
Low Subpacketization Schemes for Coded Caching

Li Tang and Aditya Ramamoorthy
Department of Electrical and Computer Engineering

Iowa State University

Ames, IA 50010

Emails:{litang, adityar}@iastate.edu

Abstract—Coded caching is a technique that generalizes con-
ventional caching and promises significant reductions in traffic
over caching networks. However, the basic coded caching scheme
requires that each file hosted in the server be partitioned
into a large number (called the subpacketization level) of non-
overlapping subfiles. From a practical perspective, this is prob-
lematic as it means that prior schemes are only applicable when
the size of the files is extremely large. In this work, we propose
coded caching schemes based on combinatorial structures called
resolvable designs. These structures can be obtained in a natural
manner from linear block codes whose generator matrices possess
certain rank properties. We demonstrate that several schemes
with subpacketization levels that are exponentially smaller than
the basic scheme can be obtained.

I. INTRODUCTION

Caching is a popular technique for facilitating large scale
content delivery over the Internet. Traditionally, caching op-
erates by storing popular content closer to the end users.
Typically, the cache serves an end user’s file request partially
(or sometimes entirely) with the remainder of the content
coming from the main server. Prior work in this area [1]
demonstrates that allowing coding in the cache and coded
transmission from the server (referred to as coded caching)
to the end users can allow for significant reductions in the
number of bits transmitted from the server to the end users.
In particular, [1] considers a scenario where a single server
containing N files, each of size F subfiles (a subfile is a basic
unit of storage) connects to K users over a shared link and
each user has a cache memory of size MF subfiles. Coded
caching consists of two distinct phases: a placement phase and
a delivery phase. In the placement phase, the caches of the
users are populated. This phase does not depend on the user
demands which are assumed to be arbitrary. In the delivery
phase, the server sends a set of coded signals that are broadcast
to each user such that each user’s demand is satisfied.

However, the huge gains of coded caching require each file
to be partitioned into Fs =

(
K

KM
N

)
non-overlapping subfiles of

equal size; Fs is referred to as the subpacketization level. It
can be observed that for a fixed cache fraction M

N , Fs grows
exponentially with K. This can be problematic in practical
implementations. For instance, suppose that K = 50, with
M
N = 0.4 so that Fs =

(
50
20

)
≈ 1014. In this case, it is evident

that at the bare minimum, the size of each file has to be at least
100 terabits for leveraging the gains in [1]. It is even worse

This work was supported in part by the National Science Foundation (NSF)
by grants CCF-1320416, CCF-1149860 and DMS-1120597.

in practice. The atomic unit of storage on present day hard
drives is a sector of size 512 bytes and the trend in the disk
drive industry is to move this to 4096 bytes. As a result, the
minimum size of each file needs to be much higher than 100
terabits. Therefore, the scheme in [1] is not practical even for
moderate values of K. Furthermore, even for smaller values
of K, schemes with low subpacketization levels are desirable.
This is because any practical scheme will require each of
the subfiles to have some header information that allows for
decoding at the end users. When there are a large number of
subfiles, the header overhead may be non-negligible.

This issue has also been considered in the work of [2]. They
proposed a low subpacketization scheme based on placement
delivery arrays. Reference [3] viewed the problem from a
hypergraph perspective and presented classes of coded caching
schemes. The subpacketization issue in the decentralized
coded caching setting was considered in the work of [4].

In this work, we propose low subpacketization level
schemes for coded caching. Our proposed scheme leverages
the properties of combinatorial structures known as resolvable
designs and their natural relationship with linear block codes.
We show that the construction proposed in [2] (and our own
prior work [5]) is a special case of the present work.

This paper is organized as follows. Section II presents the
proposed scheme, Section III discusses classes of linear codes
that are useful for our application, Section IV compares our
work with other contributions in the literature and Section V
concludes the paper with a discussion of future work. Owing
to space limitations, most of the proofs have been omitted.
These can be found in [6].

II. PROPOSED LOW SUBPACKETIZATION LEVEL SCHEME

In this work we use combinatorial designs [7] to specify the
placement scheme in the coded caching system.

Definition 1. A design is a pair (X,A) such that

1) X is a set of elements called points, and
2) A is a collection of nonempty subsets of X called

blocks, where each block contains the same number of
points.

A parallel class P in a design (X,A) is a subset of disjoint
blocks from A whose union is X . A partition of A into several
parallel classes is called a resolution, and (X,A) is said to be
a resolvable design if A has at least one resolution.

The incidence matrix N of a design (X,A) is a 0-1 (binary)
matrix of dimension |X| × |A|, where the rows and columns
correspond to the points and blocks respectively. The (i, j)-th
entry is 1 if point i belongs to block corresponding to column
j and 0 otherwise.

Let [n] = {1, . . . , n}. In coded caching, the placement
scheme can be specified by a design. For example, let X =
[K] and A = {B : B ⊂ [K], |B| = t}. In the scheme of [1],
the users are associated with X and the subfiles with A. Each
file Wn is divided into subfiles Wn,B , n = 1, . . . , N , B ∈ A
and user i ∈ [K] caches subfile Wn,B if i ∈ B. In general, we
can reverse the roles of the points and blocks and choose to
associate the users with the blocks and subfiles with the points
instead. Equivalently, the incidence matrix of the design (or
its transpose) can be used to specify the placement scheme.

Our constructions stem from resolvable designs [7]. We
begin by showing that any linear block code can be used to
obtain a resolvable block design.

A. Resolvable Design Construction

Consider an (n, k) linear block code over GF (q). We collect
its qk codewords and construct a matrix T of size n× qk as
follows.

T = [cT0 , c
T
1 , · · · , cTqk−1], (1)

where the 1 × n vector ci represents the i-th codeword of
the code. Let X = {0, 1, · · · , qk − 1} be the point set and A
be the collection of all subsets Bi,l for 0 ≤ i ≤ n − 1 and
0 ≤ l ≤ q − 1, where

Bi,l = {j : Ti,j = l}.
Using this construction, we can obtain the following result.

Lemma 1. The construction procedure above results in a
design (X,A) where X = {0, 1, · · · , qk − 1} and |Bi,l| =
qk−1 for all 0 ≤ i ≤ n − 1 and 0 ≤ l ≤ q − 1.
Furthermore, the design is resolvable with parallel classes
given by Pi = {Bi,l : 0 ≤ l ≤ q − 1}, for 0 ≤ i ≤ n− 1.

Proof. Let G = [gab], for 0 ≤ a ≤ k−1, 0 ≤ b ≤ n−1 where
gab ∈ GF (q). Note that for Δ = [Δ0 Δ1 . . . Δn−1] = uG,
we have

Δb =

k−1∑
a=0

uagab,

where u = [u0, · · · ,uk−1]. Let a∗ be such that ga∗b �= 0.
Consider the equation∑

a �=a∗
uagab = Δb − ua∗ga∗b,

where Δb is fixed. For arbitrary ua, a �= a∗, this equation has a
unique solution for ua∗ , which implies for any Δb, |Bb,Δb

| =
qk−1 and that Pb forms a parallel class.

Example 1. Consider a (4, 2) linear block code over GF (3)
with generator matrix

G =

[
1 0 1 1
0 1 1 2

]
.

Collecting the nine codewords, T is constructed as follows.

T =

⎡
⎢⎢⎣
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0

⎤
⎥⎥⎦ .

Using T, we generate the resolvable block design (X,A)
where the point set is X = {0, 1, 2, 3, 4, 5, 6, 7, 8}. For
instance, block B0,0 is obtained by identifying the column
indexes of 0’s in the first row of T, i.e., B0,0 = {0, 1, 2}.
Following this, we obtain

A ={{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {0, 3, 6}, {1, 4, 7}, {2, 5, 8},
{0, 5, 7}, {1, 3, 8}, {2, 4, 6}, {0, 4, 8}, {2, 3, 7}, {1, 5, 6}}.

It can be observed that A has a resolution (cf. Definition 1)
with the following parallel classes.

P0 = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}},
P1 = {{0, 3, 6}, {1, 4, 7}, {2, 5, 8}},
P2 = {{0, 5, 7}, {1, 3, 8}, {2, 4, 6}}, and

P3 = {{0, 4, 8}, {2, 3, 7}, {1, 5, 6}}.

B. A special class of linear block codes

In this work, we consider a special class of linear block
codes whose generator matrices satisfy specific rank proper-
ties. It turns out that resolvable designs obtained from these
codes are especially suited for usage in coded caching.

Consider an (n, k) linear block code over GF (q) and denote
the generator matrix G as G = [gij], where 0 ≤ i ≤ k − 1,
0 ≤ j ≤ n− 1. Let gj denote the j-th column of G. Let z be
the least positive integer such that k + 1 divides nz (denoted
by k + 1 | nz). We let (t)n denote t mod n.

In our construction we will need to consider various col-
lections of k + 1 consecutive columns of G (wraparounds
over the boundaries are allowed). For this purpose, let Ta =
{a(k + 1), · · · , a(k + 1) + k} and Sa = {(t)n | t ∈ Ta}. Let
GSa

= [gi0 , · · · ,gik] be a submatrix of G specified by the
columns in Sa, i.e., gij ∈ GSa

if ij ∈ Sa. Next, we define
the (k, k + 1)-consecutive column property that is central to
the rest of the discussion.

Definition 2. (k, k+1)-consecutive column property. Consider
the submatrices of G specified by GSa

for 0 ≤ a ≤ zn
k+1 − 1.

We say that G satisfies the (k, k + 1)-consecutive column
property if all k × k submatrices of each GSa

are full rank.

Henceforth, we abbreviate the (k, k+1)-consecutive column
property as (k, k+ 1)-CCP or simply by CCP, if the value of
k is clear from the context.

Example 2. In Example 1 we have k = 2, n = 4 and hence
z = 3. Thus, S0 = {0, 1, 2},S1 = {3, 0, 1},S2 = {2, 3, 0} and
S3 = {1, 2, 3}. The corresponding generator matrix G satisfies
the CCP as any two columns of the each of submatrices
GSi , i = 0, . . . , 3 are full-rank.

2

Parallel Classes

Recovery Sets

P0 P1 P2 P3

PS0 PS1 PS2 PS3

0 1 2 0 1
2 0

1
2

0 1 2

Fig. 1. Recovery set bipartite graph

C. Usage in a coded caching scenario

Our proposed placement scheme uses resolvable designs
generated from linear block codes that satisfy the CCP. We
associate the users with the blocks. Each subfile is associated
with a point and an additional index as explained below. The
delivery scheme leverages the structure imposed by the CCP.

Example 3. Consider the resolvable design from Example
1, where we recall that z = 3. The blocks in A correspond
to twelve users U012, U345, U678, U036, U147, U258, U057,
U138, U246, U048, U237, U156. Each file is partitioned into
Fs = 9 × z = 27 subfiles, each of which is denoted by
W s

n,t, t = 0, · · · , 8 and s = 0, 1, 2. The cache in user Uabc,
denoted Zabc is specified as Zabc = {W s

n,t | t ∈ {a, b, c}, s ∈
{0, 1, 2} and n ∈ [N]}. This corresponds to a coded caching
system where each user caches 1/3-rd of each file so that
M/N = 1/3.

In general, we have K = |A| = nq. Each file Wn, n ∈ [N]
is divided into qkz subfiles Wn = {W s

n,t | 0 ≤ t ≤ qk −
1, 0 ≤ s ≤ z − 1}. A subfile W s

n,t is cached in user UB

where B ∈ A if t ∈ B. Therefore, each user caches a total of
Nqk−1z subfiles. This requires Nqk−1z× F

qkz
= F N

q = FM
subfiles of cache memory at each user so that M/N = 1/q.

It remains to show that we can design a delivery phase
scheme that satisfies any possible demand pattern. Suppose
that in the delivery phase user UB requests file WdB

where
dB ∈ [N]. The server responds by transmitting several
equations that satisfy each user. Each equation allows k + 1
users from different parallel classes to simultaneously obtain
a missing subfile. Our delivery scheme is such that the
set of transmitted equations can be classified into various
recovery sets that correspond to appropriate collections of
parallel classes. It turns out that these recovery sets correspond
precisely to the sets Sa, 0 ≤ a ≤ zn

k+1 − 1 defined earlier. We
illustrate this by means of the example below.

Example 4. Consider the placement scheme specified in
Example 3. Let each user UB request file WdB

. The recovery
sets are specified by means of the recovery set bipartite graph
shown in Fig. 1, e.g., PS1 corresponds to S1 = {0, 1, 3}. The
outgoing edges from each parallel class are labeled arbitrarily
with numbers 0, 1 and 2. Our delivery scheme is such that
each user recovers missing subfiles with a specific superscript

from each recovery set that its corresponding parallel class
participates in. For instance, a user in parallel class P1 recovers
missing subfiles with superscript 0 from PS0

, superscript 1
from PS1

and superscript 2 from PS3
; these superscripts are

the labels of outgoing edges from P1 in the bipartite graph.
It can be checked, e.g., that user U012 which lies in P0

recovers all missing subfiles with superscript 1 from the
equations below.

W 1
d012,3 ⊕W 1

d036,2 ⊕W 0
d237,0, W 1

d012,6 ⊕W 1
d036,1 ⊕W 0

d156,0,

W 1
d012,4 ⊕W 1

d147,0 ⊕W 0
d048,1, W 1

d012,7 ⊕W 1
d147,2 ⊕W 0

d237,1,

W 1
d012,8 ⊕W 1

d258,0 ⊕W 0
d048,2, W 1

d012,5 ⊕W 1
d258,1 ⊕W 0

d156,2;

Each of the equations above benefits three users. They are
generated simply by choosing U012 from P0, any block from
P1 and the last block from P3 so that the intersection of all
these blocks is empty. The fact that these equations are useful
for the problem at hand is a consequence of the CCP.

The process of generating these equations can be applied to
all possible recovery sets. It can be shown that this allows all
users to be satisfied at the end of the procedure.

In what follows we first show that for the recovery set PSa

it is possible to generate equations that benefit k + 1 users
simultaneously.

Claim 1. Consider the resolvable design (X,A) constructed
as described in Section III.A by an (n, k) linear block code
that satisfies the CCP. Let PSa

= {Pi | i ∈ Sa} for 0 ≤ a ≤
zn
k+1 − 1, i.e., it is the subset of parallel classes corresponding

to Sa. We emphasize that |PSa | = k + 1. Consider blocks
Bi1,li1

, . . . , Bik,lik
(where lij ∈ {0, . . . , q − 1}) that are

picked from any k distinct parallel classes of PSa . Then,
| ∩k

j=1 Bij ,lij
| = 1.

Proof. Following the construction in Section III.A, we note
that a block Bi,l ∈ Pi is specified by

Bi,l = {j : Ti,j = l}.
Let G = [gab], for 0 ≤ a ≤ k − 1, 0 ≤ b ≤ n− 1.

Now consider Bi1,li1
, . . . , Bik,lik

(where ij ∈ Sa, lij ∈
{0, . . . , q− 1}) that are picked from k distinct parallel classes
of PSa

. W.l.o.g. we assume that i1 < i2 < · · · < ik. Let
I = {i1, . . . , ik} and TI denote the submatrix of T obtained
by retaining the rows in I. We will show that the vector
[li1 li2 . . . lik]

T is a column in TI .
To see this consider the system of equations in variables

u0, . . . ,uk−1.

k−1∑
b=0

ubgbi1 = li1 ,

...

k−1∑
b=0

ubgbik = lik .

By the CCP, the vectors gi1 ,gi2 , . . . ,gik are linearly indepen-
dent. Therefore this system of k equations in k variables has
a unique solution over GF (q). The result follows.

3

Algorithm 1: Signal Generation Algorithm

Input : Indices of recovery set Sa, superscript function
Ea(B) for user UB , signal set Sig = ∅.

1 while any user UB ∈ Pj , j ∈ Sa does not recover all its
missing subfiles with superscript Ea(B) do

2 Pick users UBi1,li1
, . . . , UBik+1,lik+1

where

lj ∈ {0, . . . , q − 1}, Bj,lj ∈ Pj and
j ∈ Sa = {i1, · · · , ik+1}, such that ∩j∈SaBj,lj = φ;

3 Let l̂s = ∩j∈Sa\{s}Bj,lj for s ∈ Sa;

4 Add ⊕s∈SaW
Ea(Bs,ls)

dBs,ls
,l̂s

to Sig

5 end
Output: Signal set Sig.

Claim 1 implies that any k users from k different parallel
classes of PSa

have a unique subfile in common. This can
be used in turn to generate an equation that simultaneously
benefits k + 1 users.

The formal argument is made in Algorithm 1 which operates
as follows. It takes as input a recovery set PSa

= {Pi | i ∈ Sa}
and superscript function Ea(B) for each user UB in PSa

,
which indicates the superscript of subfiles of UB that will
be recovered. For any k + 1 users UB from k + 1 distinct
parallel classes, if their corresponding blocks have no point
in common, they can generate a signal, each of which can
recover one missing subfile of UB with superscript Ea(B).

Claim 2. For each user UB belonging to a parallel class in
PSa

with superscript function Ea(B), the signals generated
by Algorithm 1 can recover all the missing subfiles needed by
UB with superscript Ea(B).

For each recovery set PSa , the superscript function Ea(B)
of a user UB in parallel class P ∈ PSa is obtained by the
bipartite recovery set graph (see Fig. 1 for an example).

The overall delivery scheme repeatedly applies Algorithm
1 to each of the recovery sets.

Claim 3. The proposed delivery scheme terminates and allows
each user’s demand to be satisfied. Furthermore the transmis-
sion rate of the server is

(q−1)n
k+1 and the subpacketization level

is qkz.

The main requirement for Claim 3 to hold is that the
recovery set bipartite graph be biregular, where multiple edges
between the same pair of nodes is disallowed and the degree
of each parallel class is z. This follows from the definition of
the recovery sets (see [6] for details).

The construction above works for a system where M/N =
1/q. It turns out that this can be converted into a scheme
for M

N = 1 − k+1
nq . Thus, any convex combination of these

two points can be obtained by memory-sharing. We say that
an equation is of the all-but-one type if it is of the form
Wdi1

,Ai1
⊕Wdi2

,Ai2
⊕· · ·⊕Wdig ,Aig

where for each � ∈ [g],
we have i� /∈ Ai� and i� ∈ ∩ij :j∈[g],j �=�Aij . Furthermore, we
say that such an equation benefits g users.

Claim 4. Consider a caching system with K users, cache
fraction M

N and subpacketization level Fs, where the placement
is specified by the incidence matrix of a design. Suppose that
in the delivery phase, this system transmits Δ equations where
each equation is of the all-but-one type and benefits g users.

Then there exists another coded caching system with K ′ =
K users, cache fraction M ′

N ′ = K−g
K and subpacketization level

F ′
s = Δ. Furthermore, this system requires the transmission

of Δ′ equations, each of which allows g′ = K(1 − M
N)

users to simultaneously recover missing subfiles. The overall
transmission rate is thus Fs/Δ.

Applying Claim 4 in our context implies the existence of a

system with K ′ = nq, M ′
N ′ = 1 − k+1

nq , F ′
s = (q − 1)qk zn

k+1 ,

and transmission rate R′ = Fs

Δ = k+1
(q−1)n .

III. SOME CLASSES OF LINEAR CODE SATISFIES THE CCP

Maximum-distance-separable (MDS) codes are clearly a
class of codes that satisfy the CCP. In fact, for these codes any
k columns of the generator matrix can be shown to be full rank.
Note however, that MDS codes typically need large field size,
e.g., q ≥ n. In our construction, the value of M/N = 1/q
and the number of users is K = nq. Thus, for large n,
we will only obtain systems with small values of M/N , or
equivalently large values of M/N (by Claim 4 above). This
may be restrictive in practice.

However, there are other classes of codes that do not suffer
from the field size issue. As shown in our previous work [5], a
(k+1, k) single parity check (SPC) code can be defined over
the additive group Z mod q (where q is not necessarily prime)
and such systems with K = (k+1)q,M/N = 1/q and F = qk

can be defined for any integer value of q. More generally, we
can find several classes of cyclic codes that satisfy the CCP.

A. Cyclic Codes

A cyclic code is a linear block code, where the circular shift
of each codeword is also a codeword [8]. The generator matrix
of (n, k) cyclic code over GF (q) is obtained as below.

G =

⎡
⎢⎢⎢⎣
g0 g1 · · · gn−k 0 · · 0
0 g0 g1 · · · gn−k 0 · 0
...

...
0 0 · 0 g0 g1 · · · gn−k

⎤
⎥⎥⎥⎦

The following claim shows that for verifying the CCP for
a cyclic code it suffices to pick any set of k + 1 consecutive
columns.

Claim 5. Consider a (n, k) cyclic code with generator matrix
G. Let GS denote a set of k + 1 consecutive columns of G.
If each k × k submatrix of GS is full rank, then G satisfies
the (k, k + 1)-CCP.

Claim 5 implies a low complexity search algorithm to de-
termine if a cyclic code satisfies the CCP. Instead of checking
all GSa , 0 ≤ a ≤ zn

k+1 − 1, in Definition 2, we only need

to check an arbitrary GS = [g(i)n ,g(i+1)n , · · · ,g(i+k)n],
for 0 ≤ i < n. To further simplify the search, we choose
i = n− �k

2 � − 1.

4

For this choice of i, Claim 6 shows that GS is such that we
only need to check the rank of a list of small size of matrices
to determine if each k × k submatrix of GS is full rank.

Claim 6. A cyclic code with generator matrix G satisfies the
CCP if the following conditions hold.

• For 0 < j ≤ �k
2 �, the submatrices

Cj =

⎡
⎢⎢⎢⎢⎢⎣

gn−k−1 gn−k 0 · · 0
gn−k−2 gn−k−1 gn−k 0 · 0

...
...

gn−k−j+1 · · · · gn−k

gn−k−j · · · · gn−k−1

⎤
⎥⎥⎥⎥⎥⎦

have full rank. In the above expression, gi = 0 if i < 0.
• For �k

2 � < j < k, the submatrices

Cj =

⎡
⎢⎢⎢⎢⎢⎣

g1 g2 · · · · gk−j

g0 g1 · · · · gk−j−1

...
...

0 · · 0 g0 g1 g2
0 · ·· 0 g0 g1

⎤
⎥⎥⎥⎥⎥⎦

have full rank.

Example 5. Consider the polynomial g(X) = X4 + X3 +
X+2 over GF (3). Since it divides X8−1, it is the generator
polynomial of a (8, 4) cyclic code over GF (3). The generator
matrix of this code is given below.

G =

⎡
⎢⎢⎣
2 1 0 1 1 0 0 0
0 2 1 0 1 1 0 0
0 0 2 1 0 1 1 0
0 0 0 2 1 0 1 1

⎤
⎥⎥⎦ .

It can be verified that the 4 × 5 submatrix which consists of
the two leftmost columns and three rightmost columns of G
is such that all 4× 4 submatrices of it are full rank. Thus, by
Claim 5 the (4,5)-CCP is satisfied for G.

IV. COMPARISON WITH EXISTING SCHEMES

Let R∗ and F ∗
s denote the rate and the subpacketization

level of our proposed scheme. Let RMN , FMN
s be the corre-

sponding quantities for the scheme in [1]. We note that the
result in [2], [5] is a special case of our work when the linear
block code is chosen as a single parity check code over Z

mod q. In this specific case, q does not need to be a prime
power (see [5] for more details). Thus, our results subsume
the results of [2].

For comparison with [1], we note that for M
N = 1

q

R∗

RMN
=

1 + n

1 + k
, and

F ∗
s

FMN
s

≈ qk−nz

(
q − 1

q

)n(q−1)

.

It is not too hard to see that F ∗
s is exponentially lower than

FMN
s . Thus, our rate is higher, but the subpacketization level

is exponentially lower. A similar result can be shown in the
case when M/N = 1− k+1

nq (see [6] for more details).

An alternate way of comparing the results is to keep the
transmission rates of both schemes roughly the same and then

determine the subpacketization levels. This can be achieved
by using memory-sharing in the scheme of [1]. It is hard in
general to match the rates exactly. Accordingly, we show this
by means of an example below.

Example 6. Consider a (9, 5) linear block code over GF (2)
with generator matrix specified below,

G =

⎡
⎢⎢⎢⎣

1 0 0 0 0 1 1 0 0
0 1 0 0 0 1 0 1 0
0 0 1 0 0 1 0 0 1
0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 1 1

⎤
⎥⎥⎥⎦

It can be checked that G satisfies the (5, 6)-CCP. Thus, it
corresponds to a coded caching scheme with K = 9×2 = 18,
M
N = 1

2 , R∗ = 3
2 and F ∗

s = 64.
We can achieve the almost the same rate by performing

memory-sharing using scheme of [1] in a caching scheme with
K = 18. We divide each file into two smaller subfiles W 1

n

and W 2
n of equal size. The scheme of [1] is then applied

separately on W 1
n and W 2

n with M1

N1
= 2

9 (corresponding

to W 1
n) and M2

N2
= 7

9 (corresponding to W 2
n). Thus, the

overall cache fraction is still 1/2. The rate of this scheme
is RMN ≈ 3/2. However, the subpacketization level is
FMN
s =

(
K

KM1/N1

)
+
(

K
KM2/N2

)
= 6120.

V. CONCLUSIONS AND FUTURE WORK

In this work we have demonstrated a link between spe-
cific classes of linear block codes and the subpacketization
problem in coded caching. Leveraging this approach allows
us to construct families of coded caching schemes where the
subpacketization level is exponentially smaller compared to
the approach of [1].

There are several opportunities for future work. Even though
our subpacketization level is significantly lower than [1], it
still scales exponentially with the number of users. Of course,
the rate of growth with the number of users is much smaller.
Investigating schemes with subpacketization levels that grow
sub-exponentially with K and schemes that work with general
values of M/N are interesting directions for future work.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Info. Theory, vol. 60, pp. 2856–2867, May 2014.

[2] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design in centralized coded caching scheme,” preprint, 2016,
[Online] Available: http://arxiv.org/abs/1510.05064.

[3] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching schemes:
A hypergraph theoretical approach,” preprint, 2016, [Online] Available:
https://arxiv.org/abs/1608.03989.

[4] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis, “Finite
length analysis of caching-aided coded multicasting,” in 52nd Annual
Allerton Conference on Communication, Control, and Computing, Sept
2014, pp. 914–920.

[5] L. Tang and A. Ramamoorthy, “Coded Caching with Low Subpacketiza-
tion Levels,” in Workshop on Network Coding (NetCod), 2016.

[6] ——, “Low subpacketization schemes for coded caching,” 2017, [Online],
Available:https://www.ece.iastate.edu/adityar/publications/.

[7] D. R. Stinson, Combinatorial Designs: Construction and Analysis.
Springer, 2003.

[8] S. Lin and D. J. Costello, Error Control Coding, 2nd Ed. Prentice Hall,
2004.

5

