
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013 655

Communicating the Sum of Sources
Over a Network

Aditya Ramamoorthy, Member, IEEE, and Michael Langberg, Member, IEEE

Abstract—We consider the network communication scenario,
over directed acyclic networks with unit capacity edges in which
a number of sources si each holding independent unit-entropy
information Xi wish to communicate the sum

∑
Xi to a set of

terminals tj . We show that in the case in which there are only
two sources or only two terminals, communication is possible if
and only if each source terminal pair si/tj is connected by at
least a single path. For the more general communication problem
in which there are three sources and three terminals, we prove
that a single path connecting the source terminal pairs does
not suffice to communicate

∑
Xi. We then present an efficient

encoding scheme which enables the communication of
∑

Xi for
the three sources, three terminals case, given that each source
terminal pair is connected by two edge disjoint paths.

Index Terms—Network coding, function computation, multi-
cast, distributed source coding.

I. INTRODUCTION

WE CONSIDER the problem of function computation
over directed acylic networks in this work. Under our

setting the sources are independent and the network links are
error-free, but capacity constrained. However, the topology
of the network can be quite complicated, e.g., an arbitrary
directed acyclic graph. This serves as an abstraction of current-
day computer networks at the higher layers. We investigate the
problem of characterizing the network resources required to
communicate the sum (over a finite field) of a certain number
of sources over a network to multiple terminals. By network
resources, we mean the number of edge disjoint paths between
various source terminal pairs in the network. Our work can be
considered as using network coding to compute and multicast
sums of the messages, as against multicasting the messages
themselves.
The problem of multicast has been studied intensively

under the paradigm of network coding. The seminal work of
Ahlswede et al. [1] showed that under network coding the
multicast capacity is the minimum of the maximum flows
from the source to each individual terminal node. The work
of Li et al. [2] showed that linear network codes are sufficient
to achieve the multicast capacity. The algebraic approach to

Manuscript received February 29, 2012; revised December 29, 2012. The
material in this work was presented in part at the 2008 IEEE International
Symposium on Information Theory in Toronto, Canada, at the 2009 IEEE
International Symposium on Information Theory in Seoul, South Korea and
the 2010 IEEE International Symposium on Information Theory, Austin, TX,
USA. This work was supported in part by NSF grants CCF-1018148 and
DMS-1120597.
A. Ramamoorthy is with the Department of Electrical and Computer

Engineering, Iowa State University, Ames IA 50011, USA (e-mail: adit-
yar@iastate.edu).
M. Langberg is with the Computer Science Division, Open University of

Israel, Raanana 43107, Israel (e-mail: mikel@openu.ac.il).
Digital Object Identifier 10.1109/JSAC.2013.130404.

network coding proposed by Koetter and Médard [3] provided
simpler proofs of these results.
The problem of multicasting sums of sources is an important

component in enabling the multicast of correlated sources over
a network (using network coding). Network coding for corre-
lated sources was first examined by Ho et al. [4]. The work
of Ramamoorthy et al. [5] showed that in general separating
distributed source coding and network coding is suboptimal
except in the case of two sources and two terminals. The work
of Wu et al. [6] presented a practical approach to multicasting
correlated sources over a network. Reference [6] also stated
the problem of communicating sums over networks using
network coding, and called it the Network Arithmetic problem.
We elaborate on related work in the upcoming Section II.
In this work, we present (sometimes tight) upper and lower

bounds on the network resources required for communicating
the sum of sources over a network under certain special cases.

A. Main Contributions

We consider networks that can be modeled as directed
acyclic graphs, with unit capacity edges. Let G = (V,E)
represent such a graph. There is a set of source nodes S ⊂ V
that observe independent unit-entropy sources, Xi, i ∈ S, and
a set of terminal nodes T ⊂ V , that seek to obtain

∑
i∈S Xi,

where the sum is over a finite field. Our work makes the
following contributions.

i) Characterization of necessary and sufficient conditions
when either |S| = 2 or |T | = 2.
Suppose that G is such that there are either two sources
(|S| = 2) and an arbitrary number of terminals or an
arbitrary number of sources and two terminals (|T | = 2).
The following conditions are necessary and sufficient for
recovery of

∑
i∈S Xi at all terminals in T .

max-flow(si − tj) ≥ 1 for all si ∈ S and tj ∈ T.

Our proofs are constructive, i.e., we provide efficient
algorithms for the network code assignment.

ii) Unit connectivity does not suffice when |S| and |T | are
both greater than 2.
We present a network G such that |S| = |T | = 3 in
which the maximum flow between each source terminal
pair is at least 1 and (as opposed to that stated above)
communicating the sum of sources is not possible.

iii) Sufficient conditions when |S| = |T | = 3.
Suppose that G is such that |S| = |T | = 3. The following
condition is sufficient for recovery of

∑
i∈S Xi at all tj ∈

T .

max-flow(si − tj) ≥ 2 for all si ∈ S and tj ∈ T.

0733-8716/13/$31.00 c© 2013 IEEE

656 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

Efficient algorithms for network code assignment are
presented in this case as well. Note however, that the
algorithms may be randomized in some cases, with a
probability of success that can be made arbitrarily close
to one.

This paper is organized as follows. We discuss background
and related work in Section II and our network coding
model in Section III. The characterization for the case of
|S| = 2, |T | = n and |S| = n, |T | = 2 is discussed in Section
IV. Our counter-example demonstrating that unit-connectivity
does not suffice for three sources and three terminals can
be found in Section V. Sections VI and VII discuss the
sufficient characterization in the case of three sources and
three terminals, and Section VIII presents the conclusions and
possibilities for future work.

II. BACKGROUND AND RELATED WORK

Prior work of an information theoretic flavor in the area
of function computation has mainly considered the case of
two correlated sources X and Y , with direct links between
the sources and the terminal, where the terminal is interested
in reconstructing a function f(X,Y). In these works, the
topology of the network is very simple, however the structure
of the correlation between X and Y may be arbitrary. In
this setting, Korner & Marton [7] determine the rate region
for encoding the modulo-2 sum of X and Y when they are
uniform, correlated binary sources. The work of Orlitsky &
Roche [8] determines the required rate for sending X to a
decoder with side information Y that must reliably compute
f(X,Y). The result of [8] was extended to the case when both
X and Y need to be encoded (under certain conditions) in [9].
Yamamoto [10] (generalizing the Wyner-Ziv result [11]) found
the rate-distortion function for sending X to a decoder with
side information Y , that wants to compute f(X,Y) within a
certain distortion level (see also [12] for an extension). Nazer
et al. [13] consider the problem of reliably reconstructing a
function over a multiple-access channel (MAC) and finding
the capacity of finite-field multiple access networks. In the
majority of these works, the sources and the terminal are
connected by direct links or by simple networks (such as
a MAC). A work closer in spirit to our work is [14] that
considers functional compression over tree-networks.
In this work we consider a problem setting in which the

sources are independent and the network links are error-
free, but capacity constrained. However, the topology of the
network can be quite complicated, such as an arbitrary directed
acyclic graph. This is well motivated since it is a good
abstraction of current-day computer networks (at the higher
layers). We investigate the problem of characterizing the net-
work resources required to communicate the sum of a certain
number of sources over a network to multiple terminals.
Network resources can be measured in various ways. For
example, one may specify the maximum flow between the
subsets of the source nodes and subsets of the terminal nodes
in the network. In the current work, all of our characterizations
are in terms of the maximum flow between various si − tj
pairs, where si (tj) denotes a source (terminal) node. Previous
work in this area, includes the work of Ahlswede et al. [1],

who introduced the concept of network coding and showed
the capacity region for multicast. In multicast, the terminals
are interested in reconstructing the actual sources. Numerous
follow-up works have extended and improved the results
of [1], in different ways. For example, [2], [3] considered
multicast with linear codes. Ho et al. [4] proposed random
network coding and examined the multicast of correlated
sources over a network and showed a tight capacity region
for it that can be achieved by using random network codes.
Follow-up works [5], [6] investigated practical approaches
for the multicast of correlated sources. As shown in [6], the
problem of communicating (multicasting) the sum (over a
finite field) of sources over a network is a subproblem that
can help facilitate practical approaches to the problem of
multicasting correlated sources.
In this work we consider function computation under net-

work coding. Specifically, we present network code assign-
ment algorithms for the problem of multicasting the sum of
sources over a network. As one would expect, one needs
fewer resources in order to support this. To the best of our
knowledge, the first work to examine function computation in
this setting is the work of Ramamoorthy [15], that considered
the problem of multicasting sums of sources, when there
are either two sources or two terminals in the network.
Subsequently, the work of Langberg and Ramamoorthy [16]
showed that the characterization of [15] does not hold in the
case of three sources and three terminals. Reference [16],
proposed an alternate characterization in this case. The current
paper is a revised and extended version of [15], [16] and [17]
that contains all the proofs and additional observations.
We note, as presented by Rai and Dey in [18], that the

task of finding a network coding scheme in the setting
of sum-networks is strongly connected to the problem of
finding a network coding solution in the multiple-unicast
communication setting. Specifically, for any mutiple unicast
network, [18] constructs a sum-network which is solvable if
and only if the original multiple unicast network is solvable
(the reduction of [18] increases the number of sources and
terminals in the network). Rai and Dey [19] independently
found the same counter-example found in our work [16];
however, their proof only shows that linear codes do not suffice
for multicasting sums under the characterization of [15]. The
work of Appuswamy et al. [20], [21] also considers the
problem of computing general functions in the setting of error-
free directed acyclic networks. In [20], [21], the emphasis is on
considering the rate of the computation, where the rate refers
to the maximum number of times a function can be computed
per network usage. While their setting is significantly more
general, their results are mostly in the context of only single
terminal networks.
Finally, the work most related to our result on three

source/three terminal networks is the conference publication
of Shenvi and Dey [22] (and its extended version avail-
able as [23]) which proposes (in this case) a combinatorial
characterization for sum computation via network coding.
In our work, for three source/three terminal networks, we
present a simple sufficient combinatorial condition for sum-
communication based on flow requirements. Our result is not
proven to be necessary, and indeed in the subsequent work

RAMAMOORTHY and LANGBERG: COMMUNICATING THE SUM OF SOURCES OVER A NETWORK 657

of [22], [23], our flow condition is refined (and weakened) to
obtain a tight characterization. The characterization of [22],
[23] implies a significant improvement in the understanding of
3s/3t sum-networks. Nevertheless, we believe that our results
(obtained independently and prior to [22], [23]) are of interest
due to the natural and simple nature of our sufficient condition.

III. NETWORK CODING MODEL

Our model and terminology follow those common in the
network coding literature, e.g. [3]. We represent the network
as a directed acyclic graph G = (V,E). The network contains
a set of source nodes S ⊂ V that are observing independent,
discrete unit-entropy sources and a set of terminals T ⊂ V .
We assume that each edge in the network has unit capacity and
can transmit one symbol from a finite field of size q per unit
time. We are free to choose q large enough. In addition, as we
shall see in the later discussion, in some cases we may need
to choose q to be an odd prime. If a given edge has a higher
capacity, it can be treated as multiple unit capacity edges.
A directed edge e between nodes vi and vj is represented
as (vi → vj). Thus head(e) = vj and tail(e) = vi. A
path between two nodes vi and vj is a sequence of edges
{e1, e2, . . . , ek} such that tail(e1) = vi, head(ek) = vj and
head(ei) = tail(ei+1), i = 1, . . . , k − 1.
Our counter-example in Section V considers arbitrary net-

work codes. However, our constructive algorithms in Sections
IV and VI shall use linear network codes. In linear network
coding, the signal on an edge (vi → vj), is a linear com-
bination of the signals on the incoming edges on vi and the
source signal at vi (if vi ∈ S). In this paper we assume that the
source (terminal) nodes do not have any incoming (outgoing)
edges from (to) other nodes. If this is not the case one can
always introduce an artificial source (terminal) connected to
the original source (terminal) node by an edge of sufficiently
large capacity that has no incoming (outgoing) edges. We shall
only be concerned with networks that are directed acyclic in
which internal nodes have sufficient memory. Such networks
can be treated as delay-free networks. Let Yei (such that
tail(ei) = vk and head(ei) = vl) denote the signal on the
ith edge in E and let Xj denote the jth source. Then, we
have

Yei =
∑

{ej |head(ej)=vk}
fj,iYej if vk ∈ V \S, and

Yei =
∑

{j|Xj observed at vk}
aj,iXj if vk ∈ S,

where the coefficients aj,i and fj,i are from GF (q). Note that
since the graph is directed acyclic, it is possible to express
Yei for an edge ei in terms of the sources Xj’s. Suppose that
there are n sources X1, . . . , Xn. If Yei =

∑n
k=1 βei,kXk then

we say that the global coding vector of edge ei is βei =
[βei,1 · · · βei,n]. For brevity we shall mostly use the term
coding vector instead of global coding vector in this paper.
We say that a node vi (or edge ei) is downstream of another
node vj (or edge ej) if there exists a path from vj (or ej) to
vi (or ei).

IV. NETWORKS WITH EITHER TWO SOURCES/n
TERMINALS OR n SOURCES/TWO TERMINALS

In this section we state and prove the result for (a) networks
with two sources and n terminals, and (b) networks with n
sources and two terminals. Before embarking on this proof,
we overview the concept of greedy encoding that will be used
throughout the paper when considering two source networks.
Definition 1: Greedy encoding. Consider a graph G =

(V,E), with two source nodes s1 and s2 and an edge
e′ = (u → v) ∈ E. Suppose that the coding vector on each
edge e entering u, has only 0 or 1 entries, i.e., βe = [βe,1 βe,2],
where βe,i ∈ {0, 1}, for all i = 1, 2. We say that the encoding
on edge e′ is greedy, if for i = 1, 2 we have

βe′,i =

{
0 if βe,i = 0, ∀e entering u, and

1 otherwise.
(1)

A coding vector assignment for G, is said to be greedy if the
encoding on each edge in G is greedy.
Consider a vertex u that is downstream of a subset of the

source nodes, B ⊆ {1, 2}. Under greedy coding it can be seen
that the outgoing edges of u will carry the sum

∑
i∈B Xi.

Namely, if a node only receives either X1 or X2, it just
forwards them. Alternatively, if it receives both of them or
X1 +X2, then it just transmits X1 +X2.
The first result of this section is the following.
Theorem 1: Consider a directed acylic graph G = (V,E)

with unit capacity edges, two source nodes s1 and s2 and n
terminal nodes t1, . . . , tn such that

max-flow(si − tj) ≥ 1 for all i = 1, 2 and j = 1, . . . , n.

Assume that at each source node si, there is a unit-rate source
Xi, and that the Xi’s are independent. Then, there exists
an assignment of coding vectors to all edges such that each
tj , j = 1, . . . , n can recover X1 +X2.
Proof of Theorem 1. Consider any terminal node tj . As we
assume that max-flow(si − tj) ≥ 1 for all i = 1, 2, it holds
that tj is downstream of both s1 and s2. Thus, (using greedy
encoding) by the observation above, tj can recover X1 +X2.

Note that if any of the conditions in the statement of
Theorem 1 are violated then some terminal will be unable
to compute X1 +X2. For example, if max-flow(s1 − tj) < 1
then any decoded signal Y at tj will have H(Y |X2) < 1 (as
Y is solely a function of X1 and X2). We conclude that Y
cannot be X1 +X2.
Next, consider the class of networks with n sources and

two terminals. The original proof of this result (obtained in
[15]) was obtained via a series of graph-theoretic operations
on the network. However, subsequently it was shown in [19]
that this result follows in a simpler manner by using the idea
of network reversibility. We state the result below.
Theorem 2: Consider a directed acylic graph G = (V,E)

with unit capacity edges, n source nodes s1, s2, . . . , sn and
two terminal nodes t1 and t2 such that

max-flow(si − tj) ≥ 1 for all i = 1, . . . , n and j = 1, 2.

Assume that the source nodes observe independent unit-
entropy sources Xi, i = 1, . . . , n. Then, there exists an

658 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

assignment of coding vectors such that each terminal can
recover the sum of the sources

∑n
i=1 Xi.

Proof. Given a directed acyclic network G = (V,E), its
reverse network G̃ is defined as the network that has the
same set of vertices V , but the orientation of each edge is
reversed. Moreover the sources in G become terminals in G̃
and the terminals in G become the sources in G̃. Reference
[19] shows if the sum of sources in G can be multicast to
all the terminals (in G), the sum of sources in G̃ can also be
multicast to all the terminals (in G̃). Our proof now follows
from using reversibility and Theorem 1.

V. INSUFFICIENCY OF UNIT-CONNECTIVITY FOR

3-SOURCE/3-TERMINAL NETWORKS

In the discussion below we show an instance of a network
with three sources and three terminals, with at least one
path connecting each source terminal pair, in which the sum
of sources cannot (under any network code) be transmitted
(with zero error) to all three terminals. Consider the network
shown in Figure 1, with three source nodes and three terminal
nodes such that the source nodes observe unit entropy sources
X1, X2 and X3 that are also independent. All edges are unit
capacity. As showed in Figure 1 the incoming edges into
terminal t3 contain the values f(X1, X2) and f ′(X2, X3)
where f and f ′ are some functions of the sources.
Suppose that X3 = 0. This implies that t1 should be

able to recover X1 + X2 (that has entropy 1) from just
f(X1, X2). Moreover note that each edge is unit capacity.
Therefore, the entropy of f(X1, X2) also has to be 1, i.e.,
there exists a one-to-one mapping between the set of values
that f(X1, X2) takes and the values of X1 + X2. In a
similar manner we can conclude that there exists a one-to-
one mapping between the set of values that f ′(X2, X3) takes
and the values of X2+X3. At terminal t3, there needs to exist
some function h(f(X1, X2), f

′(X2, X3)) =
∑3

i=1 Xi. By the
previous observations, this also implies the existence of a
function h′(X1+X2, X2+X3) that equals

∑3
i=1 Xi. However,

this is a contradiction. Consider the following sets of inputs:
X1 = a,X2 = 0, X3 = c andX ′

1 = a−b,X ′
2 = b,X ′

3 = c−b.
In both cases the inputs to the function h′(·, ·) are the same.
However

∑3
i=1 Xi = a + c, while

∑3
i=1 X

′
i = a − b + c,

that are in general different. Therefore such a function h′(·, ·)
cannot exist.
Note that we have presented the proof in the context of

scalar nonlinear network codes. However, even if we consider
vector sources along with vector network codes, the same idea
of the proof can be used.

VI. CASE OF THREE SOURCES AND THREE TERMINALS

It is evident from the counter-example discussed in Section
V, that the characterization of the required resources for
networks with three sources and three terminals is different
from the cases discussed in Section IV. In this section, we
show that as long as each source is connected by two edge
disjoint paths to each terminal, the terminals can recover the
sum. We present efficient linear encoding schemes, i.e., linear
codes that can be found in time polynomial in the number of

Fig. 1. Example of a network with three sources and three terminals, such
that there exists at least one path between each source and each terminal.
However all the terminals cannot compute

∑3
i=1 Xi.

nodes, that allow communication in this case. The main result
of this section can be summarized as follows.
Theorem 3: Let G = (V,E) be a directed acyclic network

with three sources s1, s2, s3 and three terminals t1, t2, t3.
Let Xi be the (unit entropy) information present at source
si. If there exist two edge disjoint paths between each
source/terminal pair, then there exists a network coding
scheme in which the sum X1 +X2 +X3 is obtained at each
terminal tj . Moreover, such a network code can be found
efficiently.
Remark 1: Our example in Section V, shows that a single

path between each si − tj pair does not suffice. At the other
extreme, if there are three edge-disjoint paths between each
si − tj pair, then one can actually multicast X1, X2 and X3

to each terminal [3]. Our results show that two edge disjoint
paths between each source terminal pair are sufficient for
multicasting sums.
We start by giving an overview of our proof. Our approach

for determining the desired network code has three steps. In
the first step, we turn our graph G into a graph Ĝ = (V̂ , Ê)
in which each internal node v ∈ V̂ is of total degree (in-
degree + out-degree) at most three. We refer to such graphs
as structured graphs. Our efficient reduction follows that
appearing in [24], and has the following properties: (a) Ĝ
is acyclic. (b) For every source (terminal) in G there is a
corresponding source (terminal) in Ĝ. (c) For any two edge
disjoint paths P1 and P2 connecting a source terminal pair
in G, there exist two vertex disjoint paths in Ĝ connecting
the corresponding source terminal pair. Here and throughout
we say two paths between a source terminal pair are vertex
disjoint even though they share their first and last vertices (i.e.,
the source and terminal at hand). (d) Any feasible network
coding solution in Ĝ can be efficiently turned into a feasible
network coding solution in G. We note that the same reduction
has facilitated a study of three-source, three-terminal multiple
unicast networks [25], [26].
It is not hard to verify that proving Theorem 3 on structured

graphs implies a proof for general graphs G as well. Indeed,
given a network G satisfying the requirements of Theorem 3

RAMAMOORTHY and LANGBERG: COMMUNICATING THE SUM OF SOURCES OVER A NETWORK 659

construct the corresponding network Ĝ. By the properties
above, Ĝ also satisfies the requirements of Theorem 3. Assum-
ing Theorem 3 is proven for structured graphs Ĝ, we conclude
the existence of a feasible network code in Ĝ. Finally, this
network code can be converted (by property (d) above) into a
feasible network code for G as desired. The mapping between
G and Ĝ is presented in detail in [24]. For notational reasons,
from this point on in the discussion we will assume that our
input graphG is structured — which is now clear to be w.l.o.g.
In the second step of our proof, we give edges and vertices

in the graph G certain labels depending on the combinatorial
structure of G. This step can be viewed as a decomposition
of the graph G (both the vertex set and the edge set) into
certain class sets that will play a major role in our analysis.
The decomposition of G is given in detail in Section VI-A.
Finally, in the third and final step of our proof, using the

labeling above we perform a case analysis for the proof of
Theorem 3. Namely, based on the terminology set in Sec-
tion VI-A, we identify several scenarios, and prove Theorem 3
assuming they hold. As the different scenarios we consider
will cover all possible ones, we will conclude our proof.
Our detailed case analysis is given in Section VI-B and
Section VII.

A. Graph decomposition

As justified in our previous discussions, we assume through-
out that any internal vertex in V (namely, any vertex which is
neither a source or a sink) has total degree at most 3. More-
over, we assume G satisfies the connectivity requirements
specified in Theorem 3.
We start by labeling the vertices of G. A vertex v ∈ V

is labeled by a pair (cs, ct) specifying how many sources
(terminals) it is connected to. Specifically, cs(v) equals the
number of sources si for which there exists a path connecting
si and v in G. Similarly, ct(v) equals the number of terminals
tj for which there exists a path connecting v and tj in G. For
example, any source is labeled by the pair (1, 3), and any
terminal by the pair (3, 1). An internal vertex v labeled (·, 1)
is connected to a single terminal only. This implies that any
information leaving v will reach at most a single terminal.

B. Case analysis

Our proof methodology involves a classification of networks
based on the node labeling procedure presented above. For
each class of networks we shall argue that each terminal can
compute the sum of the sources (X1 +X2 +X3). Our proof
shall be constructive, i.e., it can be interpreted as an algorithm
for finding the network code that allows each terminal to
recover (X1 +X2 +X3).
1) Case 0: There exists a node of type (3, 3) in G.

Suppose node v is of type (3, 3). This implies that there
exist path(si − v), for i = 1, . . . , 3 and path(v − tj), for
j = 1, . . . , 3. Consider the subgraph induced by these paths
and color each edge on ∪3

i=1path(si − v) red and each edge
on ∪3

j=1path(v − tj) blue. We claim that as G is acyclic, at
the end of this procedure each edge gets only one color. To
see this suppose that a red edge is also colored blue. This
implies that it lies on a path from a source to v and a path

from v to a terminal, i.e. its existence implies a directed cycle
in the graph.
Now, we can find an inverted tree that is a subset of the

red edges directed into v and similarly a tree rooted at v with
t1, t2 and t3 as leaves using the blue edges. Finally, we can
compute (X1+X2+X3) at v over the red tree and multicast
it to t1, t2 and t3 over the blue subgraph. More specifically,
one may use an encoding scheme in which internal nodes of
the red tree receiving Y1 and Y2 send on their outgoing edge
the sum Y1 + Y2.
2) Case 1: There exists a node of type (2, 3) in G. Note

that it is sufficient to consider the case when there does not
exist a node of type (3, 3) in G. We shall show that this case
is equivalent to a two sources, three terminals problem.
W.l.o.g. we suppose that there exists a (2, 3) node v that

is connected to s2 and s3. We color the edges on path(s2 −
v) and path(s3 − v) blue. Next, consider the set of paths
∪3
i=1path(s1 − ti). We claim that these paths do not have
any intersection with the blue subgraph. This is because the
existence of such an intersection would imply that there exists
a path between s1 and v which in turn implies that v would
be a (3, 3) node. We can now compute (X2 + X3) at v by
finding a tree consisting of blue edges that are directed into v.
Suppose that the blue edges are removed from G to obtain a
graph G′. Since G is directed acyclic, we have that there still
exists a path from v to each terminal after the removal. Now,
note that (a) G′ is a graph such that there exists at least one
path from s1 to each terminal and at least one path from v to
each terminal, and (b) v can be considered as a source that
contains (X2 +X3). Now, G′ satisfies the condition given in
Theorem 1 (which addresses the two sources version of the
problem at hand), therefore we are done.
3) Case 2: There exists a node of type (3, 2) in G. As

before it suffices to consider the case when there do not exist
any (3, 3) or (2, 3) nodes in the graph. Suppose that there
exists a (3,2) node v and w.l.o.g. assume that it is connected
to t1 and t2. We consider the subgraph G′ induced by the
union of the following sets of paths
1) ∪3

i=1path(si − v),
2) ∪2

i=1path(v − ti), and
3) ∪3

i=1path(si − t3).
Note that as argued previously, a subset of edges of
∪3
i=1path(si−v) can be found so that they form a tree directed
into v. For the purposes of this proof, we will assume that this
has already been done, i.e., the graph ∪3

i=1path(si − v) is a
tree directed into v.
The basic idea of the proof is to show that the paths from

the sources to terminal t3, i.e., ∪3
i=1path(si − t3) are such

that their overlap with the other paths is very limited. Thus,
the entire graph can be decomposed into two parts, one over
which the sum is transmitted to t1 and t2 and another over
which the sum is transmitted to t3.
Towards this end, note that path(s1 − t3) cannot have an

intersection with either path(s2 − v) or path(s3 − v), for if
such an intersection occurred at a node v′, then v′ would be a
node of type (2, 3) contradicting our assumption. Likewise, it
can be noted that (a) path(s2−t3) cannot have an intersection
with either path(s1 − v) or path(s3 − v), and (b) path(s3 −
t3) cannot have an intersection with either path(s1 − v) or

660 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

path(s2 − v). In a similar manner, we observe that the paths
path(s1 − t3), path(s2 − t3) and path(s3 − t3) cannot have
an intersection with either path(v − t1) or path(v − t2) as
this would imply that v is a (3, 3) node contradicting our
assumption.
We now discuss the coding solution on G′. Let vi be the

node closest to v that belongs to both path(si − v) and
path(si − t3) (notice that vi may equal si but it cannot
equal v). On the paths path(si − vi) send Xi. On the paths
path(vi − v) send information that will allow v to obtain
X1 + X2 + X3. This can be easily done, as these (latter)
paths form a tree into v. Namely, one may use an encoding
scheme in which internal nodes receiving Y1 and Y2 send on
their outgoing edge the sum Y1+Y2. By the discussion above
(and the fact that G′ is acyclic) it holds that the information
flowing on edges e in path(vi− t3), i = 1, . . . , 3 has not been
specified by the encoding defined above. Thus, one may send
information on the paths path(vi − t3) that will allow t3 to
obtain X1+X2+X3. Here we assume the paths path(vi−t3)
form a tree into t3, if this is not the case we may find a subset
of edges in these paths with this property. Once more, by the
discussion above (and the fact that G′ is acyclic) it holds that
the information flowing on edges e in the paths path(v − t1)
and path(v − t2) has not been specified (by the encodings
above). On these edges we may transmit the sumX1+X2+X3

present at v.
4) Case 3: There do not exist (3, 3), (2, 3) and (3, 2) nodes

in G. Note that thus far we have not utilized the fact that
there exist two edge-disjoint paths from each source to each
terminal in G. In previous cases, the problem structure that has
emerged due to the node labeling, allowed us to communicate
(X1 +X2 +X3) by using just one path between each si − tj
pair. However, for the case at hand we will indeed need to use
the fact that there exist two paths between each si − tj pair.
As we will see, this significantly complicates the analysis, and
we present it in the upcoming section.
The following definitions are required for this case. An edge

e = (u, v) for which v is labeled (·, 1) will be referred to as
a terminal edge. Namely, any information flowing on e can
reach at most a single terminal. If this terminal is tj then we
will say that e is a tj-edge. Clearly, the set of t1-edges is
disjoint from the set of t2-edges (and similarly for any pair
of terminals). An edge which is not a terminal edge will be
referred to as a remaining edge or an r-edge for short.
Note that there exists an ordering of edges in E in which any

r-edge comes before any terminal edge, and in addition there
is no path from a terminal edge to an r-edge. This is obtained
by an appropriate topological order in G. Moreover, for any
terminal tj , the set of tj-edges form a connected subgraph
of G with tj as its sink. To see this note that by definition
each tj-edge e is connected to tj and all the edges on a path
between e and tj are tj-edges. Finally, the head of an r-edge
is either of type (·, 2) or (·, 3) (as otherwise it would be a
terminal edge).
For each terminal tj we define a set of vertices referred to

as the leaf set Lj of tj .
Definition 2: Leaf set of a terminal. The leaf set of terminal

tj is the set of nodes of in-degree 0 in the subgraph consisting
of tj-edges.

We note that a source node can be a leaf node for a given
terminal.

VII. ANALYSIS OF CASE 3

Note that the node labeling procedure presented above
assigns a label (cs(v), ct(v)) to a node v where cs(v) (ct(v)) is
the number of sources (terminals) that v is connected to. This
labeling ignores the actual identity of the sources and terminals
that have connections to v. It turns out that we need to use an
additional, somewhat finer notion of node connectivity when
we want to analyze case 3. We emphasize that throughout
this section, we still operate under the assumption the graph
is structured (cf. reduction discussed in Section VI).
Towards this end, for case 3 (i.e., in a graph G without

(3, 3), (2, 3) and (3, 2) nodes) we introduce the notion of the
source-terminal label (or st-label for short) of a node. For
each (2, 2) node in G, the st-label of the node is defined as
the 4-tuple of sources and terminals it is connected to, e.g., if
v is connected to sources s1 and s2 and terminals t1 and t2,
then its st-label, denoted st-lab(v) is (s1, s2, t1, t2). We shall
also say that the source label of v is (s1, s2) and the terminal
label of v is (t1, t2). The following claim is immediate.
Claim 1: If there is a (2, 2) node v in G of st-label, st-

lab(v) , then each terminal in the terminal label of v has at least
one leaf with st-label st-lab(v) . For example, if st-lab(v) =
(s1, s2, t1, t2), then both t1 and t2 have leaves with st-label
(s1, s2, t1, t2).

Proof:W.l.o.g, let st-lab(v) = (s1, s2, t1, t2). This implies
that there exists a path P between v and t1. Let � be a leaf of
t1 on P . It follows directly from the definition of a leaf that
� is the last node on P with terminal label at least 2, namely
ct(�) ≥ 2. Namely, if ct(�) = 1 then the incoming link of �
on P would be a t1-edge (contradicting the assumption that
� is a leaf). Moreover, ct(�) is exactly 2 and no larger as
otherwise ct(v) would also be greater than 2 contradicting
our assumptions in the claim. This implies that the terminal
label of � is exactly (t1, t2). As � is downstream of v it holds
that cs(�) ≥ cs(v) = 2. Here also, it holds that cs(�) is
exactly 2, otherwise � would be a (3, 2) node (contradicting
our assumption for case 3). This implies that the source label
of � is (s1, s2). Therefore, t1 has a leaf of label (s1, s2, t1, t2).
A similar argument holds for t2.
The notion of an st-label is useful for the set of graphs

under case 3, since we can show that there can never be an
edge between nodes of different st-labels.
Claim 2: Consider a graph G, with sources, si, i =

1, . . . , 3, and terminals tj , j = 1, . . . 3, such that it does not
have any (3, 3), (2, 3) or (3, 2) nodes. There does not exist an
edge between (2, 2) nodes of different st-labels in G.

Proof: Assume otherwise and consider two (2, 2) nodes
v1 and v2 such that st-lab(v1) 	= st-lab(v2), for which there
is an edge (v1, v2) in G. Note that if the source labels of st-
lab(v1) and st-lab(v2) are different, then v2 has to be a (3, 2)
node, which is a contradiction. Likewise, if the terminal labels
of st-lab(v1) and st-lab(v2) are different, then v1 has to be a
(2, 3) node, which is also a contradiction.
Claim 2 implies that we are free to assign any coding

coefficients on a subgraph induced by nodes of one st-label,

RAMAMOORTHY and LANGBERG: COMMUNICATING THE SUM OF SOURCES OVER A NETWORK 661

without having to worry about the effect of this on another
subgraph induced by nodes of a different st-labels (simply
because there is no such effect).
Our approach is as follows. We divide the set of graphs

under case 3, into various classes, depending on the number
of distinct st-labels that exist in the graph. It turns out that as
long as the number of st-labels in the graph is not 2, i.e., either
0,1 or 3 and higher, then there is a simple argument which
shows that each terminal can be satisfied. The argument in
the case of two distinct st-labels is a bit more involved and
is developed separately. It can be shown that our counter-
example in Section V is a case where there are two st-labels.
Note however, that in our counter-example there are certain
si − tj pairs that have only one path between them (and thus
the sum X1 +X2 +X3 cannot be computed at all terminals).
Claim 3: Consider the subgraph induced by the vertices

with a certain st-label, w.l.o.g. (s1, s2, t1, t2) in G, denoted by
G(s1,s2,t1,t2). There exists an assignment of encoding vectors
over G(s1,s2,t1,t2), such that any (unit entropy) function of
the sources X1 and X2 can be multicasted to all nodes in
G(s1,s2,t1,t2). Moreover, such encoding vector assignments can
be done independently over subgraphs of different st-labels.

Proof: Note that we are working with directed acyclic
graphs. Thus, there is a node v∗ in G(s1,s2,t1,t2), such that it
has no incoming edges in G(s1,s2,t1,t2). Next, note that the
path from s1 to v∗ has no intersection with a path from s2 or
s3. To see this, suppose that there was such an intersection at
node v′. If there is a path from s3 to v′, then v∗ is a (3, 2) node
(which contradicts the assumption that v∗ is a (2, 2) node). If
there is a path from s2 to v′, then v′ and the remaining vertices
connecting v′ to v∗ on the path from s1 to v∗ have st-label
(s1, s2, t1, t2). Contradicting the fact that v∗ has no incoming
edges in G(s1,s2,t1,t2). Likewise, we see that the path from s2
to v∗ has no intersection with a path from s1 or s3.
Therefore, the path from s1 to v∗ carries X1 exclusively,

and likewise for the path from s2 to v∗. Thus, v∗ can obtain
both X1 and X2 and can compute any (unit entropy) function
of them. Moreover, v∗ can transmit this function to all nodes
of G(s1,s2,t1,t2) downstream of v

∗. As the argument above can
be repeated for any node v∗ of in-degree 0 in G(s1,s2,t1,t2) it
follows that all nodes of G(s1,s2,t1,t2) can obtain the desired
function of X1 and X2.
Finally, we note that the encoding functions assigned to

edges in subgraphs of different st-labels can be done inde-
pendently, since there does not exist any edge between nodes
of different st-labels (from Claim 2), and all (1, ·) edges use
the same encoding scheme regardless of the st-label at hand.

Lemma 1: Consider a graph G, with sources, si, i =
1, . . . , 3, and terminals tj , j = 1, . . . 3, such that (a) it does
not have any (3, 3), (2, 3) or (3, 2) nodes, and (b) there exists
at least one si− tj path for all i and j. Consider the set of all
(2, 2) nodes in G and their corresponding st-labels. If there
exist no st-labels, exactly one st-label or at least three distinct
st-labels in G, then there exists a set of coding vectors such
that each terminal can recover

∑3
i=1 Xi.

Proof: Note that all leaves in G are of type (1, 2), (1, 3)
or (2, 2). This implies that any terminal tj that does not have
a (2, 2) leaf with source st-label including si, must have a

Legend

Fig. 2. A possible instance of Gaux when the degree sequence of the
terminals is (2, 2, 2). The encoding specified in the legend denotes the
encoding to be used on the appropriate subgraphs.

(1, ·) leaf (i.e., a leaf connected to a single source) at which
Xi can be recovered, for instance by simply forwarding the
source information along the path to the leaf. We refer to such
leaves as singleton Xi leaves. The above follows directly by
the connectivity assumption (b) stated in the Lemma. Recall
that in Section III, we presented the network coding model as
one where each symbol flowing on an edge is from a field of
size q. In cases 2 and 3 in the analysis below, we assume that
the characteristic of the field of operation is > 2. This can for
instance be done by choosing q = 3.

(0) Case 0. There are no st-labels in G.
This implies that there are no (2, 2) nodes in G and thus
all terminals tj have distinct leaves holding X1, X2, and
X3 respectively. It suffices to design a simple code on the
paths from those leaves to tj which enables tj to recover
the sum X1 +X2 +X3.

(i) Case 1. There is only one st-label in G.
In this case perform greedy encoding (cf. Definition 1)
on the r-edges. We show that each terminal can recover∑3

i=1 Xi from the content of its leaves. W.l.o.g, suppose
that the st-label is (s1, s2, t1, t2). Using Claim 1, this
means that both t1 and t2 have leaves of this st-label. The
greedy encoding implies that t1 and t2 can obtain X1 +
X2 from the corresponding leaves. Moreover, both t1 and
t2 have a singleton leaf containing X3, because of the
connectivity requirements. Therefore, they can compute∑3

i=1 Xi. The terminal t3 has only singleton leaves, such
that there exists at least one X1, X2 and X3 leaf. Thus
it can compute their sum.

(ii) Case 2. There exist exactly three distinct st-labels in G.
It is useful to introduce an auxiliary bipartite graph that
denotes the existence of the st-labels at the leaves of the
different terminals. This bipartite graph denoted Gaux

is constructed as follows. There are three nodes t′i, i =
1, . . . , 3 that denote the terminals on one side and three
nodes c′i, i = 1, . . . , 3 that denote the st-labels on the
other side. If the st-label c′i has tj in its support, then
there is an edge between c′i and t′j , i.e., tj has a leaf
of st-label c′i. See Figure 2. The following properties of
Gaux are immediate.

– Each c′i has degree-2.
– Each t′i has degree at most 3 (as there are 3 distinct

st-labels).
– Multiple edges between nodes are disallowed.

Note that there are exactly three possible source st-

662 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

Legend

Fig. 3. A possible instance of Gaux when the degree sequence of the
terminals is (3, 2, 1). The encoding specified in the legend denotes the
encoding to be used on the appropriate subgraphs.

labels ((s1, s2), (s2, s3) and (s3, s1)) and three possible
terminal st-labels ((t1, t2), (t2, t3) and (t3, t1)). We now
perform a case analysis depending upon the degree se-
quence of nodes t′j , j = 1, . . . , 3 in Gaux. The degree
sequence is specified by a 3-tuple, where we note that
the sum of the entries has to be 6.

a) The degree sequence is a permutation of (0, 3, 3).
This only happens if the terminal label of all st-
labels, c′i, i = 1, . . . , 3 is the same and in turn implies
that the source label of each st-label is distinct,
i.e., the source st-labels include (s1, s2), (s2, s3) and
(s1, s3). In this case, greedy encoding (cf. Defini-
tion 1) works for the two terminals in the st-label
support. This is because each terminal will obtain
X1 + X2, X2 + X3 and X1 + X3 at its leaves
(using Claims 1 and 3) from which the terminal can
compute 2

∑3
i=1 Xi. The remaining terminal is not

connected to any (2,2) leaf, which implies that all its
leaves contain singleton values, from which it can
compute

∑3
i=1 Xi.

b) The degree sequence is (2, 2, 2).
This only happens if all the terminal labels of the st-
labels are distinct, i.e., the terminal labels are (t1, t2),
(t2, t3) and (t1, t3). Now consider the possibilities
for the source labels.
If there is only one source label, then greedy encod-
ing ensures that the sum of exactly two of the sources
reaches each terminal. The connectivity condition
guarantees that the remaining source is available as
a singleton at a leaf of each terminal. Therefore we
are done.
If there are exactly two distinct source st-labels,
then we argue as follows (see Figure 2). On the
subgraphs induced by the st-labels with the same
source label, perform greedy encoding. On the re-
maining subgraph, propagate the remaining useful
source. We illustrate this with an example that is
w.l.o.g. Suppose that the st-labels are (s1, s2, t1, t2),
(s1, s2, t2, t3) and (s2, s3, t1, t3). We perform greedy
encoding on the subgraphs of the first two st-labels,
and only propagate X3 on the subgraph of the
third st-label. As shown in Figure 2, this means
that terminals t1 and t3 are satisfied. Note that the
connectivity condition dictates that t2 has to have a
leaf that has a singleton X3, therefore it is satisfied
as well.

TABLE I
ENCODING ON SUBGRAPHS OF DIFFERENT SOURCE st-LABELS.

RECOVERY OF
∑3

i=1 Xi IS POSSIBLE FROM ANY TWO OF THE RECEIVED
VALUES, USING ADDITIONS OR SUBTRACTIONS.

Source st-label Encoding
(s1, s2) 2X1 +X2

(s2, s3) X2 + 2X3

(s1, s3) X1 −X3

Finally, suppose that there are three distinct source
st-labels. In this case we use the encoding specified
in Table I on the subgraphs of each source st-label. It
is clear on inspection that

∑3
i=1 Xi can be recovered

from any two of the received values (as from any two
of the linear combinations stated, one can deduce the
sum X1 +X2 +X3).

c) The degree sequence is a permutation of (1, 2, 3).
In this case (see Figure 3), the degree sequence
dictates that there have to be two terminals that
share two st-labels (namely, two terminals that to-
gether appear in two different st-labels). This implies
that the source label of those st-labels has to be
different. For the subgraphs induced by these st-
labels, we use the encoding proposed in Table I. For
the subgraph induced by the remaining st-label, we
perform greedy encoding. For example, suppose that
the st-labels are (s1, s2, t1, t2), (s2, s3, t1, t2) and
(s2, s3, t1, t3). As shown in Figure 3, t1 and t2 are
clearly satisfied (even without using the information
from st-label (s2, s3, t1, t3)). Terminal t3 has to have
a singleton leaf containing X1 by the connectivity
condition and is therefore satisfied.

Together, these arguments establish that in the case when
there are three st-labels, all terminals can be satisfied.

(ii) Case 3. There exist more than three distinct st-labels in
G.
Note that if there are at least four st-labels in G, then (a)
there are two st-labels with the same terminal label, since
there are exactly three possible terminal labels, and (b)
for the st-labels with the same terminal labels, the source
labels necessarily have to be different. Our strategy is
as follows. For the terminals that share two st-labels,
use the encoding proposed in Table I. If the remaining
terminal has access to only one source st-label, then use
greedy encoding and note that this terminal has to have
a singleton leaf. If it has access to at least two source
st-labels, simply use the encoding in Table I for it as
well.

It remains to develop the argument in the case when there
are exactly two distinct st-labels in G. For this we need to
explicitly use the fact that there are two edge-disjoint paths
between each si − tj pair.
Lemma 2: Consider a graph G, with sources, si, i =

1, . . . , 3, and terminals tj , j = 1, . . . 3, such that (a) it does
not have any (3, 3), (2, 3) or (3, 2) nodes, and (b) there exist
at least two si − tj paths for all i and j. Consider the set
of all (2, 2) nodes in G and their corresponding st-labels. If
there exist exactly two distinct st-labels in G, then there exists

RAMAMOORTHY and LANGBERG: COMMUNICATING THE SUM OF SOURCES OVER A NETWORK 663

Legend

Fig. 4. An instance of Gaux when there exist exactly two distinct st-labels
under case 3, such that the terminal labels of the st-labels are the same.

a set of coding vectors such that each terminal can recover∑3
i=1 Xi.
Proof: As in the proof of Lemma 1, we argue based on

the content of the leaves of the terminals. Suppose that the
auxiliary bipartite graph Gaux is formed. If both the st-labels
have the same terminal label (see Figure 4 for an example),
then it is clear that the encoding in Table I on the subgraphs
induced by the st-labels suffices for the corresponding termi-
nals. The third terminal has singleton leaves corresponding to
each source and can compute

∑3
i=1 Xi.

Another possibility is that the terminal labels of the st-labels
are different, but the source labels are the same. It should be
clear that this case can be handled by greedy encoding on the
st-labels.
The situation is more complicated when the terminal and

source labels of the st-labels are different, see for example
Figure 5. In the case depicted, greedy encoding does not work
since it satisfies t1 and t3 but not t2. W.l.o.g., we assume that
the st-labels are (s1, s2, t1, t2) and (s2, s3, t2, t3). Now, we
know that there exist two vertex-disjoint paths between s1 (a
similar argument can be made for s3) and t2. Each of these
paths has a leaf for t2. If one of the leaves is a (1, ·) leaf that
contains a singleton X1, then performing greedy encoding on
the two st-labels works since t2 obtains X1 + X2, X1 and
X2 +X3 and the other terminals will obtain singleton leaves
that satisfy their demand. Likewise, if there is a singleton leaf
containing X3 on the vertex disjoint paths from s3 to t2, then
greedy encoding works.
Thus, the corresponding leaves of t2 must be of type (2, 2).

This implies that there are at least four distinct leaves of t2
of type (2, 2), two of st-label (s1, s2, t1, t2) and two of st-
label (s2, s3, t2, t3). Our proof is concluded by the following
claims.
Consider the subgraph induced by nodes labeled by one of

the st-labels above, w.l.o.g. (s1, s2, t1, t2), in G together with
the (1, ·) nodes connected to either s1 or s2 in G. Denote this
subgraph by G′. Consider a random linear network code on
the nodes of G′ (namely, each node outputs a random linear
combination of its incoming information over the underlying
finite field of size q). Let q = 2m. We show, with high
probability (given m is large enough), that such a code
allows both t1 and t2 to receive two linearly independent
combinations of X1 and X2 at their leaves. An analogous
argument also holds for t2 and t3 when considering the st-
label (s2, s3, t2, t3) and the information X2 and X3. This
suffices to conclude our assertion. Our proof is based on the
following two claims.

Fig. 5. An instance of Gaux when there exist exactly two distinct st-labels
under case 3, such that both the source labels and the terminal labels of the
st-labels are different.

Claim 4: Let u be any leaf in G′. Let U = αX1 + βX2

be the incoming information of u. With probability (1 −
2−m+1)|V | both α and β are not zero.

Proof: Denote by C = {ci} the multiset of coefficients
used in the random linear network code on G′. Namely, each
ci is uniformly distributed in GF (2m), and the information
on each edge e is a linear combination of it’s incoming
information using coefficients from C (each coefficient in C
is used only once).
It is not hard to verify that α is a multivariate polynomial

in the variables in C of total degree �, where � is the length
of the longest path between si and u (here i = 1, 2). Namely,
� ≤ n = |V |. Moreover, each variable ci in α is of degree
at most 1. As u is a (2, 2) leaf and is connected to s1, there
is a setting for the variables in C such that α 	= 0 (consider
for example setting the values of variables in C to match the
greedy encoding function discussed previously). Thus, α is not
the zero polynomial. We conclude, using Lemma 4 of [4], that
α obtains that value 0 with probability at most 1−(1−2−m)n

(over the choice of the values of variables in C). (We note that
Lemma 4 of [4] is a slightly refined version of the Schwartz-
Zippel lemma.) The same analysis holds for β. Finally, to
study the probability that either α or β are zero we study the
polynomial α ·β, of total degree 2�, where each variable ci in
α · β is of degree at most 2. Our assertion now follows from
Lemma 4 of [4].
Claim 5: Consider the terminal t2 and its two edge dis-

joint paths from s1 denoted P1 and P2. Let u1 and u2 be
the corresponding leaves on paths P1 and P2. Let U1 =
α1X1 + β1X2 be the incoming information of u1, and
U2 = α2X1 + β2X2 the incoming information of u2. With
probability (1 − 2−m+1)n the vectors {(αi, βi)}i=1,2 are
independent.

Proof: We first note that, as the leaves of t2 are of type
(2, 2) and as both u1 and u2 are connected to s1 it holds that
both u1 and u2 are of st-label (s1, s2, t1, t2) and in G′. Our
proof now follows the line of proof given in Claim 4. Namely,
let C = {ci} be the multiset of coefficients used in the random
linear network code on G′. As before, α1, α2, β1 and β2 are
multivariate polynomials in the variables in C. To study the
independence between U1 and U2 we study the determinant
Γ of the 2 × 2 matrix with rows (α1, β1), and (α2, β2). The
determinant Γ is of total degree 2�, where each variable ci in
Γ is of degree at most 2. So to conclude our assertion (via
Lemma 4 of [4]) it suffices to prove that Γ is not the zero
polynomial.
To this end, we present an encoding function (a setting of

664 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

assignments for the variables in C) for which Γ will be 1.
Consider the two disjoint paths connecting s1 and terminal
t2 (denoted as P1 and P2). Recall that u1 and u2 are the
corresponding leaves of st-label (s1, s2, t1, t2), where ui ∈
Pi. Let v be the vertex closest to s1 on these paths that is
connected to s2 (ties broken arbitrarily), assume w.l.o.g. that
v ∈ P2. Let P3 be the path connecting s2 and v. Consider the
subgraphH ofG′ consisting of the paths P1, P2 and P3. Using
the edges of H alone, one can design a routing scheme such
that u1 will receive the informationX1 and u2 the information
X2. This will imply that (α1, β1) = (1, 0), (α2, β2) = (0, 1),
and Γ = 1. Indeed, just forward X1 on P1 and forward X2

on P3 until it reaches v and then from v to u2 on P2.
We are now ready to complete the proof of Lemma 2 for

the case that t2 has 4 type (2, 2) leaves. Namely, we show that
in this case Claims 4 and 5 allow sum communication when
random linear network coding is applied over the network.
We start with terminal t2. By Claim 5, with high probability
t2 will obtain two linearly independent linear combination of
X1 and X2 on two of its leaves and two linearly independent
linear combination of X2 and X3 on the other pair of leaves.
This will now allow t2 to obtain the summation X1+X2+X3

by an appropriate encoding over the reversed tree of t2-edges
in G.
Next, we address terminal t1. Consider its two edge disjoint

paths from s1 denoted P1 and P2. Let u1 and u2 be the
corresponding leaves on paths P1 and P2 (to simplify notation
we use the same notation as previously used for t2). Here, we
consider two cases, if both u1 and u2 are (2, 2) nodes, then by
Claim 5 we are done (with high probability), as in the analysis
of terminal t2 above. Namely, with high probability (given
m large enough) t1 will receive two linearly independent
combinations of X1 and X2 at u1 and u2. Otherwise, t1 has
at least one singleton leaf with X1 exclusively. Denote this
leaf as v1. Notice that t1 must have at least a single (2, 2)
leaf (by Claim 1), denote this leaf by v2. Finally, by Claim 4
it holds that with high probability the information present at
v1 and at v2 is independent.
To conclude, notice that the discussion above (when applied

symmetrically for t3 and the st-label (s2, s3, t2, t3)) implies
that all terminals are able to obtain the desired sum X1 +
X2 +X3 (by an appropriate setting of the encoding functions
on their (·, 1) edges).

VIII. DISCUSSION AND FUTURE WORK

In this work, we have introduced the problem of multi-
casting the sum of sources over a network. We have shown
that in networks with unit capacity edges, and unit-entropy
sources, with at most two sources or two terminals, the sum
can be recovered at the terminals, as long as there exists
a path between each source-terminal pair. Furthermore, we
demonstrate that this characterization does not hold for three
sources (3s)/three terminal (3t) networks. For the 3s/3t case
we show that if each source terminal pair is connected by at
least two edge disjoint paths, sum recovery is possible at the
terminals. In each of these cases we present efficient network
code assignment algorithms.
Several questions remain open, that we discuss below.

Fig. 6. Example of a network with two sources and two terminals, such that
there exist two edge-disjoint paths between each source and each terminal.
Source node S1 (S2) observes a source of entropy 2, [a a′] ([b b′]). The
terminals seek to reconstruct [a+ b a′+ b′]. However, this is impossible with
linear codes.

• As our techniques do not seem to extend to the case of
a higher number of sources and terminals, at present, the
case of |S| > 3 and |T | > 3 is completely open.

• In our problem formulation, we have considered unit-
entropy sources over unit-capacity networks. However, in
general, one could consider sources of arbitrary entropies,
by considering vector-sources (as considered in [20]), and
requiring the terminals to recover a vector that contains
component-wise function evaluations. This version of
the problem is also open for the most part. In fact, in
this case even our characterization for |S| = 2 does
not hold. For example, consider the two-sources, two-
terminals network shown in Figure 6, where each edge
is of unit-entropy. Each source node observes a source of
entropy two, that is denoted by a vector of length two.
The terminals need to recover the vector sum.
In this network there are two sources, and based on our
result in Section IV it is natural to conjecture that if max-
flow (si − tj) = 2, holds for i, j = 1, 2, then a network
coding assignment exists. The network in Figure 6 has
this connectivity requirement. However, as shown in the
Appendix, using linear codes to recover the vector sum
at both the terminals is not possible.

• We have exclusively considered the case of directed
acyclic networks. An interesting direction to pursue
would be to examine whether these characterizations hold
in the case of networks where directed cycles are allowed.

• Our work has been in the context of zero-error recovery
of the sum of the sources. It would be interesting to
examine whether the conclusion changes significantly if
one allows for recovery with some (small) probability of
error.

APPENDIX

A. Discussion about network in Figure 6

We prove that under linear network coding, recovering [a+
b a′ + b′] at T1 and T2 is impossible. We use the notation

RAMAMOORTHY and LANGBERG: COMMUNICATING THE SUM OF SOURCES OVER A NETWORK 665

of Figure 6. Let A1 and B1 be matrices such that

[
a1
a2

]
=

A1

[
a
a′

]
and

[
b1
b2

]
= B1

[
b
b′

]
. Without loss of generality, we

can express the received vectors at terminals T1 and T2 as

zT1 =

[
α1 α2 β1 0
0 α2 β1 β2

]⎡⎢⎢⎣
a1
a2
b1
b2

⎤
⎥⎥⎦

zT2 =

[
α′
1 0 β′

1 0
0 α′

2 0 β′
2

]⎡⎢⎢⎣
a1
a2
b1
b2

⎤
⎥⎥⎦

Using simple computations it is not hard to see that for both
the terminals to be able to recover [a+ b a′ + b′]T we need[

α1 α2

0 α2

]
A1 =

[
β1 0
β1 β2

]
B1, and[

α′
1 0
0 α′

2

]
A1 =

[
β′
1 0
0 β′

2

]
B1, and

require all these matrices to be full-rank. Note that
the full-rank condition requires that all the coefficients
α1, α2, β1, β2, α

′
1, α

′
2, β

′
1 and β

′
2 be non-zero and the matrices

A1 and B1 to be full-rank. In particular, the required condition
is equivalent to requiring that[

α1 α2

0 α2

]−1 [
β1 0
β1 β2

]
=

[
α′
1 0
0 α′

2

]−1 [
β′
1 0
0 β′

2

]

⇒ 1

α1α2

[
α2 −α2

0 α1

] [
β1 0
β1 β2

]
=

[
1/α′

1 0
0 1/α′

2

] [
β′
1 0
0 β′

2

]

⇒
[
0 − β2

α1
β1

α2

β2

α2

]
=

[
β′
1

α′
1

0

0
β′
2

α′
2

]

For the above equality to hold, we definitely need β2 = 0,
but this would contradict the requirement that β2 	= 0 that is
needed for the full rank condition.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network Information
Flow,” IEEE Trans. Inf. Theory, vol. 46(4), pp. 1204–1216, 2000.

[2] S.-Y. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, 2003.

[3] R. Koetter and M. Médard, “An Algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, 2003.

[4] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A Random Linear Network Coding Approach to Multicast,”
IEEE Trans. Inf. Theory, vol. 52(10), pp. 4413–4430, 2006.

[5] A. Ramamoorthy, K. Jain, P. A. Chou, and M. Effros, “Separating
Distributed Source Coding from Network Coding,” IEEE Trans. Inf.
Theory, vol. 52, no. 6, pp. 2785–2795, 2006.

[6] Y. Wu, V. Stanković, Z. Xiong, and S. Y. Kung, “On practical design
for joint distributed source coding and network coding,” IEEE Trans.
Inf. Theory, vol. 55, no.4, pp. 1709 – 1720, 2009.

[7] J. Korner and K. Marton, “How to encode the modulo-2 sum of binary
sources,” IEEE Trans. Inf. Theory, vol. 25, no. 2, pp. 219–221, 1979.

[8] A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903–917, 2001.

[9] V. Doshi, D. Shah, M. Médard, and S. Jaggi, “Distributed Functional
Compression through Graph Coloring,” in Data Compression Confer-
ence, 2007, pp. 93–102.

[10] H. Yamamoto, “Wyner-ziv theory for a general function of the correlated
sources,” IEEE Trans. Inf. Theory, vol. 28, no. 5, pp. 803–807, 1982.

[11] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, 1976.

[12] H. Feng, M. Effros, and S. Savari, “Functional source coding for
networks with receiver side information,” in Proc. Allerton Conf. on
Comm., Contr., and Comp., 2004.

[13] B. Nazer and M. Gastpar, “Computation over multiple-access channels,”
IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3498–3516, 2007.

[14] S. Feizi and M. Medard, “When do only sources need to compute?
on functional compression in tree networks,” in 47th Annual Allerton
Conference on Communication, Control, and Computing, 2009, pp. 447
–454.

[15] A. Ramamoorthy, “Communicating the sum of sources over a network,”
in IEEE Intl. Symposium Inf. Theory, 2008, pp. 1646–1650.

[16] M. Langberg and A. Ramamoorthy, “Communicating the sum of sources
in a 3-sources/3-terminals network,” in IEEE Intl. Symposium Inf.
Theory, 2009, pp. 2121–2125.

[17] , “Communicating the sum of sources in a 3-sources/3-terminals
network; revisited,” in IEEE Intl. Symposium Inf. Theory, 2010, pp.
1853–1857.

[18] B. K. Rai and B. K. Dey, “On network coding for sum-networks,” IEEE
Trans. Inf. Theory, vol. 58, no. 1, pp. 50 –63, 2012.

[19] , “Feasible alphabets for communicating the sum of sources over a
network,” in IEEE Intl. Symposium Inf. Theory, 2009, pp. 1353 – 1357.

[20] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network Coding for Computing,” in Proc. Allerton Conf. on Comm.,
Contr., and Comp., 2008, pp. 1–6.

[21] , “Network Computing Capacity for the Reverse Butterfly Net-
work,” in IEEE Intl. Symposium Inf. Theory, 2009, pp. 259–262.

[22] S. Shenvi and B. K. Dey, “A Necessary and Sufficient Condition for
Solvability of a 3s/3t sum-network,” in IEEE Intl. Symposium Inf.
Theory, 2010, pp. 1858–1862.

[23] , “On the solvability of 3-source 3-terminal sum-networks,” avail-
able at http://arxiv.org/abs/1001.4137, 2010.

[24] M. Langberg, A. Sprintson, and J. Bruck, “The encoding complexity of
network coding,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2386–2397,
2006.

[25] S. Huang and A. Ramamoorthy, “A note on the multiple unicast capacity
of directed acyclic networks,” in IEEE Intl. Conf. Comm., 2011, pp. 1
–6.

[26] , “On the multiple unicast capacity of 3-source, 3-terminal directed
acyclic networks,” in Information Theory and Applications Workshop
(ITA), 2012, pp. 152 –159.

Aditya Ramamoorthy (M’05) received the B.Tech.
degree in electrical engineering from the Indian
Institute of Technology, Delhi, in 1999, and the M.S.
and Ph.D. degrees from the University of California,
Los Angeles (UCLA), in 2002 and 2005, respec-
tively. He was a systems engineer with Biomorphic
VLSI Inc. until 2001. From 2005 to 2006, he was
with the Data Storage Signal Processing Group of
Marvell Semiconductor Inc. Since fall 2006, he has
been with the Electrical and Computer Engineering
Department at Iowa State University, Ames, IA

50011, USA. His research interests are in the areas of network information
theory, channel coding and signal processing for storage devices, and its
applications to nanotechnology.
Dr. Ramamoorthy is the recipient of the 2012 Iowa State University’s Early

Career Engineering Faculty Research Award, the 2012 NSF CAREER award,
and the Harpole-Pentair professorship in 2009 and 2010. He has been serving
as an associate editor for the IEEE Transactions on Communications since
2011.

Michael Langberg (M’07) is an Associate Professor in the Mathematics and
Computer Science department at the Open University of Israel. Previously,
between 2003 and 2006, he was a postdoctoral scholar in the Computer
Science and Electrical Engineering departments at the California Institute of
Technology. He received his B.Sc. in mathematics and computer science from
Tel-Aviv University in 1996, and his M.Sc. and Ph.D. in computer science
from the Weizmann Institute of Science in 1998 and 2003 respectively. His
research interests include information theory, combinatorics, and algorithm
design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

