , K − βl)]+ + αr [min(βl , K − βr)]+.
We claim that |Wnew(u∗)| = ρ(u∗), Ll = αl min(βl, K), and
Lr = αr min(βr , K) for problem instance P . This follows
from the fact that L = |Wnew(u∗)|+Ll+Lr = αmin(β+1, K)
and the limits on |Wnew(u∗)|, Ll , and Lr discussed in Claim 6
and Corollary 1. The problem instances Pl and Pr are both
saturated instances and each uses the minimum number of
files. If this is not the case, replacing them in P with problem
instances associated with Nsat (αl , βl , K) and Nsat (αr , βr , K)
will result in a problem instance P ′′(T ′′, α, β, L, N ′′s , K) with
N ′′s < Ns . But this contradicts our assumption that P is
a problem instance associated with Nsat (α, β + 1, K). Thus
we have |
(v∗l , v∗l)| = Nsat (αl , βl , K) and |
(v∗r , v∗r)| =
Nsat (αr , βr , K). Then

Nsat (α, β + 1, K)

= |
(v∗, v∗)|,
= |Wnew(u

∗) ∪
(u∗l , u∗l) ∪
(u∗r , u∗r)|,
= |Wnew(u

∗)| + |
(u∗l , u∗l) ∪
(u∗r , u∗r)|,
≥ |Wnew(u

∗)| +max (Nsat (αl , βl , K), Nsat (αr , βr , K)) ,

= ρ(u∗)+max (Nsat (αl , βl , K), Nsat (αr , βr , K)) . (14)

We note that we are guaranteed that either [min(βr , K −
βl)]+ ≥ 1 or [min(βl, K−βr)]+ ≥ 1 or both must hold as β+
1 < 2K . Thus, we can assert that ρ(u∗) ≥ min(αl , αr). Now,
if we have βl > 0 and βr > 0, then using the induction hypoth-
esis, we have max (Nsat (αl , βl , K), Nsat (αr , βr , K)) ≥
max(αl , αr) so that Nsat (α, β+1, K) ≥ α. On the other hand
if w.l.o.g. βr = 0, we have from eq. (14) that

Nsat (α, β + 1, K)

≥ (α − αl)min(β + 1, K)+ Nsat (αl , β + 1, K),

≥ α − αl + Nsat (αl , β + 1, K).

One can argue recursively by considering the left and right
branches of the instance associated with Nsat (αl , β + 1, K)
and arrive at the required result.

Next, we show that Nsat (α + 1, β, K) ≥ α. In this case,
as before let (u∗, v∗) be the last node of the instance and
let Pl and Pr to be the problem instances associated with
Tu∗(l) and Tu∗(r) respectively. Now, if αl > 0 and αr > 0,
then the induction hypothesis can be applied to conclude that
max (Nsat (αl , βl , K), Nsat (αr , βr , K)) ≥ max(αl , αr) so that

the result holds. On the other hand, if w.l.o.g. αr = 0, then
we have from eq. (14) that

Nsat (α + 1, β, K) ≥ Nsat (α + 1, βl , K),

where βl < β. One can recursively argue by examining the left
and right branches of the instance associated with Nsat (αl +
1, βl, K) and arrive at the required result, by using the fact
that Nsat (α, 1, K) ≥ α for any α.

The results for Nsat (α, β + 1, K) and Nsat (α + 1, β, K)
can be used to show the corresponding result for Nsat (α + 1,
β + 1, K) in a similar manner.

Thus far we have shown that the range of α is limited to
α < 2N when β is limited to β < 2K . In fact, β ≥ 2K is
a valid choice, though in our experiments it does not appear
to yield any better lower bounds on the rate than the ones we
have right now. If these choices of β are useful, they are likely
to yield better lower bounds only in the regime when M is
very small. The reason for this behavior is that for a fixed α
the saturation number Nsat (α, β, K) takes maximum value at
β = K and starts decreasing once β > K .

Although Algorithm 3 is used to get an analytical upper
bound on the saturation number, the exact saturation num-
ber Nsat (α, β, K) is recursively computable. It is not hard
to see that the inequality in (14) is met with equality
for a problem instance P(T , α, β, L, Ns , K) associated with
the saturation number Nsat (α, β, K). This is a consequence
of the fact that either
l ⊆
r or
r ⊆
l . For a
fixed α, β, and K , there are limited possibilities for 0 ≤
αl ≤ α and 0 ≤ βl ≤ β. Corresponding to each possi-
ble (αl , βl) we can construct a saturated problem instance.
This also includes the problem instance associated with the
saturation number Nsat (α, β, K). Therefore, the following
recurrence holds

Nsat (α, β, K)

= min
(αl ,βl)∈I(α,β)

{
ρ(αl , βl , α, β)

+ max
(
Nsat (αl , βl , K), Nsat (α − αl , β − βl , K)

)}
,

where ρ(αl , βl, α, β) = αl [min(β − βl , K − βl)]+ + (α −
αl)[min(βl , K + βl − β)]+ and I(α, β) = {(a, b) : 0 ≤ a ≤
α, 0 ≤ b ≤ β} \ {(0, 0), (α, β)}. We note that (αl , βl) ∈
{(0, 0), (α, β)} are trivial and we ignore those cases. Using
this recurrence, Algorithm 4 computes the saturation number
in time which is polynomial in the (α, β) pair (see the analysis
in Appendix E).

Thus, the overall process of computing the lower bound
on the rate for a fixed value of M proceeds as follows. We
consider 1 ≤ α ≤ 2N and 1 ≤ β ≤ 2K − 1. For each
(α, β) in this range, we consider all possible (αl , βl) and
(αr , βr) pairs and compute the lower bound on αR� + βM .
This procedure requires us to precompute Nsat (a, b, K) for
1 ≤ a ≤ 2N and 1 ≤ b ≤ 2K . The precomputation step has
time-complexity O(N2 K 2) (see Appendix E). After this step,
we start computing the lower bounds over all possible (α, β)
pairs. For each value of (α, β), and for a specific (αl , βl) and
(αr , βr) such that αl+αr = α and βl+βr = β, the complexity
of computing the lower bound is O(1) since we can use the

4402 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

Algorithm 4 Computing Saturation Number Nsat (α, β, K)
Input: α, β and K .
Initialization:
1: For all a ∈ {0, . . . , α} and b ∈ {0, . . . , β} set

Nsat (a, 0, K) = 0, Nsat (0, b, K) = 0,

Nsat (a, 1, K) = a, Nsat (1, b, K) = min(b, K).

Main loop:
2: for a = 2; a ≤ α; a ++ do
3: for b = 2; b ≤ β; b ++ do
4:

Nsat (a, b, K)

= min
(ã,b̃)∈I(a,b)

{
ρ(ã, b̃, a, b)+max

(
Nsat (ã, b̃, K),

Nsat (a−ã, b−b̃, K)
)}

5: end for
6: end for

Output: Nsat (α, β, K)

characterization of Theorem 1 and the saturation numbers are
precomputed. Thus, for a value of (α, β), the complexity of
computing the bound is O(αβ) ≤ O(N K). As, we consider a
total of N K values of (α, β) in total, the time-complexity of
our procedure is O(N2 K 2).

IV. MULTIPLICATIVE GAP BETWEEN

UPPER AND LOWER BOUNDS

We now show that for any set of problem parameters, our
proposed lower bound and the achievable rate of [9] in eq. (2)
are within a factor of four, i.e., we show the following
result.

Theorem 2: Consider a coded caching system with N files
and K users each with a normalized cache size M . Then,

γ (M) = Rc(M)

R�(M)
≤ 4,

for 0 ≤ M ≤ N .
The key idea in proving this result is to exploit the analytical

upper bound on the saturation number Nsat (α, β, K) proposed
in Section III-A. For a given N and K , we consider three
distinct regions of M . For each range, an appropriate (α, β)
pair allows us to obtain a lower bound on the rate that is within
a factor of four of the achievable rate.

Proof: We use Corollary 2 with the 2α and 2β, so that P ′l
and P ′r have parameters α and β. This gives us the following
lower bound.

2αR�(M)+2βM≥min
(
2αmin(2β, K), 2αβ + [N−N0]+

)
,

Moreover, we restrict 2β ≤ K so that,

2αR�(M)+ 2βM ≥ min
(
4αβ, 2αβ + [N −N0]+

)
�⇒ R�(M) ≥ min

(
2β, β+ [N−N0]+

2α

)
− β
α

M. (15)

Our first observation is that for min(N, K) ≤ 4, the
bound is easily seen to be true. Towards this end, by setting
α = N, β = 1 in (15), we obtain

R�(M) ≥ 1− M

N
.

where we used Nsat (N, 1, K) = N . Furthermore, from
eq. (2),

Rc(M) ≤ min(N, K) (1− M/N) ,

This means that γ (M) = min(N, K) ≤ 4 for
min(N, K) ≤ 4.

Thus, in the subsequent discussion, we only consider
min(N, K) ≥ 5. As in [9], we divide the M-axis to three
separated regions. For given M , we explore the space of (α, β)
pairs to obtain an appropriate lower bound that allows us to
show the multiplicative gap of four.

A. Region I: 0 ≤ M ≤ max(1, N/K)

First, we consider the range 0 ≤ M ≤ 1. In eq. (15) we
set α = 1, β = �min(N, K)/2�. By such a setting we have
2β ≤ min(N, K) ≤ K and N ≥ Nsat (1, β, K) = β. Therefore
for M ≤ 1,

R�(M) ≥ min

(
2β,

N + β
2

)
− βM

(a)≥ min

(
β,

N − β
2

)

(b)≥ min

(
min(N, K) − 1

2
,

N −min(N, K)/2

2

)

(c)≥ min

(
min(N, K) − 1

2
,

min(N, K)

4

)

(d)≥ min(N, K)

4

≥ min(N, K)(1 − M/N)

4
≥ Rc(M)/4.

Here, (a) holds since M ≤ 1, (b) holds since (min(N, K) −
1)/2 ≤ β ≤ min(N, K)/2, (c) holds since N ≥ min(N, K),
and (d) holds since min(N, K) ≥ 2.

Next, consider the range M ∈ [1, N/K]. Note that we only
need to consider the scenario where N ≥ K . The achievable
rate Rc(M) in this interval is upper bounded by the convex
combination of the rates Rc(0) and Rc(N/K) so that

Rc(M) ≤ λRc(N/K) + (1− λ)Rc(0) = K (1− λ/2)− λ/2,

where λ = K M/N . Now, we set α = �N/K �, β = �K/2�
so that αβ ≤ (N/K + 1)K/2 = N/2 + K/2 ≤ N . As,
Nsat (α, β, K) ≤ αβ, this means that N ≥ Nsat (α, β, K).
In addition, note that 2β ≤ K . Therefore, we can use eq. (15)

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4403

to obtain

R�(M)

≥ min

{
2β, β + N − Nsat (α, β, K)

2α

}
− β
α

M,

(a)≥ min

{
2β

(
1− M

2α

)
,

2β

3
+ N − 2βM

2α
− β

6α
− 1

6

}
,

(b)≥ min

{
(K − 1)

(
1− K M

2N

)
,
β

2
+ N − 2βM

4N/K
− 1

6

}
,

≥ min

{
K

2

(
1− λ

2

)
,
β

2
(1− λ)+ K

4
− 1

6

}
,

(c)≥ min

{
Rc(M)

2
,

K

2

(
1− λ

2

)
− (1− λ)

4
− 1

6

}
,

(d)≥ min

{
Rc(M)

2
,

Rc(M)

4
+ (K − 3)

4

(
1− λ

2

)
+ 1

3

}
,

(e)≥ Rc(M)/4, (16)

where in (a) we used Lemma 3 to bound Nsat (α, β, K), in
(b) we used N − 2βM ≥ 0, 1 ≤ α ≤ N/K + 1 ≤ 2N/K ,
(K − 1)/2 ≤ β, and in (c) we used β ≥ (K − 1)/2, λ =
K M/N and the expression for the upper bound on Rc(M)
above. Next, (d) holds because of the achievable rate bound
and (e) holds since min(N, K) ≥ 5. Therefore, γ (M) ≤ 4 for
M ∈ [1, N/K] and N ≥ K . Thus, we conclude that we have
γ (M) ≤ 4 for M ∈ [0,max(1, N/K)].

B. Region II: max(1, N/K) < M ≤ N/2

For M such that max(N/K , 1) < M ≤ N/2 we define
t0 = �K M/N� so that t0 N/K < M ≤ (t0 + 1)N/K . Since
M ≥ N/K thus t0 ≥ 1. Using eq. (2), it turns out that,

Rc(M) ≤ Rc(t0 N/K),

= K

t0 + 1
− t0

t0 + 1
,

(a)≤ K

K M/N
− 1

2
,

= N

M
− 1

2
,

where (a) holds since t0 + 1 ≥ K M/N and t0 ≥ 1.
Now, consider setting α = �2M� and β = �N/2M�. With

this setting we have α ≥ 2 (since M ≥ 1), β ≥ 1 (since
M ≤ N/2), and β ≤ N/2M < K/2 (since M > N/K). Fur-
thermore, since αβ ≤ 2M×N/2M = N and Nsat (α, β, K) ≤
αβ therefore N ≥ Nsat (α, β, K). This together with 2β ≤ K
implies that such a setting allows the usage of (15). Therefore,
using Lemma 3 to bound Nsat (α, β, K), we have

R�(M) ≥ min

{
2β,

2β

3
+ N

2α
− β

6α
− 1

6

}
− β
α

M.

We claim that 2β ≥ 2β/3 + N/2α − β/6α − 1/6 or
equivalently 8αβ + α+ β ≥ 3N . This can be seen as follows.
When, N/4 < M ≤ N/2 we have α > N/2, β = 1, so
that this holds. On the other hand when max(1, N/K) <
M ≤ N/4, we have α ≥ 2M − 1, β ≥ N/2M − 1, so
that 8αβ + α + β ≥ 8N − 7(N/2M + 2M) + 6. It can
been seen that N/2M + 2M ≤ N/2 + 2 for 1 ≤ M ≤ N/4

therefore 8αβ + α + β ≥ 9N/2 − 8 ≥ 3N for N ≥ 6. For
N = 5, the claim trivially holds since α ≥ 2, β ≥ 1 so that
8αβ + α + β ≥ 19 ≥ 3× N = 15.

Thus, we have

R�(M) ≥ 2β

3
+ N − 2βM

2α
− β

6α
− 1

6
,

(a)≥ 7β

12
+ N − 2βM

4M
− 1

6
,

= N

4M
+ β

12
− 1

6
,

(b)≥ N

4M
− 1

12
,

≥ N

4M
− 1

8

≥ Rc(M)

4
,

where in (a) we used N−2βM ≥ 0, α ≥ 2 and α ≤ 2M and in
(b) we used β ≥ 1. Eventually, γ (M) ≤ 4 for max(N/K , 1) ≤
M ≤ N/2.

C. Region III: N/2 < M ≤ N

Let t0 = �K/2� so that M ≥ t0 N/K for M ∈ (N/2, N]. For
any M ∈ (N/2, N] the convex combination of rate Rc(t0 N/K)
and Rc(N) gives us Rc(M) ≤ λRc(t0 N/K)+(1−λ)Rc(N) =
λRc(t0 N/K) where M = λt0 N/K + (1−λ)N or equivalently
λ = (1−M/N)/(1− t0/K). According to this and eq. (2) we
observe that,

Rc(M) ≤ λRc(t0 N/K),

= (1− M/N)

(1− t0/K)

(K − t0)

(t0 + 1)
,

= K (1− M/N)

(1+ t0)
,

(a)≤ K (1− M/N)

K/2
,

= 2(1− M/N),

where (a) holds since 1+ t0 = 1+ �K/2� ≥ K/2.
Now if we set α = N and β = 1 in (15) we obtain

R�(M) ≥ 1− M/N

≥ Rc(M)

2
.

This implies that γ (M) ≤ 2 ≤ 4 for M ∈ [N/2, N] and
concludes the proof.

V. LOWER BOUNDS ON THE OTHER VARIANTS

OF THE CODED CACHING PROBLEM

In addition to the original coded caching problem there
are many variants of the problem including coded caching
with multiple requests [22], decentralized coded caching [14]
and caching in device to device wireless networks [23].
Our proposed strategy applies with minor changes for these
problems.

4404 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

A. Caching in Device to Device Wireless Networks

Wireless device to device (D2D) networks where commu-
nication is limited to be single-hop are studied in [23]. There
are K users who are the nodes of the network. Each user
has a cache of size M and N files are stored across the
different user caches. Thus, in this setting we necessarily
have K M ≥ N . As in the coded caching problem there
are placement and delivery phases. In the placement phase
the caches are populated from a server; this phase does
not depend on the user demands. The server then leaves
the network. We let Zi represent the cache content of the
i -th user. In the delivery phase each user requests a file and
the remaining users are informed about this request. Based on
the requests, each user broadcasts a signal so that all demands

can be satisfied. We denote by X (i)d1,...,dK
the signal that is

broadcasted in the delivery phase by the i -th user when the
j -th user requests file d j ∈ [N] for 1 ≤ j ≤ K . The delivery
signal sent by each user is a function of its cache content
so that H (X (i)d1,...,dK

|Zi) = 0. We also denote by Xd1,...,dK

the set of signals sent by all the users, i.e., Xd1,...,dK =
{X (1)d1,...,dK

, . . . , X (K)d1,...,dK
}. The rate of the signal that the i -th

user sends in the delivery phase is denoted by Ri,d1,...,dK (M).
We are interested in lower bounding the worst case rate that
denoted by R�(M) = K maxi,d1,...,dk Ri,d1,...,dK (M).

The cut-set technique and Han’s inequality have been stud-
ied in [23] and [24] respectively to establish lower bounds
on R�(M). The multiplicative gap established in [23] depends
on M and is not constant, whereas [24] shows a gap of at
most 8.

The D2D setting is almost exactly the same as the coded
caching setting studied in our work. Our technique for obtain-
ing lower bounds is applicable here with essentially no change
and we can use Theorem 1 and its corollary. Furthermore,
since H (X (i)d1,...,dK

|Zi) = 0 we can get lower bounds that
are somewhat tighter. By treating Xd1,...,dK as the delivery
signal of the original coded caching problem, we can apply
our lower bound to show that the multiplicative gap between
the achievable rate in [23] and our proposed lower bounds is
at most 4. The proof is quite similar to that of Theorem 2 and
is omitted.

B. Coded Caching With Multiple Requests

Coded caching with multiple requests is variation of the
original problem in which each user requests l files from
the server in the delivery phase. A straightforward achievable
scheme in this setting is to apply the scheme of [9] l times.
This problem is investigated in [22] where a new achievable
scheme is proposed based on multiple groupcast index coding.
Furthermore, [22] introduces a cut-set type lower bound and
shows that their scheme is within a multiplicative factor of 18
of the lower bound. In contrast, using our approach we can
demonstrate a multiplicative gap of 4 for this problem as well.

In this setting the only difference with respect to the original
problem is that from a cache signal Zi and delivery signal
Xd1,...,dK one can recover up to l distinct files. Thus, di is
a vector of size l containing information about the l files

requested by i -th user. Therefore, all statements we presented
for the original problem are applicable here, bearing in mind
that Rec(Zi , Xd1,...,dK) can be as large as l. For instance, an
extension of eq. (8) gives us L ≤ lαmin(β, K). Similarly, the
saturation number Nsat (α, β, K , l) is defined as the minimum
N ′ among all problem instances P(T , α, β, L, N ′, K , l) with
L = lαmin(K , β). It is easy to verify that Nsat (α, β, K , l) ≤
lαmin(β, K) in a similar way. The following claim can be
shown (we omit the proof as it is very similar to the previous
discussion).

Claim 8: Consider a coded caching system with a server
containing N files and K users. Each user has a cache
of size M and demands l files in the delivery phase. The
following lower bound holds for N ≥ N0 where N0 =
Nsat (α, β, K , l),

αR�(M)+ βM

≥ min
{
2lαmin(β, K), lαmin(β, K)+ (N − N0)/2)

}
.

Similarly, an extension of the Lemma 3 holds so that
Nsat (α, β, K , l) ≤ l(2αβ + α + β)/3 for β ≤ K . Exploiting
this upper bound and Claim 8, we are able to show that the
multiplicative gap of the straightforward achievable scheme
and our lower bound is at most 4. Let Rl

c(M) = l Rc(M)
where Rc(M) is defined in eq. (2).

Theorem 3: Consider a coded caching system with a server
containing N files and K users. Each user requests l files, and
has a cache of size 0 ≤ M ≤ N . Then

Rl
c(M)

R�(M)
≤ 4.

Proof: We divide the M axis into three regions, 0 ≤
M ≤ max(l, N/K), max(l, N/K) ≤ M ≤ N/2, and N/2 ≤
M ≤ N . In each region we show Rl

c(M)/R�(M) ≤ 4 for
any N and K . In the following proof, M = l plays the same
role as M = 1 in proof of Theorem 2. Before embarking on
the proof, we note that we only need to analyze the gap for
min(N, l K) ≥ 5. Note that the lower bounds of the original
problem are also valid here. Indeed, if each user requests the
same file l times (instead of requesting l distinct files) the
problem will be equivalent to the original one. Now, in (15)
if we set α = N and β = 1 then we get N R� + M ≥ N , or
equivalently R�(M) ≥ (1−M/N), which is applicable to the
multiple request problem. Since Rl

c(M) ≤ min(N, l K)(1 −
M/N), therefore Rl

c(M)/R�(M) ≤ 4 for min(N, l K) ≤ 4.
1) Region I: 0 ≤ M ≤ max(l, N/K): For 0 ≤ M ≤

max(l, N/K), we first show that the result holds for M ≤ l.
Since we separately analyze the gap for M ≥ N/2 we assume
l ≤ N/2 so that M ≤ max(l, N/K) ≤ N/2. We use result of
the Claim 8 with setting α = 1 and β = �min(N/2l, K/2)�
where β ≥ 1 from l ≤ N/2. Following the exact same steps
as in Section IV-A for M ≤ 1, it turns out that R�(M) ≥
min(N, l K)/4 ≥ Rl

c(M)/4 for M ≤ l.
Now, we assume that l ≤ M ≤ max(l, N/K) which is

nonempty if N/K ≥ l. Therefore, we only need to analyze
the gap for N ≥ l K and l ≤ M ≤ N/K . In this range
of M the convex combination of M = 0 and M = N/K
is achievable so that Rl

c(M) ≤ λRl
c(N/K) + (1 − λ)Rl

c(0).
From Rl

c(0) = l K and Rl
c(N/K) = l(K − 1)/2 we have

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4405

Rl
c(M) ≤ l K (1 − λ/2) − lλ/2 where λ = K M/N . By

setting α = �N/ l K � and β = �K/2�, we have αβ ≤
αK/2 ≤ N/2l + K/2 ≤ N/ l (from l K ≤ N) and that
Nsat (α, β, K , l) ≤ lαβ ≤ N . This ensures that the setting
is valid for using Claim 8. According to Claim 8 for such a
setting we have,

R∗(M)

≥ min

(
2lβ, lβ + N − Nsat (α, β, K , l)

2α

)
− βM

α
,

(a)≥ min

(
l K

2

(
1− λ

2

)
,

l K (1− λ/2)
2

− l(1− λ)
4

− l

6

)
,

(b)≥ min

(
Rc(M)

2
,

l K (1− λ/2)
4

+ l(1− λ/2)
2

− l(5− 3λ)

12

)
,

= min

(
Rc(M)

2
,

l K (1− λ/2)
4

+ l

12

)
,

≥ min

(
Rc(M)

2
,

Rc(M)

4

)
≥ Rc(M)

4
,

where inequality (a) can be obtained by making the same
argument as we made in the first five lines of eq. (16) and
(b) from K ≥ 2.

2) Region II: max(l, N/K) ≤ M ≤ N/2: In the first
step, we try to get an upper bound on the achievable rate.
Letting t0 = �K M/N� and following the argument we made
in Section IV-B gives us Rl

c(M) ≤ l Rc(M) ≤ l (N/M − 1/2)
for M in this range. Next, by setting α = �2M/ l� and
β = �N/2M� we have Nsat (α, β, K , l) ≤ lαβ ≤ N and
β ≤ N/2M ≤ K/2 (since M ≥ N/K) which imply that
the constraints of the Claim 8 are satisfied. Therefore,

R� ≥ min

(
2lβ, lβ + N − Nsat (α, β, K , l)

2α

)
− βM

α
,

(a)≥ min

(
2lβ

(
1− M

2lα

)
,

7lβ

12
+ N − 2βM

2α
− l

6

)
,

(b)≥ min

(
2lβ

(
1− M

2M

)
,

7lβ

12
+ N − 2βM

4M/ l
− l

6

)
,

(c)≥ min

(
Nl

4M
,

Nl

4M
− l

12

)
,

≥ Rl
c(M)/4,

where in (a) we used upper bound on Nsat (α, β, K , l) and
that β/α ≤ β/2 (from α ≥ 2), in (b) we used N − 2βM ≥ 0,
α ≤ 2M/ l, and α ≥ 2M/ l − 1 ≥ M/ l (from M ≤ l). In (c)
we used β ≥ K/4 (for K ≥ 2) and β ≥ 1 (from M ≤ N/2).

3) Region III: N/2 ≤ M ≤ N: Using the same argument
we made in Section IV-C the achievable rate is bounded by
Rl

c(M) ≤ l Rc(M) ≤ 2l (1− M/N). According to Claim 8
by setting α = �N/ l� and β = 1 one may not recover all
N files since αl ≤ N , but if we increase α to �N/ l� then
all files will be recovered. Therefore αR�(M) + M ≥ N or
equivalently R�(M) ≥ (N − M)/α. From N − M ≥ 0 and
that α ≤ N/ l + 1 ≤ 2N/ l (since l ≤ N) it turns out that
R�(M) ≥ l(1−M/N)/2 ≥ 4Rl

c(M) for N/2 ≤ M ≤ N . This
concludes the proof.

C. Decentralized Coded Caching

In the original coded caching problem the placement phase
is managed by a central server. However, in many scenarios
such coordinated placement phase may be impractical. Instead,
a decentralized placement phase was investigated in [14]
where the users cache random subsets of the bits of each
file while respecting the cache size constraint. Even in this
setting a multiplicative gap of 12 to the cut-set lower bound
was obtained. Note that the lower bounds established for the
centralized coded caching problem are also applicable to the
decentralized case. By similar techniques to those used in
proof of Theorem 2 we can establish a multiplicative gap of 4.
The proof is omitted as it is quite similar.

VI. COMPARISON WITH EXISTING RESULTS

Lower bounds on the coding caching rate have been pro-
posed in independent work as well. In this section we compare
our lower bounds with other approaches.

A. Comparison With Cutset Bound

Our first observation is that the cutset bound in [9] is a
special case of the bound in eq. (9). In particular, suppose that
α = �N/s�, β = s for s = 1, . . . ,min(N, K). In this case,
we have αβ ≤ N . Thus, it is easy to construct a problem
instance where L = αβ (see Corollary 1). This also follows
from observing that Nsat (α, β, K) ≤ αβ.

Our bound allows us to explore a larger range of (α, β)
pairs that in turn lead to better lower bounds on R�. Suppose
that for a coded caching system with N files and K users, we
first apply the cutset bound with certain α1 and β1 such that
α1β1 < N . This would result in the inequality

α1 R� + β1M ≥ α1β1.

However, our approach can do strictly better. To see this note
that α1β1 < N implies that Nsat (α1, β1, K) < N . Now, using
Corollary 2 we can instead attempt to lower bound 2α1 R� +
2β1M and obtain the following inequality.

2α1 R� + 2β1M

≥ min (4α1β1, 2α1β1 + N − Nsat (α1, β1, K))

�⇒ α1 R� + β1 M

≥ min (2α1β1, α1β1 + (N − Nsat (α1, β1, K))/2) ,

which is strictly better than the cutset bound since
N − Nsat (α1, β1, K) > 0.

Example 8: Consider a system containing a server with four
files and three users, N = 4 and K = 3. The cutset bounds
corresponding to the given system are

4R� + M ≥ 4,

2R� + 2M ≥ 4, and

R� + 3M ≥ 3.

A simple calculation shows that if M = 1, the above
inequalities, yield the lower bound R� ≥ 1.

Now, consider the second bound, 2R�+2M ≥ 4 and instead
attempt to obtain a lower bound on 4R� + 4M . In this case it

4406 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

can be verified that Nsat (2, 2, 3) = 3 < N . Using Corollary 2,
this results in the lower bound L∗ ≥ min(4× 3, 2× 4 + 4 −
Nsat (2, 2, 3)) = 9. Thus we can conclude R� + M ≥ 2.25
which is better than the cutset bound R�+M ≥ 2. Moreover,
this inequality also yields a better lower bound R� ≥ 1.25.

B. Comparison With Lower Bound of [10]

Sengupta et al. [10] use Han’s inequality [35, Th. 17.6.1]
to establish the following lower bounds on the coded caching
problem.

αR�(M)+ βM ≥ N − μ

μ+ β [N − αβ]
+ − [N − αK]+,

(17)

where μ = min(� N−αβ
α �, K − β), β ∈ {1, . . . , K } and α ∈

{1, . . . , � N
β �}. This bound also provides more flexibility in the

choice of α as compared to the cutset bound.
An analytical comparison between our bound and the bound

in inequality (17) is hard, especially since a priori in all these
bounds, for a given M , it is unclear which particular (α, β) pair
gives the best lower bound. Thus, in the discussion below we
attempt to analytically compare the bounds for given (α, β).
We also present a numerical comparison in Section VI-E. The
following conclusions can be drawn.
(a) Our bound is superior, when 1/α+1/β ≤ 0.4, i.e., when

the values of α and β are large enough. Note that the
best lower bounds on R�(M) for systems with N and K
reasonably large are obtained for higher values of α and
β. Thus, for most parameter ranges our bounds are better.

(b) The bound in [10] is better when α = 1 and N ≤ K .
This in turn means that their corresponding lower bound
for small values of M is better than ours.

(c) We can demonstrate that our proposed lower bound is
within a factor of four of the achievable rate, whereas
[10] only demonstrates a multiplicative gap of eight.

In the remainder of this discussion we assume that α ≥ 2
and show these claims. Let L∗ denote the value of our lower
bound and let L H denote the lower bound of [10].

Case 1 (αβ > N): Note that α ≤ �N/β� in inequality
(17). Furthermore, α ≥ 2 implies that N ≥ β. Thus, we can
conclude that αβ ≤ �N/β�β ≤ 2N . Now, we use Corollary 2
to compare the bounds. Specifically, set αl = �α/2�, βl =
�β/2�, αr = �α/2� and βr = �β/2�. This implies that

max(αlβl, αrβr) ≤ αβ

2
≤ N.

Thus, we obtain L∗ = min (αβ, αlβl + αrβr + N − N0).
Note that

N0 = max (Nsat (αl , βl , K), Nsat (αr , βr , K)) ,

≤ max(αlβl, αrβr) ≤ N,

using the arguments made above. Thus,

L∗ = min{αβ, αlβl + αrβr + N − N0}
≥ min{αβ, αlβl + αrβr + N −max (αlβl, αrβr)}
= min{αβ,min (αlβl , αrβr)+ N}
> N.

On the other hand note that L H is at most N . Thus, our bound
is strictly better.

Case 2(a) (αβ ≤ αK ≤ N): As N ≥ αβ ≥ Nsat (α, β, K)
we use (15) to obtain

L∗ = min (αmin(K , 2β), αβ + (N − N0)/2) .

The corresponding bound L H is obtained by setting
μ = K − β.

L H = αK − (1− β/K)(N − αβ)
= αβ(1+1/x−x)−(1−x)N, (where 0 ≤ x=β/K ≤ 1)

≤ αβ(2− x), (since, N ≥ αK = αβ/x).

Thus, we conclude that L H ≤ min(αK , αβ(2 − x)) ≤
αmin(K , 2β). As a result, we only need to examine whether
αβ + (N − N0)/2 ≥ L H . Now, using the fact that N0 ≤
(2αβ + α + β)/3, we have that L∗ ≥ L H when

2αβ/3+ N/2 − (α + β)/6 ≥ αβ(1+ 1/x − x)− (1− x)N

�⇒ (3/2− x)N − (1/x + 1/3− x)αβ − (α + β)/6 ≥ 0.

(18)

As N ≥ αK = αβ/x , inequality (18) certainly holds if

(1/2x + x − 4/3)αβ − (α + β)/6 ≥ 0.

It can be verified that 1/2x+ x −4/3 ≥ √2−4/3 ≥ 1/15 for
0 ≤ x ≤ 1, so that the above inequality will definitely hold if
0.4 ≥ 1/α + 1/β which is the case for α, β ≥ 5.

Case 2(b) (αβ ≤ N < αK): In this case μ = �N/α − β�,
so that

L H ≤ N − (1− αβ/N)(N − αβ)
= αβ(2− x ′) (where 0 ≤ x ′ = αβ/N ≤ 1)

As in the previous case, we conclude that L∗ ≥ L H if

2αβ/3+ N/2 − (α + β)/6 ≥ αβ(2− x ′).

Upon analysis similar to the previous case, we can conclude
that our bound is better when 0.4 ≥ 1/α + 1/β.

C. Comparison With Lower Bound of [11]

The work of [11] is closest in spirit to our proposed
lower bound. In particular, we show that their lower bound
corresponds to specific problem instance as defined in our
work. We note however that the work of [11] does not analyze
the multiplicative gaps between the achievable rates and lower
bounds. The lower bounds in [11] can be rewritten as

2m R� + 2tmM ≥ L0, for t ≤ N, K ≥ 2

2tm R� + 2mM ≥ L0, for t ≤ N, K ≥ 2t, (19)

where L0 = min{4tm2, 2tm2+N− Ñ0}, Ñ0 = t (m2−m+1),
m = n− γ and n = �(t +√

t2 + 12t (N − t))/6t�. Also, γ =
max (0, �n − K/2t�) and γ = max (0, �n − K/2�) in the
first and second lower bounds respectively. We present these
bounds using our notation so that (α, β) is equal to (2m, 2tm)
and (2tm, 2m) in the first and second lower bounds in (19)
respectively. Note however, that in the above bound the only
free parameter is t , i.e., m itself is dependent on t . It is easy

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4407

Fig. 11. Problem instance associated with the lower bounds in [11].

Fig. 12. The plot demonstrates the multiplicative gap between the achievable rate, Rc(M), in [9] and lower bounds R�(M) using different lower bounding
techniques. For case II our lower bound results in the least multiplicative gap. In case I, where N ≤ K , the multiplicative gap obtained by our proposed lower
bound is lower than the others for M ≥ 1. In the range 0 ≤ M ≤ 1, [10] provides a slightly better result. (a) Case I: N = 16, K = 30. (b) Case II: N = 64,
K = 50.

to see that β ≤ K therefore, unlike our method, this method
cannot be used to obtain lower bounds when β > K .

The lower bound L0 in eq. (19) above is reminiscent of our
lower bound if the term Ñ0 is interpreted as a bound on the
saturation number. In fact, for the specific setting of (α, β) =
(m,mt), we can create a problem instance as described below,
that is a saturated instance with exactly t (m2 − m + 1) files,
so that we can infer that Nsat (m, tm, K) ≤ t (m2 − m + 1).
It turns out that this upper bound on the saturation number
may be slightly stronger than the one we derived in Lemma 3
for general α and β when t and m are small. The associated
problem instance of the first lower bound in (19) is depicted
in Fig. 11. The corresponding instance for the second lower
bound in (19) can be derived in a similar manner. In this
figure, delivery phase signals D(v1), . . . ,D(v2m) are same as
the delivery phase signals defined in [11]. For this tree, it can
be verified that the instance can be saturated with t (m2−m+1)
files, so that Nsat (m, tm, K) ≤ t (m2 − m + 1).

However, an application of Algorithm 3 will result in even
better upper bound on the saturation number as shown in
the example below. In particular, Algorithm 3 will generate
a different tree when trying to upper bound the saturation
number.

Example 9: We consider a system with N = 64 files and
K = 8 users and set t = 2 in eq. (19) so that m = 4

and Ñ0 = 26. Algorithm 4 for such a setting returns
Nsat (4, 8, 8) = 22 which is smaller than Ñ0. On the other
hand, it can be noted that in Fig. 11, node u∗1 is such that it
has m = 4 incoming edges which makes the corresponding
lower bound looser (cf. Claim 1).

D. Comparison With Results in [36]

Reference [36] presents lower bounds for the specific case
of N = K = 3. The inequalities are generated via a
computational technique that works with the entropic region of
the associated random variables. Some of the bounds presented
in [36] can be obtained via our approach as well. However,
the specific inequalities 3R� + 6M ≥ 8, 18R� + 12M ≥ 29
and 6R� + 3M ≥ 8 cannot be obtained using our approach
and strictly improves our region. Note however, that it is
not clear whether these inequalities can be obtained in a
computationally tractable manner for the case of large N
and K .

E. Numerical Comparison of the Various Bounds

We conclude this section, by providing numerical results
for two cases: (i) N = 16, K = 30 and (ii) N = 64,
K = 50. In Fig. 12 the ratio Rc(M)/R�(M) is plotted by lower
bounding R�(M) by different methods. In case I (see Fig. 12)
we have N = 16 and K = 30. Our bound has the minimum

4408 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

multiplicative gap except in the small range 0 ≤ M ≤ 1.
Specifically, as discussed previously, the bound in [10] is better
than ours when K ≥ N and α = 1 and 0 ≤ M ≤ 1. In case II,
where N > K our bound has minimum multiplicative gap for
all range of M .

VII. CONCLUSIONS AND FUTURE WORK

In this work we considered a coded caching system with
N files, K users each with a normalized cache of size M .
We demonstrated an improved lower bound on the coded
caching rate R�(M). Our approach proceeds by establishing
an equivalence between a sequence of information inequalities
and a combinatorial labeling problem on a directed tree.
Specifically, for given positive integers α and β, we generate
an inequality of the form αR� + βM ≥ L. We showed
that the best L that can be obtained using our approach is
closely tied to how efficiently a given number of files can be
used by our proposed algorithm. Formalizing this notion, we
studied certain structural properties of our algorithm that allow
us to quantify the improvements that our approach affords.
In particular, we show a multiplicative gap of four between our
lower bound and the achievable rate. An interesting feature of
our algorithm is that it is applicable for general value of N, K
and M and is strictly better than all prior approaches for most
parameter ranges.

There are still gaps between the currently known lower
bounds and the achievable rate and an immediate open ques-
tion is whether this gap can be reduced or closed. It would
also be of interest to better understand coded caching rates for
more general network topologies.

APPENDIX

Lemma 5: Algorithm 1 always provides a valid lower
bound on αR� + βM where α = ∑�

i=1 |D(vi)| and β =∑�
i=1 |Z(vi)|.

Proof: Consider any internal node v ∈ T . We have∑
u∈in(v)

H (Z(u)∪D(u)|W(u) ∪Wnew(u)),

(a)≥
∑

u∈in(v)

H (Z(u) ∪D(u)|W(v)),

(b)≥ H (Z(v) ∪D(v)|W(v)),
(c)= I (Wnew(v);Z(v) ∪D(v)|W(v))

+ H (Z(v) ∪D(v)|W(v) ∪Wnew(v)),

where inequality in (a) holds since W(u) ∪ Wnew(u) ⊆
W(v) and conditioning reduces entropy, (b) holds since
∪u∈in(v)Z(u) = Z(v) and ∪u∈in(v)D(u) = D(v) and (c) holds
by the definition of mutual information. Let Vint denote the
set of internal nodes in T . Let v∗ denote the root and (u∗, v∗)
denote its incoming edge. Then,∑
v∈Vint

∑
u∈in(v)

H (Z(u)∪D(u)|W(u) ∪Wnew(u))

≥
∑
v∈Vint

y(v,out (v))+
∑
v∈Vint

H (Z(v) ∪D(v)|W(v) ∪Wnew(v)),

Fig. 13. Tree modification example.

where we have ignored the infinitesimal terms introduced due
to Fano’s inequality (for convenience of presentation). Note
that the RHS of the inequality above contains terms of the
form H (Z(v)∪D(v)|W(v)∪Wnew(v)) for all nodes v ∈ Vint

(including u∗). On the other hand the LHS contains terms
of a similar form for all nodes including the leaf nodes but
excluding the node u∗. Canceling the common terms, we
obtain,

�∑
i=1

H (Z(vi) ∪D(vi)|Wnew(vi))

≥
⎛
⎝∑
v∈Vi

y(v,out (v))

⎞
⎠+ H (Z ∪D(u∗)|W(u∗),Wnew(u

∗)),

since W(vi) = φ for i = 1, . . . , �. We can therefore conclude
that

�∑
i=1

H (Z(vi),D(vi)) ≥
∑
v∈V

y(v,out (v)) (20)

�⇒
�∑

i=1

H (Z(vi))+
�∑

i=1

H (D(vi)) ≥
∑
v∈V

y(v,out (v)) (21)

Noting that M ≥ H (Z(vi)) and R� ≥ H (D(vi)) we have the
required result.

A. Proof of Claim 1

Proof: We iteratively modify the problem instance
P(T , α, β, L, N, K) to arrive at an instance where every node
has in-degree at most two. Towards this end, we first identify
a node u with in-degree δ ≥ 3 such that no other node is
topologically higher than it (such a node may not be unique).

We modify the instance P by replacing u with a directed
in-tree where each node has in-degree exactly two. Specifi-
cally, arbitrarily number the nodes in in(u) from v ′1, . . . , v ′δ .
We replace the node u with a directed in-tree Tu with
leaves v ′1, . . . , v ′δ and root u. Tu has δ − 2 internal nodes
numbered u′1, . . . , u′δ−2 such that in(u′i) = {u′i−1, v

′
i+1} where

u′0 = v ′1 (see Fig. 13). Let us denote the new instance
by Po = Po(To, α, β, Lo, N, K). We claim that Lo ≥ L.
To see this, suppose that W∗ ∈ W P

new(u). We show that
W∗ ∈ ∪u′∈Tu W Po

new(u′). This ensures that Lo ≥ L. To see
this we note that

ZP (u) = ZPo(u)

DP(u) = DPo(u), and thus,

	P(u, u) = 	Po(u, u).

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4409

Thus, if W∗ ∈ W P
new(u), there exists an internal node u′i ∈ Tu

with the smallest index i ∈ {1, . . . , δ − 2} such that W∗ ∈
	Po(u′i , u′i). Note that if i > 1, we have W∗ ∈ W Po

new(u′i)
since W∗ /∈ 	Po(u′i−1, u′i−1) which in turn implies that W∗ /∈
WPo(u′i). On the other hand if i = 1, then a similar argument
holds since it is easy to see that W∗ /∈WPo(u′1).

Note that the modification in the instance P can only affect
nodes that are downstream of u. Now consider u′ such that
u ∈ in(u′). It is evident that ZPo(u′) = ZP(u′) and DPo(u′) =
DP(u′). Moreover WPo(u′) = ∪v∈in(u′)WPo(v) ∪ W Po

new(v).
Now for v �= u, WPo(v) =WP (v) and W Po

new(v) = W P
new(v)

as there are no changes in the corresponding subtrees. More-
over, as 	P(u, u) = 	Po(u, u), we have that WPo(u) ∪
W Po

new(u) =WP(u) ∪ W P
new(u). This implies that WPo(u′) =

WP (u′). Thus, we can conclude that W Po
new(u′) = W P

new(u
′).

Applying an inductive argument we can conclude that the
W Po

new(u′) = W P
new(u

′) for all u′ such that u
 u′.
The above process can iteratively be applied to every node

in the instance that is of degree at least three. Thus, we have
the required result.

B. Proof of Claim 3

Proof: We identify the set U as the set of all nodes in
T such that the specified condition in the claim holds. Let
U∗ ⊂ U denote the set of nodes that are highest in the
topological ordering. We modify the instance in a way such
that a node u∗ ∈ U∗ can be removed from U , i.e., the specified
condition no longer holds for it. Moreover, our modification
procedure is such that a node u
 u∗ cannot enter U at the
end of the procedure.

We now discuss the modification procedure. In the dis-
cussion below, for a given node u, we can consider the
instance obtained with tree Tu . We let βu denote the num-
ber of cache nodes in this instance. Note that for u∗, the
condition β̂∗ < min(β∗, K) holds. This implies that there
is a set of cache leaves in Tu∗ denoted {vi1 , . . . , vim } such
that Z(vi1) = · · · = Z(vim) = {Z j }. Let � = {u ∈ Tu∗ :
(via , vib) meet at u, for all distinct via , vib ∈ {vi1 , . . . , vim }}.
We identify u0 ∈ � such that no element of � is topologically
higher than u0 (note that u0 may not be unique) and let v∗ia and
v∗ib be one pair of the corresponding nodes in {vi1 , . . . , vim }
that meet at u0. W.l.o.g we assume that v∗ib ∈ Tu0(r) and
v∗ia ∈ Tu0(l).

We claim that u0 = u∗. Assume that this is not the case.
Since u0 ∈ Tu∗ we have u0 � u∗. Using this and the fact
that u0 /∈ U we have | ∪v∈Cu0

Z(v)| = min(|Cu0 |, K). Now,
from v∗ia , v

∗
ib
∈ Cu0 and that Z(v∗ia) = Z(v∗ib) we conclude that

min(|Cu0 |, K) = K . Moreover, as ∪u∈Tu0
Z(u) ⊆ ∪u∈Tu∗Z(u)

we have β̂ = K which contradicts β̂ < min(β, K). Therefore
u0 = u∗.

We construct instance P ′ (with lower bound L ′) as follows.
Choose a member of {Z1, . . . , Z K } \ {Z(v ′) : v ′ ∈ Cu∗} and
denote it by Zk . We set ZP ′(v∗ib) = {Zk}. Also, for any u ∈
Du0(r) and DP(u) = Xd1,...,dK we set DP ′(u) = Xd ′1,...,d ′K
such that d ′j = dk and d ′k = d j and d ′i = di for i /∈ { j, k}, i.e.,
we interchange the j -th and k-th labels and keep the other

labels the same. With this modification, it can be seen that
β̂∗ = min(β∗, K).

For nodes u
 u∗, the change we applied to cache nodes in
Cu∗ to get P ′ is such that β̂u continues to equal min(βu, K)
since Zk is chosen from {Z1, . . . , Z K } \ {Z(v ′) : v ′ ∈ Cu∗}

We now show that L ′ ≥ L. In particular, for u ∈ Tu0(l),
we have W P ′

new(u) = W P
new(u), as there are no changes in the

corresponding labels. Also we claim that W P ′
new(u) = W P

new(u)
for u ∈ Tu0(r). To see this, note that for v ∈ Du0(r) and v ′ ∈
Cu0(r) we have 	P ′(v ′, v) = 	P(v ′, v) if Z(v ′) /∈ {Z j , Zk}. If
ZP ′(v ′) = {Zk} and DP ′(v) = Xd ′1,...,d ′K then,

	P ′(v ′, v) = Rec({Zk}, {Xd ′1,...,d ′K })
= {Wd ′k } = {Wd j }
= Rec({Z j }, {Xd1,...,dK })
= 	P(v ′, v).

Furthermore, note that there does not exist any v ′ ∈ Cu0(r) such
that Z(v ′) = {Z j } since we picked u0 such that no element of
� is topologically higher than u0. From eq. (5) and (6), it is not
hard to see that this in turn implies that W P ′

new(u) = W P
new(u)

for u ∈ Tu0(r).
It follows therefore that WP ′(u0) =WP (u0) (from eq. (6)).

Let us now consider the other nodes. As the changes are
applied only to Tu0(r) so label(u) changes only for nodes
u such that u0
 u. Consider the subset of internal nodes
U = {u0, u1, . . . , ut } such that (ui , ui+1) is an edge, i.e., the
set of internal nodes including u0 and all nodes downstream
of u0 such that ut is the last internal node. W.l.o.g we
assume that ui−1 ∈ Tui (l) for i ≥ 1. We now show that
∪u∈U W P

new(u) ⊆ ∪u∈U W P ′
new(u). Towards this end we have

the following observations for u ∈ U .

ZP ′ (u) = ZP (u) ∪ {Zk} (from the construction of P ′)
	P ′(u, u) = ∪v∈Du	

P ′(u, v).

Now, for v /∈ Du0(r) we have DP ′(v) = DP(v) so that

	P ′(u, v) = Rec(ZP ′(u),DP ′(v))

= Rec(ZP ′(u),DP(v))

⊇ 	P(u, v)(since ZP ′(u) ⊇ ZP(u)).

Conversely, for v ∈ Du0(r) we have

Rec
(
{Z j , Zk},DP ′(v)

)
= Rec

(
{Z j , Zk},DP(v)

)
,

and

Rec
(
{Zi },DP ′(v)

)
= Rec

(
{Zi },DP(v)

)
(for Zi /∈ {Z j , Zk}).

Now, note that {Zk, Z j } ⊆ ZP ′(u) so that

	P ′(u, v) = Rec
(
ZP ′(u),DP ′(v)

)

= Rec
(
ZP ′(u),DP(v)

)
,

⊇ Rec
(
ZP(u),DP (v)

)
= 	P (u, v),

since ZP ′ (u) ⊇ ZP (u). We can therefore conclude that

	P(u, u) = ∪v∈Du	
P(u, v) ⊆ ∪v∈Du	

P ′(u, v) = 	P ′(u, u).

4410 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

Now we consider a W∗ ∈ W P
new(ui) so that W∗ ∈ 	P(ui , ui)

which by above condition means that W∗ ∈ 	P ′(ui , ui).
Thus either W∗ ∈ W P ′

new(ui) or W∗ ∈ WP ′(ui). In the latter
case there exists a node ui ′ where 0 ≤ i ′ < i such that
W∗ ∈ W P ′

new(ui ′) since W∗ /∈ W(u0) and we have shown
that WP ′(u0) =WP(u0). Thus, we observe that

L ′ = | ∪u∈U W P ′
new(u)| +

∑
u∈T ′,u /∈U

|W P ′
new(u)|,

≥ | ∪u∈U W P
new(u)| +

∑
u∈T ,u /∈U

|W P
new(u)|,

= L,

where the second inequality holds since∑
u∈T ′,u /∈U |W P ′

new(u)| = ∑
u∈T ,u /∈U |W P

new(u)| and
| ∪u∈U W P ′

new(u)| ≥ | ∪u∈U W P
new(u)|.

As discussed before, the modification procedure is such that
at the end of the operation u∗ /∈ U . Moreover nodes u
 u∗
are not in U either. For each node u ∈ U let d(u) denote the
number of edges in the path connecting u to the root node.
Our modification procedure is such that d∗ = maxu∈U d(u)
is guaranteed to decrease over the course of the iterations.
Indeed, if |U∗| = 1, then at the end of the iteration d∗
will definitely decrease. If |U∗| > 1, then d∗ will definitely
decrease after the modification procedure is applied to all the
nodes in U∗. Thus, the sequence of iterations is guaranteed to
terminate. This observation concludes the proof.

C. Proof of Lemma 1

Proof: Given the conditions of the theorem, from Corol-
lary 1 we can conclude that there exists an index i∗ ∈
{1, . . . , α} such that

∑
v ′∈C ψ(vi∗ , v ′) < min(β, K). We set

i∗ to be the smallest such index. Let �1(vi∗) = {v ′ ∈ C :
ψ(vi∗ , v ′) = 1} and �0(vi∗) = {v ′ ∈ C : ψ(vi∗ , v ′) =
0,Z(v ′) � ∪v∈�1(vi∗)Z(v)}. Note that �0(vi∗) is non-empty
since | ∪v ′∈C Z(v ′)| = min(β, K) and

∑
v ′∈C ψ(vi∗ , v ′) <

min(β, K).
Next, we determine the set of nodes where vi∗ and the nodes

in �0(vi∗) meet, i.e., we define �0(vi∗) = {u ∈ T : ∃v ′ ∈
�0(vi∗) such that vi∗ and v ′ meet at u.}. Note that there is a
topological ordering on the nodes in �0(vi∗). Pick the node
u∗ ∈ �0(vi∗) such that no element of �0(vi∗) is topologically
higher than u∗ (u∗ is in the path from vi∗ to the root node). Let
the corresponding node in �0(vi∗) be denoted by v j∗ where
j∗ ∈ {α + 1, . . . , α + β}. Note that v j∗ might not be unique.

Suppose that Z(v j∗) = {Zk} and that D(vi∗) = Xd1,...,dK .
We modify the instance P as follows. Set dk = N+1 (i.e., the
index of the N+1 file). Thus, the only change is in D(vi∗). Let
us denote the new instance by P ′ = P(T ′, α, β, L ′, N+1, K).

We now analyze the value of L ′. W.l.o.g. we assume that
vi∗ ∈ T ′u∗(l) and v j∗ ∈ T ′u∗(r). Note that W P ′

new(u) = W P
new(u)

for u ∈ T ′u∗(r) as the subtree T ′u∗(r) is identical to Tu∗(r).
We also have

W P ′
new(u) = W P

new(u) for u ∈ T ′u∗(l).
To see this suppose that this is not true. This implies that
the file WN+1 is recovered at some node in T ′u∗(l), i.e., there

exists v ′ ∈ C such that v ′ ∈ T ′u∗(l), Z(v ′) = {Zk}, and that v ′
and vi∗ meet at some u
 u∗. From v j∗ ∈ �0(vi∗) we can
conclude that {Zk} � ∪v∈�1(vi∗) and v ′ ∈ �0(vi∗) (as Z(v ′) =
{Zk}). However this is a contradiction, since this implies the
existence of node u that is topologically higher than u∗ in the
set �0(vi∗). It follows from eq. (6) that WP ′(u∗) =WP(u∗).

Next, we claim that W P ′
new(u

∗) = W P
new(u

∗) ∪ {WN+1}.
To see this consider the following series of arguments.
Let the singleton subset 	P (vi∗ , v j∗) = {W∗}. Note that
ψ P (vi∗ , v j∗) = 0. This implies that there exist v ∈ Du∗ and
v ′ ∈ Cu∗ such that v and v ′ meet above u∗ and recover the file
W∗ where (v, v ′) �= (vi∗ , v j∗). Thus, as ZP ′(u∗) = ZP(u∗),
we can conclude that

	P ′(u∗, u∗) = Rec(ZP ′(u∗),DP ′(u∗))
= Rec(ZP(u∗),DP ′(u∗))
= 	P(u∗, u∗) ∪ {WN+1}.

Furthermore, we have

W P ′
new(u

∗) = 	P ′(u∗, u∗) \WP ′(u∗)
= 	P(u∗, u∗) ∪ {WN+1} \WP (u∗)
= W P

new(u
∗) ∪ {WN+1}, (since WN+1 /∈WP(u∗)).

For u such that u∗
 u we inductively argue that W P ′
new(u) =

W P
new(u). To see this suppose that u∗ = ur . It is evident that

	P ′
rl (u) = 	P

rl(u). Next, 	P ′
lr (u) = 	P

lr (u) since Zk /∈ Z(ul)\
Z(ur). Thus,

W P ′
new(u)

= 	P ′
rl (u) ∪	P ′

lr (u) \WP ′(u)

= 	P
rl(u) ∪	P

lr (u) \WP ′(u)

= 	P
rl(u) ∪	P

lr (u) \WP (u) ∪ {WN+1}
=	P

rl(u) ∪	P
lr (u) \WP(u) (since WN+1 /∈	P

rl(u)∪	P
lr (u))

= W P
new(u).

Next, we note that W(u) = W(ur) ∪ Wnew(ur) ∪
W(ul) ∪ Wnew(ul). It is evident that WP ′(ul) = WP(ul)
and W P ′

new(ul) = W P
new(ul). Next, WP ′(ur) = WP ′(u∗) =

WP(u∗) (from above) and W P ′
new(u

∗) = W P
new(u

∗) ∪ {WN+1},
so that WP ′(u) =WP (u) ∪ {WN+1}.

As the induction hypothesis we assume that for any node
u downstream of u∗, we have W P ′

new(u) = W P
new(u) and

WP ′(u) = WP(u) ∪ {WN+1}. Consider a node u′ such that
u′r = u. As before we have WP ′(u′l) =WP(u′l), W P ′

new(u
′
l) =

W P
new(u

′
l). Moreover, we have WP ′(u′r) =WP(u′r)∪{WN+1}

and W P ′
new(u

′
r) = W P

new(u
′
r), by the induction hypothesis, so

that WP ′(u′) =WP (u′) ∪ {WN+1}.
Next, we argue similarly as above that 	P ′

rl (u
′) = 	P

rl(u
′)

and 	P ′
lr (u

′) = 	P
lr (u
′) and the sequence of equations above

can be used to conclude to that W P ′
new(u

′) = W P
new(u

′).
We conclude that L ′ = L + 1.

D. Proof of Claim 5

Proof: W.l.o.g we assume that |
l | ≥ |
r | for all u ∈ T .
We identify the set U as the set of nodes in T such that

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4411

r �
l . Let U∗ ⊂ U denote the set of nodes in U that are
highest in the topological ordering.

Consider a node u∗ ∈ U∗. Note that since |
l | ≥ |
r |,
there exists an injective mapping φ :
r \
l →
l \
r .
Let Z(u∗r) = {Zi1 , . . . , Zim }. We construct the instance P ′
as follows. For each v ∈ Du∗r suppose D(v) = {Xd1,...,dK }.
For j = 1, . . . ,m, if di j ∈
r \
l , we replace it by φ(di j);
otherwise, we leave it unchanged. In other words, we modify
the delivery phase signals so that the files that are recovered
in Tu∗(r) are a subset of those recovered in Tu∗(l).

As our change amounts to a simple relabeling of the sources,
for u ∈ Tu∗(r) we have |W P ′

new(u)| = |W P
new(u)|. For any

u
 u∗ we have
P
r (u) ⊆
P

l (u). Similarly, we can show
that
P ′

r (u) ⊆
P ′
l (u). We note that
P ′ and
P only differ

in files such as Wd where d is in the domain of φ(·), i.e., if
Wd ∈
P then Wφ(d) ∈
P ′ . If there exist a file Wd ∈
P

r (u)
with d in domain of φ(·) then Wφ(d) ∈
P ′

r (u) and from

P

r (u) ⊆
P
l (u) we have Wφ(d) ∈
P ′

l (u). Thus, we have

P ′

r (u) ⊆
P ′
l (u). This indicates that after applying this

change, the property
r ⊆
l still holds in P ′ for all nodes u
that are upstream of u∗. Furthermore, the relabeling of the
sources only affects u ∈ T ′ such that u∗
 u. Note that
WP ′(u∗) ⊂WP(u∗) (the inclusion is strict since at least one
source in
r\
l is mapped to
l\
r) since we have
P ′

r ⊆
P ′
l

and
P ′
l =
P

l .
Now, we note that

	P ′
rl (u

∗) = 	P
rl(u
∗), and

	P ′
lr (u

∗) = 	P
lr (u
∗),

where the first equality holds since ZP (u∗r) = ZP ′ (u∗r),
ZP (u∗l) = ZP ′ (u∗l) and DP (u∗l) = DP ′(u∗l). The second
equality holds since our modification to the delivery phase
signals in Tu∗(r) does not affect files that are recov-
ered from ZP (u∗l) \ ZP (u∗r). It follows therefore that
|W P ′

new(u
∗)| ≥ |W P

new(u
∗)|.

We make an inductive argument for nodes u that are
downstream of u∗; w.l.o.g. we assume that u∗ ∈ Tu(r).
Specifically, our induction hypothesis is that for a node u that
is downstream of u∗, we have WP ′(u) ⊆WP (u), 	P ′

rl (u) =
	P

rl(u) and 	P ′
lr (u) = 	P

lr (u).
Now consider a node u′ downstream of u such that u′r = u.

We have, W(u′) = W(u′l) ∪ Wnew(u′l) ∪W(u) ∪ Wnew(u).
Note that we can express W(u)∪Wnew(u) =W(u)∪	rl(u)∪
	lr (u). It is evident that WP ′(u′l) =WP(u′l) and W P ′

new(u
′
l) =

W P
new(u

′
l). Moreover, by the induction hypothesis, WP ′(u) ⊆

WP (u) and 	P ′
rl (u) ∪ 	P ′

lr (u) = 	P
rl (u) ∪ 	P

lr (u). Thus, the
induction step is proved.

We have shown that after applying the changes for u∗, the
condition
r �
l will not hold for u � u∗. For each node
u ∈ U let d(u) denote the number of edges in path connecting
u to the root node. Our modification procedure is such that
d∗ = maxu∈U d(u) is guaranteed to decrease over the course
of the iterations. Indeed, if |U∗| = 1, then at the end of
the iteration d∗ will definitely decrease. If |U∗| > 1, then
d∗ will definitely decrease after the modification procedure is
applied to all the nodes in U∗. Thus, the sequence of iterations

is guaranteed to terminate. This observation concludes the
proof.

As we have shown, the modification procedure is such
that at the end of the operation u∗ is removed from U .
Therefore, each node in T will be involved in the modification
procedure at most once. In Appendix E, we show that there are
2(α+β) nodes in T . Thus, the modification procedure requires
at most 2(α+ β) iterations to terminate. At each iteration we
only need to apply the mapping φ(·) to the indices of the
delivery nodes connected to u∗. The complexity of this step
is at most αβ. Therefore, the complexity of the modification
is at most O(α2β + αβ2).

Claim 9: When β̂l = min(βl , K) and β̂r = min(βr , K) we
have min(β̂l, K − β̂r) = [min(βl, K −βr)]+ and min(β̂r , K −
β̂l) = [min(βr , K − βl)]+.

Proof: First, we consider the case where βl + βr ≤ K so
βl ≤ K − βr and [min(βl , K − βr)]+ = βl . By assumption,
βl + βr ≤ K implies β̂l + β̂r ≤ K thus min(β̂l, K − β̂r) =
β̂l = βl . We now consider the βl + βr ≥ K case which in
turns leads to β̂l + β̂r ≥ K . Therefore,

min(β̂l , K − β̂r) = K − β̂r = K −min(K , βr)

= max(0, K − βr) = [K − βr]+ = [min(βl, K − βr)]+.
The same argument will show that min(β̂r , K − β̂l) =
[min(βr , K − βl)]+.

Claim 10: Consider the integers α, αl , αr , β, βl , βr , K so
that α = αl + αr and β = βl + βr . Then

αmin(β, K)

= αl min(βl, K)+ αr min(βr , K)

+ αl [min(βr , K − βl)]+ + αr [min(βl , K − βr)]+.
Proof: First, we consider the case where β ≤ K thus

βl ≤ K − βr and βr ≤ K − βl . Then, the above relation
reduces to αβ = αlβl + αrβr + αlβr + αrβl which is
true. For the case β ≥ K , the relation reduces to αK =
αl

(
min(βl, K)+ [K − βl]+

)+αr
(
min(βr , K)+ [K − βr]+

)
.

However min(βl, K) = K − [K − βl]+ and min(βr , K) =
K − [K − βr]+ and the result follows.

E. Complexity of the Algorithms 1, 2, 3, and 4

In this part we discuss the time-complexity of the algo-
rithms used in this paper. Before proceeding, we note that
the directed in-tree corresponding to the problem instance
P(T , α, β, L, N, K) contains α + β leaves and a single root.
The degree (total number of incoming and outgoing edges) of
the leaves and the root is 1. Based on Claim 1 the intermediate
nodes have a total degree of 3. Thus,

2|A| = α + β + 1+ 3(|V | − α − β − 1)

= 3|V | − 2α − 2β − 2.

On the other hand, since the undirected version of T is a tree
we have |A| = |V | − 1. Solving these two equations yields

|V | = 2(α + β),
|A| = 2(α + β)− 1.

4412 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 7, JULY 2017

1) Complexity of the Algorithm 1: The complexity of
computing 	(vi , vi) in second line of the algorithm is less
than αβ. As there are α + β leaves thus the complexity of
lines 1-5 of the algorithm is O(α2β + αβ2). The while loop
in the algorithm goes over all nodes except the leaves exactly
once. Thus, the while loop is executed α + β times. At each
phase of the while loop, computing 	(u, u) has the largest
running time among the other operation and its complexity is
less than αβ. Therefore, the complexity of the while loop is
also O(α2β+αβ2). Thus, this algorithm has a time-complexity
of O(α2β + αβ2).

2) Complexity of the Algorithm 2: As there are 2(α + β)
nodes in T and |Wnew(u)| ≤ αβ, the complexity of the
initialization part is O(α2β + αβ2). In the remaining steps of
the algorithm, the main complexity of the inner for loop is in
finding the meeting point of vi and v ′. It is not hard to see that
the complexity of finding this meeting point is at most (α+β),
i.e., number of edges in T . Therefore, the complexity of this
part is O(α2β + αβ2). Putting these together, complexity of
the algorithm is O(α2β + αβ2).

3) Complexity of the Algorithm 3: The initialization part
of the Algorithm 3 takes O(1) running time. The while loop
at “Tree Construction and Cache Nodes Labeling” goes over
all nodes in T exactly once. As the operation inside the loop
takes O(1) time, the complexity of this part of the algorithm
is O(α + β). The third part of the algorithm is “Delivery
Nodes Labeling”. It is not difficult to see that the first for
loop in this part requires at most β running times. Also, the
second for loop takes O(αβ) running time. Thus, complexity
of this part is at most O(αβ). Finally, as we have shown in
proof of the Claim 5, the complexity of “Modifying Delivery
Phase Signals” is O(α2β + αβ2). Putting all these together,
complexity of Algorithm 3 is O(α2β + αβ2).

4) Complexity of the Algorithm 4: The algorithm needs
O(αβ) memory units to save Nsat (a, b, K) for 0 ≤ a ≤ α and
0 ≤ b ≤ β. Once Nsat (ã, b̃, K) is known for (ã, b̃) ∈ I(a, b)
then we are able to compute Nsat (a + 1, b + 1, K) by using
the recursive relationship.

The time complexity of populating the Nsat values can be
determined as follows. At the initialization step we fill the
first two rows and columns of the matrix Nsat corresponding to
a = 0, 1 and b = 0, 1 respectively. Following this initialization
step, the remaining rows and columns are populated. It is clear
the that the initialization takes O(α+β) time. In the main loop
we compute each entry of matrix Nsat once. This computation
takes at most O(αβ) operation as we look for minimum over
set I(a, b) whose size is at most O(αβ). As we compute all
entries of the matrix Nsat and each entry takes O(αβ) running
times thus time complexity of the algorithm is O(α2β2). The
required memory is O(αβ) as determined above.

REFERENCES

[1] D. Wessels, Web Caching. O’Reilly Media, 2001.
[2] A. Meyerson, K. Munagala, and S. Plotkin, “Web caching using access

statistics,” in Proc. 12th Annu. ACM-SIAM Symp. Discrete Algorithms
(SODA), 2001, pp. 354–363.

[3] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placement algo-
rithms for hierarchical cooperative caching,” J. Algorithms, vol. 38,
no. 1, pp. 260–302, 2001.

[4] S. C. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1478–1486.

[5] B. Tan and L. Massoulié, “Optimal content placement for peer-to-peer
video-on-demand systems,” IEEE/ACM Trans. Netw., vol. 21, no. 2,
pp. 566–579, Apr. 2013.

[6] A. Wolman, M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. M. Levy, “On the scale and performance of cooperative Web
proxy caching,” in Proc. 17th ACM Symp. Oper. Syst. Principles, 1999,
pp. 16–31.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM, Mar. 1999, pp. 126–134.

[8] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakr-
ishnan, “Optimal content placement for a large-scale VoD system,” in
Proc. ACM 6th Int. Conf. Emerg. Netw. Experim. Technol. (Co-NEXT),
2010.

[9] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of
caching,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867,
May 2014.

[10] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation of
storage-rate tradeoff for caching via new outer bounds,” in Proc. IEEE
Int. Symp. Inf. Theory, Jun. 2015, pp. 1691–1695.

[11] N. Ajaykrishnan, N. S. Prem, V. M. Prabhakaran, and R. Vaze, “Critical
database size for effective caching,” in Proc. IEEE 21st Nat. Conf.
Commun., Feb. 2015, pp. 1–6.

[12] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side
information,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1479–1494,
Mar. 2011.

[13] E. Lubetzky and U. Stav, “Nonlinear index coding outperform-
ing the linear optimum,” IEEE Trans. Inf. Theory, vol. 55, no. 8,
pp. 3544–3551, Aug. 2009.

[14] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23,
no. 4, pp. 1029–1040, Aug. 2014.

[15] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded
caching,” in Proc. IEEE Int. Conf. Commun., Jun. 2014, pp. 1878–1883.

[16] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1146–1158,
Feb. 2017.

[17] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order optimal coded
caching-aided multicast under zipf demand distributions,” in Proc. 11th
Int. Symp. Wireless Commun. Syst., 2014, pp. 1–5.

[18] J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded
caching,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2014, pp. 56–60.

[19] A. Sengupta, R. Tandon, and T. C. Clancy, “Fundamental limits of
caching with secure delivery,” IEEE Trans. Inf. Forensics Security,
vol. 10, no. 2, pp. 355–370, Feb. 2015.

[20] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi,
“Hierarchical coded caching,” in Proc. IEEE Int. Symp. Inf. Theory,
Jun. 2014, pp. 2142–2146.

[21] J. Hachem, N. Karamchandani, and S. N. Diggavi. (2014). “Coded
caching for heterogeneous wireless networks with multi-level access.”
[Online]. Available: http://arxiv.org/abs/1404.6560

[22] M. Ji, A. M. Tulino, J. Llorca, and G. Caire. (2014). “Order optimal
coded delivery and caching: Multiple groupcast index coding.” [Online].
Available: http://arxiv.org/abs/1402.4572

[23] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of distributed
caching in D2D wireless networks,” in Proc. IEEE Inf. Theory Workshop,
Sep. 2013, pp. 1–5.

[24] A. Sengupta and R. Tandon, “Beyond cut-set bounds-the approximate
capacity of D2D networks,” in Proc. IEEE Inf. Theory Workshop,
Jun. 2015, pp. 78–83.

[25] J. Zhang, X. Lin, C.-C. Wang, and X. Wang, “Coded caching for files
with distinct file sizes,” in Proc. IEEE Intl. Symp. Inf. Theory, Sep. 2015,
pp. 1686–1690.

[26] L. Tang and A. Ramamoorthy, “Low subpacketization schemes for coded
caching,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2017.

[27] L. Tang and A. Ramamoorthy, “Coded caching with low subpacketiza-
tion levels,” in Proc. IEEE Workshop Netw. Coding (NetCod), Dec. 2016,
pp. 1–6.

[28] Q. Yan, M. Cheng, X. Tang, and Q. Chen. (2015). “On the placement
delivery array design in centralized coded caching scheme.” [Online].
Available: http://arxiv.org/abs/1510.05064.

[29] U. Niesen and M. A. Maddah-Ali, “Coded caching for delay-sensitive
content,” in Proc. IEEE Int. Conf. Commun., Jun. 2015, pp. 5559–5564.

GHASEMI AND RAMAMOORTHY: IMPROVED LOWER BOUNDS FOR CODED CACHING 4413

[30] H. Ghasemi and A. Ramamoorthy, “Asynchronous Coded Caching,” in
Proc. IEEE Inl. Symp. Inf. Theory, Apr. 2017.

[31] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless content delivery through distrib-
uted caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[32] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Fem-
tocaching and device-to-device collaboration: A new architecture for
wireless video distribution,” IEEE Commun. Mag., vol. 51, no. 4,
pp. 142–149, Apr. 2013.

[33] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr. (20156).
“A fundamental tradeoff between computation and communication
in distributed computing.” [Online]. Available: http://arxiv.org/abs/
1604.07086

[34] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran. (2015). “Speeding up distributed machine learning using codes.”
[Online]. Available: http://arxiv.org/abs/1512.02673

[35] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2012.

[36] C. Tian. (2015). “A note on the fundamental limits of coded caching.”
[Online]. Available: http://arxiv.org/abs/1503.00010

Hooshang Ghasemi is a Ph. D. student in the Department of Electrical and
Computer Engineering at Iowa State University. He obtained his M. Sc. degree
from Sharif University of Technology, Tehran, Iran in 2012 and his B. Sc.
degree from Amirkabir University of Technology, Tehran, Iran in 2009. His
research interests are in the area of information theory and signal processing.

Aditya Ramamoorthy (M’05) received the B.Tech. degree in electrical
engineering from the Indian Institute of Technology, Delhi, in 1999, and
the M.S. and Ph.D. degrees from the University of California, Los Angeles
(UCLA), in 2002 and 2005, respectively. He was a systems engineer with
Biomorphic VLSI Inc. until 2001. From 2005 to 2006, he was with the Data
Storage Signal Processing Group of Marvell Semiconductor Inc. Since fall
2006, he has been with the Electrical and Computer Engineering Department
at Iowa State University, Ames, IA 50011, USA. His research interests are in
the areas of network information theory, channel coding and signal processing
for bioinformatics and nanotechnology. Dr. Ramamoorthy served as an editor
for the IEEE TRANSACTIONS ON COMMUNICATIONS from 2011 2015. He
is currently serving as an associate editor for the IEEE TRANSACTIONS

ON INFORMATION THEORY. He is the recipient of the 2012 Iowa State
Universitys Early Career Engineering Faculty Research Award, the 2012 NSF
CAREER award, and the Harpole-Pentair professorship in 2009 and 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

