
Asynchronous Coded Caching
Hooshang Ghasemi and Aditya Ramamoorthy

Department of Electrical and Computer Engineering, Iowa State University, Ames IA 50011 U.S.A.
Email: {ghasemi,adityar} @iastate.edu

Abstract—Coded caching is a technique that promises huge
reductions in network traffic in content-delivery networks. How-
ever, the original formulation and several subsequent contribu-
tions in the area, assume that the file requests from the users
are synchronized, i.e., they arrive at the server at the same time.
In this work we formulate and study the coded caching problem
when the file requests from the users arrive at different times.
We assume that each user also has a prescribed deadline by
which they want their request to be completed. In the offline
case, we assume that the server knows the arrival times before
starting transmission and in the online case, the user requests are
revealed to the server over time. We present a LP formulation
for the offline case that minimizes the overall rate subject to
constraint that each user meets his/her deadline. While the online
case is much harder, we demonstrate that in the case when the
server wishes to minimize the overall completion time, the online
solution can be as good as the offline solution. Our simulation
results indicate that in the presence of mild asynchronism, much
of the benefit of coded caching can still be leveraged.

I. INTRODUCTION

Large scale content delivery over the Internet is often
facilitated by the usage of caching. Conventional caching
typically relies on placing popular content closer to the end
users. The work of [1] considered the usage of coding in the
caching problem and demonstrated that significant reductions
in the induced network traffic were possible. While this is a
significant result, the original formulation of the coded caching
problem assumes that the user requests are synchronized, i.e.,
all file requests from the users arrive at the server at the same
time. From a practical perspective, it is important to consider
the case when the requests of the users are not synchronized;
we refer to this as the asynchronous coded caching problem.
In this case, a simple strategy would be to wait for the last
request to arrive and then apply the scheme of [1]. Such a
strategy will be quite good in terms of the overall rate of
transmission from the server. However, this may be quite bad
for an end user’s experience, e.g., the delay experienced by
the users will essentially be dominated by the arrival time of
the last request.

In this work we formulate and study the coded caching
problem when the user requests arrive at different times.
Moreover, each user has a specific deadline by which his/her
demand needs to be satisfied. We examine both the offline
and online versions of this problem. In the offline version,
the server knows the arrival times and deadlines of all users
before starting transmission. In the online case, the server is
revealed information about the arrival times and deadlines as
time progresses.

This work was supported in part by the National Science Foundation by
grants CCF- 1320416 and CCF- 1149860.

1) Main contributions:
• Linear programming (LP) formulation in the offline case.

We propose a LP that determines a schedule for the
equations transmitted from the server. If feasible, the
schedule is such that each user meets its deadlines and
the rate of transmission from the server is minimized.
This allows us to study the effect of asynchronism on the
coded caching rate.

• Specific scenarios in the online case. While the online
case is much harder, we demonstrate that in general
coding within subfiles of the same user is essential.
Furthermore, we show that if the deadlines are loose
enough, there is no difference between the rates in online
and offline cases. In particular, the practically important
scenario where users do not have deadlines, but wish to
minimize the overall completion time by which each user
is satisfied would be an instance of this.

We also present extensive simulation results that indicate
that the coded caching rate degrades quite gracefully in the
presence of asynchronism. Under mild asynchronism, much
of the benefits of coded caching can still be leveraged.

2) Related Work: The delay sensitive coded caching prob-
lem was first studied in [2]. They considered the decentralized
coded caching model, and considered a situation where each
subfile has a specific deadline. Only the online case was
considered and heuristics for transmission from the server
were proposed. The heuristics are found to have good per-
formance. However, the transmission time for each packet
was not considered in their formulation. Our LP formulation
can be viewed as a bound on the possible performance of
any online scheme. The work of [3] investigated the problem
of updating the cache content in the coded caching context;
however synchronous file requests were considered.

II. PROBLEM FORMULATION

A coded caching system contains a server with N files,
denoted Wi, i = 1, . . . , N , each of size F subfiles, where a
subfile is a basic unit of storage. The system also contains
K users each connected to the server through an error free,
broadcast shared link. Each of the users is equipped with a
local cache of size MF subfiles; we denote cache content
of user i by Zi which is a function of W1, . . . ,WN . The
system operates in two distinct phases. In the placement phase
the content of the caches is populated by server. This phase
does not depend on the future requests of the users which are
assumed to be arbitrary. In the delivery phase each user makes
a request and the server transmits potentially coded signals

to satisfy the requests of the users. In the original work, the
requests are assumed to arrive at the server at the same time.

We assume that a specific uncoded placement scheme is
being used by the coded caching system. It is well recognized
that the delivery phase in this case corresponds to an index
coding problem [4]. While the optimal solution for an arbitrary
index coding problem is known to be hard [4], techniques
such as clique cover on the side information graph are well-
recognized to have good performance [4]. In fact the delivery
phase in [1] is precisely a clique cover on their side informa-
tion graph, assuming worst case demands. Each transmitted
equation is such that a certain number of users benefit from
it simultaneously. We assume that our delivery phase in the
asynchronous setting also transmits equations of this type.

Under these assumptions, we formulate and study the coded
caching problem when the file requests come at different times.
Furthermore, each user specifies a deadline by which he/she
expects the request to be satisfied. We assume that transmitting
a single packet over shared link takes a certain number of time
slots. We study the rate gains of coded caching under this
setup, i.e., among the class of strategies that allow the users
to meet their deadlines, we attempt to determine those where
the server transmits the fewest number of packets.

While our approach applies for general placement schemes,
in this work we will describe our approach by assuming that
the system works with the placement and delivery scheme
of [1]. In particular, we assume a system with K users where
each user has a cache of size MF subfiles. The server contains
N ≥ K files1 denoted Wn, n = 1, . . . , N . Let t = KM/N be
an integer. For this system, F =

(
K
t

)
, i.e., each file is divided

in
(
K
t

)
subfiles corresponding to t-sized subsets of [K]. Thus

file Wn = {Wn,A : A ⊂ [K], |A| = t}. User i caches all
subfiles Wn,A where i ∈ A.

We assume that time τ ≥ 0 is slotted. Let [n] denote the set
{1, . . . , n} and the symbol ⊕ represent the XOR operation.
We say that an equation E is of type all-but-one if E =
⊕`l=1Wdil ,Ail

where for each l ∈ [`], we have il /∈ Ail and
il ∈ Aij for all j ∈ [`]\{l}. It is easy to see that the equations
transmitted in the delivery phase in [1] are of the all-but-one
type. With this specified placement, the asynchronous coded
caching problem with deadlines can be formulated as follows.
Inputs.
• User requests. User i requests file Wdi , with di ∈ [N].

User i’s request arrives at the server at time Ti.
• Deadlines. The i-th user needs to be satisfied by time
Ti + ∆i, where ∆i is a positive integer.

• Transmission delay. We assume that the size of each
subfile is such that it needs r time-slots to be transmitted
over the shared link, i.e., each subfile can be treated
as equivalent to r packets, where each packet can be
transmitted in one time slot.

As the problem is symmetric with respect to users, w.l.o.g. we
assume that T1 ≤ T2 ≤ . . . ≤ TK . Let Tmax = maxi Ti +
∆i. Note that there are upon sorting the set arrival times and
deadlines, i.e., ∪Ki=1{Ti, Ti + ∆i}, we can divide the interval

1We assume that N ≥ K as it corresponds to the worst case rate and is
also the more practical scenario.

[T1, Tmax) into at most 2K − 1 intervals. Let the integer β,
where 1 ≤ β ≤ 2K − 1 denote the number of intervals. Let
Π1, . . . ,Πβ represent the intervals where Πi appears before
Πj if i < j. The intervals are left-closed and right-open. An
easy to see but very useful property of the intervals that we
have defined is that for a given i, either [Ti, Ti+∆i)∩Π` = Π`

or [Ti, Ti + ∆i) ∩ Π` = ∅ (see Fig. 1 for an example). We
define

U` = {i ∈ [K] : [Ti, Ti + ∆i) ∩Π` = Π`}, and
D` = {di ∈ [N] : i ∈ U`}.

Thus, U` is the set of active users in time interval Π` and D`

is the corresponding set of active file requests.
Outputs.
• Transmissions at each time slot. If the problem is fea-

sible, the schedule specifies which equations need to be
transmitted at each time. The equations need to be of the
all-but-one type. The schedule is such that each user can
recover all its missing subfiles within its deadline. The
equations transmitted at time τ ∈ Π` only depend on D`.

There is another constraint that can be modeled within
this framework which has to do with integral vs. fractional
solutions. In the fractional solution we assume that each packet
that is transmitted over the shared edge can be subdivided as
finely as needed. Thus, in each time slot we could transmit
multiple equations that may serve potentially different subsets
of users. This assumption is reasonable if the underlying
subfiles and hence the packets are quite large. On the other
hand, in the integral case, we assume that at each time slot,
at most one equation can be transmitted. Thus, either the
server transmits a certain packet entirely or does not transmit
it; subdividing packets is disallowed. In what follows, we
consider two versions of the above problem.
• Offline version. In the offline version, we assume that the

server is aware of {Ti,∆i, di}Ki=1 at τ = 0. However,
at time τ ∈ Π` the transmitted equation(s) will only
depend on D`, i.e., the server cannot start sending missing
subfiles for a given user until its request arrives.

• Online version. In the online version, information about
the file requests are revealed to the server as time pro-
gresses. At each time τ , it only has information about the
requests that have arrived until time τ .

III. OFFLINE ASYNCHRONOUS CODED CACHING

We present the following example to clarify the problem.
Example 1: Consider a scenario with N = K = 3, M = 1,

and r = 1. We assume that Ti = i and ∆i = 2 for
i ∈ {1, 2, 3}. The server contains three files A, B, and C.
According to placement scheme in [1], each file is divided
to
(
K
t

)
= 3 subfiles and user i caches Zi = {Ai, Bi, Ci}.

We assume that the first user requests file A, the second user
requests file B, and the third user requests file C.

An offline solution for this problem is shown in Fig. 1,
where the transmitted equation in each time slot appears above
the timeline. It can be observed that each user can recover the
missing subfiles that they need.

Π1 Π2 Π3 Π4

A3 A2 ⊕B1 B3 ⊕ C2 C1
τ

1 2 3 4 5
T1

T2
T3

Fig. 1: Offline solution corresponding to the Example 1. The
double-headed arrows show the active time slots for each user. The
transmitted equations are shown above the timeline.

A. Linear programming formulation

For ease of subsequent presentation we first define the
following sets. We let Ω = {A : A ⊂ [K], |A| = t}, so
that it represents the indices of all the subfiles. Let Ω(i) =
{A : A ∈ Ω, i /∈ A} represent the indices that are not cached
by user i. Recall that U` is the set of active users in time
interval Π` and D` represents their file requests. Let U` be
set of all nonempty subsets U ⊆ U` with |U | ≤ t + 1. In
the subsequent discussion we call such a U , a user group. In
time interval Π`, a user group U ∈ U` represents a collection
of users that can be serviced simultaneously by the server.
For any U ⊆ [K], let IU be the set of indices of all times
intervals where users in U are simultaneously active, i.e.,
IU = {` : [Ti, Ti + ∆i) ∩Π` 6= ∅, ∀ i ∈ U}.

For each missing subfile Wdi,A (where A ∈ Ω(i)) we let
U{i,A} be the set of user groups where it can be transmitted,
i.e., U{i,A} = {U ∈ ∪β`=1U` : i ∈ U, U \ {i} ⊆ A}. We
note here that for a fixed i, there are potentially multiple sets
A1,A2, . . . ,Al ∈ Ω(i) such that U ∈ U{i,Aj} for j = 1, . . . , l.
For example, suppose that K = 4, t = 2 and let U = {1, 2}.
In this case U ∈ U1,{2,3} and U ∈ U1,{2,4}. Thus, user group
U can be used to potentially transmit different missing subfiles
needed by user i.

We let |Π`| denote the length of the time interval Π`. For
each time interval Π` with ` = 1, . . . , β and for each U ∈ U`
we define variable xU (`) ∈ [0, |Π`|] that represents the portion
of time interval Π` that is allocated to an equation that benefits
user group U . The actual equation will be determined shortly.

For each missing subfile Wdi,A and each U ∈ U{i,A} we
define variable y{i,A}(U) ∈ [0, r] that represents the portion
of the missing subfile Wdi,A transmitted within some or all
of the equations associated with xU (`) for ` ∈ IU . As
pointed out before, for a fixed i, U can be used to transmit
different missing subfiles needed by user i. However, a single
equation can only help recover one missing subfile needed by
i. Thus,

∑
`∈IU xU (`) must be shared between the appropriate

y{i,A}(U)’s. Accordingly, we need the following constraint for
i and a user group U which contains i.∑

A: i/∈A, U\{i}⊆A

y{i,A}(U) ≤
∑
`∈IU

xU (`).

In addition, at time interval Π` at most |Π`| packets can be
transmitted, so that

∑
U⊆U` xU (`) ≤ |Π`|. To ensure that

each missing subfile Wdi,A is transmitted in exactly r time
slots we have

∑
U∈U{i,A} y{i,A}(U) = r. Finally, we have the

following LP that minimizes the overall rate of transmission

Π2 Π3

xU (2), xU (3)
y{1,{2,3}}(U)
y{1,{2,4}}(U)

y{2,{1,3}}(U)
y{2,{1,4}}(U)

E1 = Wd1,{2,3} ⊕Wd2,{1,3}
E2 = Wd1,{2,4} ⊕Wd2,{1,4}

E1 E2 E2

Fig. 2: Equations corresponding to the feasible solution discussed
in Example 2.

from the server.

min

β∑
`=1

∑
U∈U`

xU (`) (1)

s.t.
∑
U∈U`

xU (`) ≤ |Π`|, ∀ ` = 1, . . . , β,∑
A∈B{i,U}

y{i,A}(U) ≤
∑
`∈IU

xU (`), ∀ U ∈ Vi, ∀i ∈ [K],

∑
U∈U{i,A}

y{i,A}(U) = r, ∀ A ∈ Ω(i), ∀i ∈ [K],

0 ≤ xU (`) ≤ |Π`|, and
0 ≤ y{i,A}(U) ≤ r.

where Vi = {U ∈ ∪β`=1U` : i ∈ U and |U | ≤ t + 1} and
B{i,U} = {A : A ∈ Ω(i), U ∈ Vi, U \ {i} ⊆ A}.

1) Interpretation of LP solution: We claim that the opti-
mization problem in (1) gives us a fractional solution for the
offline problem. Towards this end, we demonstrate that a feasi-
ble solution can be used to determine the appropriate equations
that need to be transmitted at each time. The equations are
such that the users can recover all their missing subfiles within
their deadlines. For i ∈ U , suppose that A1, . . . ,Al ∈ B{i,U}
are such that y{i,Aj}(U) 6= 0 for j = 1, . . . , l. This implies
that missing subfiles Wdi,A1

, . . . ,Wdi,Al
will be transmit-

ted in part by user group U . Since,
∑l
j=1 y{i,Aj}(U) ≤∑

`∈IU xU (`), it is possible to assign the y{i,Aj}(U)’s to
the available (strictly) positive xU (`)’s, such that there is
no overlap between them. This assignment is in general
not unique, but non-uniqueness does not affect our overall
solution. This assignment process is repeated for each member
of U . Example 2 discusses this in more detail.

At the end of this process, for a fixed user group U , we ob-
tain an assignment of the different y{i,A}(U) (for appropriate
{i,A}) to the corresponding xU (`)’s. The equation transmitted
on the particular interval is simply the XOR of subfile indices
that map to that interval. This is also shown in Fig. 2. The
equation is definitely valid since the missing subfile Wdi,Aj

is such that U \ {i} ⊆ Aj , thus each user l ∈ U \ {i} has this
missing subfile in its cache.

The entire solution can be constructed by repeating this
process for each user group U . According to the third con-
straint

∑
U∈U{i,A} y{i,A}(U) = r. This ensures that all missing

subfiles are transmitted.
The following example demonstrates how equations corre-

sponding to a feasible solution can be determined.

Example 2: We assume that the solution is such that for
U = {1, 2} with IU = {2, 3} we have xU (2) = xU (3) = 0.4,
y{1,{2,3}}(U) = y{2,{1,3}}(U) = 0.3, and y{1,{2,4}}(U) =
y{2,{1,4}}(U) = 0.5.

Fig. 2 visually demonstrates the equation for user group
U . Portion of time-intervals Π2 and Π3 that are allocated to
user group U are shown in Fig. 2 by thick red lines. Then,
for i = 1 ∈ U we allocate y{1,{2,3}}(U) = 0.3 to xU (2),
i.e., missing subfile Wd1,{2,3} will be transmitted in part in
this time (see the dark blue line in Fig. 2). Furthermore, we
allocate remaining part of xU (2) and the entire xU (3) = 0.4
to y{1,{2,4}}(U) = 0.5, i.e., missing subfile Wd1,{2,4} will be
transmitted in part in this time (light blue line in Fig. 2).

In a similar manner, for i = 2 ∈ U we allocate portions of
xU (2), xU (3) to y{2,{1,3}}(U) and y{2,{1,4}}(U) (green and
light green lines in Fig. 2 respectively). The actual equation
transmitted at any time is simply the XOR of the missing
subfiles. For example, in the first 0.3 units if time-interval Π2,
the server transmits Wd1,{2,3} ⊕Wd2,{1,3} while in the next
0.1 units, it transmits Wd1,{2,4} ⊕ Wd2,{1,4}. We emphasize
that the assignment for user 2 ∈ U can be done independently
of the assigment for user 1 ∈ U . The transmitted equations
would change but the solution will still satisfy each user.

2) Complexity analysis: It is easy to see that U` ⊆ {U ⊆
[K] : |U | ≤ t + 1} thus |U`| ≤

∑t+1
j=0

(
K
j

)
. Hence, there

are at most (2K − 1)
∑t+1
j=0

(
K
j

)
variables of the form xU (`).

Furthermore, as there are K
(
K−1
t

)
missing subfiles, thus

there are at most K
(
K−1
t

)∑t+1
j=0

(
K
j

)
variables of the form

y{i,A}(U)’s. Therefore, the total number of variables in (1) is
at most {K

(
K−1
t

)
+ 2K − 1}

∑t+1
j=0

(
K
j

)
variables.

It is not difficult to see that there are at most 2K − 1 +
(5K − 2)

∑t+1
i=1

(
K
i

)
+K

(
K−1
t

)
(2
∑t+1
j=0

(
K
j

)
+ 1) constraints.

3) Discussion: The complexity of our solution does not
have any dependence on the arrival times Ti’s and the
deadlines ∆i’s. Our formulation of the LP in terms of the
intervals allows us to circumvent this potential dependence.
A straightforward formulation of the above problem would
assign variables for all possible equations in the different
intervals (or time-slots). In particular, for a given user group U ,

we will need to consider
[(

K−|U |
t+1−|U |

)]|U |
possible equations.

It can be seen that this will require much more variables
and the corresponding problem will explode in size. We
work with user groups in our formulation and determine the
actual equations by interpretation of the feasible solution.
This reduces the complexity significantly with respect to a
straightforward formulation. Reference [2] considers the case
when each missing subfile has a prescribed deadline. Our LP
above can be modified easily to incorporate this aspect, though
the number of intervals in the worst case will increase a lot.
We will need to introduce variables of the form y`i,A that are
non-zero at time interval Π` only if subfile Wdi,A is active at
time interval Π` and modify some constraints appropriately.

IV. ONLINE ASYNCHRONOUS CODED CACHING

The online problem appears to be much harder to reason
about conceptually than the offline case. We make some partial

A3 ⊕A2 A2 ⊕B1 B3 ⊕ C2 C1
τ

1 2 3 4 5
T1

T2
T3

Fig. 3: Online solution corresponding to the Example 1. Note that
the server is forced to transmit A2 ⊕A3 at t = 1.

progress on a specific instances of this problem in our work.

A. Necessity of coding across missing subfiles of the same
user

Consider Example 1 from Section III, but now consider the
online scenario. Suppose that there is an adversary that makes
decisions on when a particular user request arrives. Further-
more, we assume that the adversary can see the decisions made
by the server. Suppose that the server does not code across any
user’s missing subfiles. At τ = 1, it has the choice to transmit
A2 or A3. We emphasize that it has to transmit either of these
as the deadline for user 1 is T1+∆1 = 3. If the server transmits
A3, then the adversary can force the arrival of the third user
with (T3,∆3) = (2, 2) and subsequently the arrival of the
second user with (T2,∆2) = (3, 2). In this case, the server
is forced to transmit A2 at τ = 2, which implies that user 3
misses its deadline. In a similar manner, if the server transmits
A2, the adversary can easily generate an arrival pattern so that
user 2 misses its deadline.

This issue can be circumvented if we transmit a linear
combination of both A2 and A3 in the first time slot as shown
in Fig 3. This example demonstrates that coding across missing
subfiles of user 1 is strictly better than the alternative. Note
that inn the synchronized model of [1], this is not needed.

B. Scenario where deadlines are loose enough
Let Ronline and Roffline denote the rate of transmission

from the server in the online and offline cases respectively.
Our next result shows that if the deadlines are loose enough,
the overall rate of transmission from the server in the online
case matches the offline case, i.e. R online/R offline = 1.

Theorem 1: Consider an asynchronous coded caching prob-
lem instance with parameters N , K, M = tN/K, r and
{Ti,∆i}Ki=1 where T1 ≤ T2 ≤ · · · ≤ TK . Suppose that the
deadlines are such that [i] ⊆ Uτ whenever i ∈ Uτ . Then, we
have R online/R offline = 1.

Remark 1: Optimality of online solution for minimizing the
overall completion time. Consider the important situation in
practice where individual users do not have deadlines. How-
ever, they are interested in minimizing the overall completion
time, i.e., the time by which each user is satisfied. In this case,
there is an online solution that has the same completion time
as the offline version, while having R online/R offline = 1.
Proof: For simplicity we assume that r = 1. The proof when
r > 1 is similar. Suppose that there is an offline fractional
solution to the problem which is given by a set of equations,
denoted {E(τ)}Tmax

τ=T1
that are transmitted within each time slot

[τ, τ+1). Each equation E ∈ E(τ) is assumed to be of the all-
but-one type. We will show that using the steps in Algorithm 1,
we can modify it to an online solution with rate (K−t)/(1+t).

50 100 150 200 250 300 350

2.7

2.8

2.9

3

3.1

TK − T1

R

random deadlines with ∆max = 168.

fixed deadline with ∆ = 120.

Synchronous rate in [1]

Fig. 4: Offline asynchronous coded caching simulation results for a
system with N = K = 10, t = 2, and r = 1 with fixed and random
deadlines.

In Algorithm 1 an equation which benefits (t + 1) users is
called “good” and others “bad”. In each iteration starting from
i = K and going backward, we keep converting bad equations
into good equations. First note that this operation is always
possible. For instance, if i = K, then all users are active in
[TK , . . . , TK +∆K], thus the replacement step (6) is valid. At
an intermediate step i < K, it can be seen that any equation
that benefits a user j > i has already been transformed into
a good one. Thus, the only bad equations under consideration
when i < K will be those that will benefit users ≤ i.
Again, these users are active at this stage, which implies that
transformation of these equations into good equations is valid.
Thus, our transformation ensures that users continue to meet
their deadlines.

It is easy to see that the rate of transmission can only
decrease with our modification. Next, we claim that at the end
of the algorithm all transmitted equations are good. Assume
otherwise, i.e., there is an equation E that benefits strictly less
than t+1 users. Suppose that this equation results in (part of)
missing subfile Wdi,A being recovered by user i ≤ t. However,
|{i} ∪ A| = t + 1, i.e., there is an index k ≥ t + 1 such that
k ∈ A. This implies that this missing subfile should have
been removed by the algorithm when we running iteration k
or higher. Thus, we arrive at a contradiction.

Finally, as all equations are good, our rate matches the
schemes of [1], i.e., it is exactly (K − t)/(1 + t). The new
scheme can easily be implemented by an online algorithm as
follows. The server simply waits until t + 1 requests come
in. Following this it greedily keeps transmitting equations that
benefit (t+1) users whenever it can. If it is unable to, it simply
waits until another request comes in.

V. SIMULATION RESULTS

We investigated the performance of the offline asynchronous
coded caching system via simulations. The maximal spread
in the arrival times is TK − T1. The remaining arrival times
were generated according to a Poisson process model with
parameter λ = (TK − T1)/K and were quantized to the most
recent integral value of τ . It is evident that the deadline of each
user, ∆i, has to be at least r

(
K−1
t

)
, i.e., the minimum number

of time slots each user needs to receive its missing subfiles.
We ran two types of simulations. The first set considers the

Algorithm 1 Modification of offline solution

Input: A solution, {E(τ)}Tmax

τ=T1

1: Set W = ∅. If an equation E ∈ E(τ) for τ =
T1, . . . , Tmax benefits (t + 1) users, tag it “good”, oth-
erwise “bad”.

2: for i = K,K − 1, . . . , t+ 1 do
3: Set Xi = {E : E ∈ E(τ) where τ = Ti, . . . , Ti +

∆i, E includes a missing subfile of user i}.
4: for each “bad” equation E ∈ Xi do
5: Let E = Wdi,A ⊕ . . .⊕Wd`,A`

6: Replace E with ⊕k∈SWdk,S/{k} where S = A ∪
{i},

7: W ←W ∪ {Wdk,S/{k} : k ∈ S},
8: Tag E as “good”,
9: end for

10: For each entry in W , remove the corresponding miss-
ing subfiles from any “bad” equation in {E(τ)} for
τ = T1 . . . Tmax.

11: end for

situation when ∆i = ∆ for all users. In the second set the
deadlines are random; we let ∆i = r

(
K−1
t

)
+ `i where `i is

chosen uniformly from [∆max].
Fig. 4 shows the simulation results for a scenario with N =

K = 10, t = KM/N = 2 and r = 1. The synchronous
rate in this case is (K − t)/(t + 1) = 2.67. As expected the
asynchronous rate matches the synchronous rate when TK−T1
is small. Recall that even in the synchronous case, the arrival
time of the last user TK has to be before the deadline of
the other users. In the random scenarios, when ∆max = 168
we have that the expected value of the ∆i’s is 120. Thus,
with high probability when the arrival spread is at least 120
(corresponding to the right part of the plot) the deadline for
T1 expires before TK , i.e., an equation that benefits both user
1 and user K cannot be transmitted. However, even in this
case the simulation indicates that the rate degrades to about
3.06, which is still quite good. When the arrival spread is
small, having fixed deadlines rather than random ones appears
to allow for a lower rate, though this gap reduces when the
arrival spread increases.

Overall, the simulations allow us to conclude that in the
offline case, the coded caching rate is quite robust to asyn-
chronous arrivals, i.e., the degradation in the rate is gradual
and most of the rate benefits can still be leveraged when the
asychronism is mild.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. on Info. Th., vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] U. Niesen and M. A. Maddah-Ali, “Coded caching for delay-sensitive
content,” in IEEE Intl. Conf. Comm., 2015, pp. 5559–5564.

[3] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”
IEEE/ACM Transactions on Networking, vol. 24, no. 2, pp. 836–845,
April 2016.

[4] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side
information,” vol. 57, no. 3, pp. 1479–1494, March 2011.

