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Abstract—We consider the design and analysis of the
efficiently-encodable rate-compatible (E2RC) irregular LDPC
codes proposed in previous work. In this work we introduce
semi-structured E2RC-like codes and protograph E2RC codes.
EXIT chart based methods are developed for the design of
semi-structured E2RC-like codes that allow us to determine
near-optimal degree distributions for the systematic part of the
code while taking into account the structure of the deterministic
parity part, thus resolving one of the open issues in the original
construction. We develop a fast EXIT function computation
method that does not rely on Monte-Carlo simulations and can
be used in other scenarios as well. Our approach allows us to
jointly optimize code performance across the range of rates under
puncturing. We then consider protograph E2RC codes (that have
a protograph representation) and propose rules for designing
a family of rate-compatible punctured protographs with low
thresholds. For both the semi-structured and protograph E2RC
families we obtain codes whose gap to capacity is at most 0.3
dB across the range of rates when the maximum variable node
degree is twenty.

Index Terms—E2RC codes, EXIT chart, semi-structured
LDPC codes, capacity approaching, joint optimization, rate-
compatible, puncturing performance, protograph LDPC codes,
density evolution

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes [1] have
found widespread acceptance in different areas due

to their superior performance and low complexity decod-
ing. In this paper, we investigate rate-compatible punctured
LDPC codes that have the flexibility of operating at differ-
ent code rates while having a single encoder-decoder pair.
Rate-compatible punctured codes are defined by specifying
a systematic mother code that operates at the lowest code
rate. The parity bits of higher rate codes in a rate-compatible
code family are subsets of the parity bits of lower rate
codes. A number of papers have investigated issues around
the design of good rate-compatible punctured LDPC codes.
The work of [2] presents methods for finding optimal degree
distributions for puncturing. In [3] [4] [5], algorithms for
finding good puncturing patterns for a given mother code were
proposed. There have also been attempts to design mother
codes (along with puncturing patterns) with good performance
under puncturing [6][7][8].

E2RC codes introduced in [6] are linear-time encodable
and have good puncturing performance across a wide range

Manuscript received 1 October 2008, revised 22 January 2009. The material
in this paper was presented in part at IEEE GlobeCom, New Orleans, LA,
USA 2008 and at IEEE ICC, Dresden, Germany, 2009. This research was
supported in part by NSF grants CNS-0721453 and ECCS-0802019.
Cuizhu Shi and Aditya Ramamoorthy are with the Department of Elec-

trical and Computer Engineering, Iowa State University, USA (email: {cshi,
adityar}@iastate.edu).
Digital Object Identifier 10.1109/JSAC.2009.090807.

of code rates. In this work we present systematic approaches
for the design and analysis of E2RC-like codes. Let H =
[H1|H2] denote the parity check matrix of a systematic LDPC
code where H1 denotes the systematic part and H2 the parity
part. We address the design of two types of codes in our work
as explained below.

i) Semi-structured E2RC-like codes. In these codes the
parity part H2 is deterministic. We use the lower trian-
gular form introduced in [6] and introduce a protograph
structure for the H2 part. An example is shown in Fig. 1.
We assume a random edge interleaver between systematic
variable nodes and check nodes, which divides the code
into a structured part and an unstructured part, as shown
in Fig. 1. We solve the problem of finding optimal degree
distributions for the unstructured part in this case for
optimizing the rate-compatible codes at any specified
punctured code rate(s).

ii) Structured E2RC-like codes. These codes are protograph
codes as introduced in [9]. The distinguishing feature
is that the parity part of the protograph has an E2RC
structure. We demonstrate that very good rate-compatible
punctured code families can be obtained using the design
rules we propose for the protograph construction. The
protograph structure is especially valuable in practical
applications as it allows parallelized decoding and re-
quires significantly less storage space for the description
of the parity-check matrix than unstructured codes when
circulant permutations are used.

We obtain semi-structured E2RC codes that have a small gap
to capacity across the range of puncturing rates. Furthermore,
we present optimized quasi-cyclic protograph codes based
on the E2RC structure and demonstrate that very good
performance can be obtained with them.
This paper is organized as follows. In Section II, we

briefly discuss the main contributions of our work. Section
IV presents our new method for the design of semi-structured
E2RC codes. We also discuss the method of predicting the
puncturing performance of semi-structured E2RC codes and
the joint optimization of our codes at any specified punctured
code rates. We explain the construction of protograph E2RC
codes in Section V, and Section VI outlines our conclusions.

II. MAIN CONTRIBUTIONS

We first outline the issues left unresolved in the work of [6].

a) The original construction of E2RC codes proposed the
specialH2 (parity part) structure of the parity-check matrixH .
However the design of appropriate degree sequences for the
H1 (information part) based on the constrained H2 structure,
was not discussed. In [6], the authors used degree sequences
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Fig. 1. Tanner graph representation of E2RC codes.

designed for standard irregular codes and constructed H to
match these distributions as closely as possible.
b) The construction technique did not provide any means of
optimizing code performance at any particular puncturing rate
or across all rates simultaneously.
c) As pointed out by an anonymous reviewer, the original
E2RC codes suffer from high error floors [10] at the mother
code rate. As shown in [10], this is because the H2 structure
causes the maximum check node degree to be large.
d) The original E2RC codes work with completely random
interleavers, that are hard to implement in practice.

In this paper, we resolve each of the issues discussed above.
We briefly overview the main contributions below.

i) Systematic design techniques for E2RC-like codes.
Note that the analysis of E2RC codes does not follow
directly from the analysis of related codes such as systematic
IRA codes [11][12]. This is because the structured part of
IRA codes is symmetric while that of E2RC codes is quite
asymmetric. In [12], four methods were proposed for the
design of IRA codes. The first two methods implicitly assumed
one edge type in the accumulator part which was justified
by the symmetry of the part. Together with a one-parameter
approximation of the message distribution function, Gaussian
or BEC approximation, these two methods yielded almost
closed-form equations of density evolution. However, one-
edge type assumption turns out not accurate enough for the
structured part of E2RC codes because of its asymmetry. In
the latter two methods in [12], Monte Carlo simulations were
used for generating the EXIT function of the structured part
of IRA codes. The Monte Carlo simulation based method is
accurate for computing EXIT functions of both symmetric
and asymmetric constituent code components by taking the
structure of the code component into account. When we design
semi-structured E2RC codes using EXIT chart, we take into
account the complete structure of the deterministic part of
E2RC codes to compute the EXIT function as presented in
Section IV. Instead of resorting to Monte Carlo simulations,
we propose a fast and analytical method for computing EXIT
functions by solving a set of equations. We use multiple
edge types [13] for the structured part of E2RC codes, one
edge type for each edge in the protograph representation. So
instead of having only three equations (equations (19), (20),

(21) in [12]) from the structured part of IRA codes, we have
2|ER| + |EL| equations from the structured part of E2RC
codes for density evolution. As demonstrated by simulations
and the threshold predictions, this introduces a systematic
method towards the design of semi-structured E2RC codes
with better performance than the original E2RC codes.
ii) A fast technique for EXIT function computation of code
components based on protographs.
Note that usually EXIT functions are computed via Monte-
Carlo simulation, which tends to be time-consuming. In this
work we present a general technique for computing EXIT
functions of code components with a protograph structure.
This greatly speeds up the code design process. While we
applied it to the design of our semi-structured E2RC-like
codes, it can be applied for any protograph like components,
e.g. we can apply it to find the EXIT function of theH2 part of
the IRA code by working with its protograph representation.
iii) Simultaneous optimization of code performance across
multiple rates.
By exploring the E2RC structure and its designed puncturing
pattern, we propose the design of good rate-compatible punc-
tured codes so that the gap to capacity across the entire range
of rates can be controlled. To the best of our knowledge, the
current literature does not address this point.
iv) Alleviating the high error floor problem of the original
E2RC codes.
In our design of semi-structured E2RC codes, we impose a
protograph structure on the H2 part, which corresponds to the
H2 part of a very short original E2RC code. This ensures that
the maximum check node degree remains low, thus preventing
the high error floors that occur in the original E2RC codes
at mother code rate. For a related approach see [10].
v) Design of high-performance codes based on protographs.
Codes with completely random interleavers are too complex
from the point of view of implementation in hardware. In
this work, we design protograph E2RC codes where both
the H1 and the H2 parts have a protograph structure. We
propose design rules for generating a family of rate-compatible
protographs with good threshold properties at all punctured
rates. Finally, we demonstrate codes with performance better
than the original E2RC codes, that are obtained by replacing
the protograph edges by circulant permutations.

III. BACKGROUND AND RELATED WORK

An LDPC code can be defined by a parity-check matrix or
equivalently by a bipartite (or Tanner) graph representation.
For the bipartite graph representation, we follow the conven-
tion that a blank circle represents an unpunctured variable
node participating in the transmission and a filled circle
represents a punctured variable node not participating in the
transmission. The asymptotic threshold of LDPC codes can
be found by performing density evolution [14] [15] [16] [17]
on the degree distribution pair. However, for LDPC codes
with structured components such as IRA codes and protograph
LDPC codes [9], the density evolution analysis needs to take
the underlying structure into account. This can be handled by
classifying edges into different types [13] and also by using
EXIT charts [18]. Protograph LDPC codes start with a small
mini-graph (called a protograph) and construct the LDPC
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Fig. 2. The figure shows an example of a 1-SR, 2-SR and 3-SR node.

codes by replacing each edge in the protograph by a random
permutation of a fixed size. They can be considered as a
subclass of the multi-edge type LDPC codes [13]. Fast density
evolution based on the reciprocal channel approximation [19]
can be performed on protographs to determine their asymptotic
threshold.

A. Efficiently Encodable Rate-Compatible LDPC Codes

We now briefly overview the E2RC codes introduced in
[6]. Let H = [H1|H2] denote the parity-check matrix of an
E2RC code in systematic form. We say that a parity node
in H2 is k-step recoverable (or k-SR) if it can be recovered
in exactly k iterations of iterative decoding assuming that
all the parity bits are punctured and all the systematic bits
are known (Fig. 2 shows an example). Intuitively, a large
number of low-SR nodes tend to reduce the required number
of decoding iterations in the high SNR regime and result in
good puncturing performance.
In [6], the submatrix H2 consists of exclusively degree-2

and degree-1 nodes. Moreover, when the number of parity
nodes is a power of two, half the nodes in H2 are 1-SR, one-
fourth are 2-SR and so on. The special structure of H2 for
E2RC codes allows linear-time encoding and results in good
puncturing performance with a puncturing pattern, where 1-
SR nodes should be punctured first, 2-SR nodes be punctured
next and so on depending upon the rate requirement.
The E2RC codes have good puncturing performance at

relatively short block lengths. However, when the block length
gets large, the structure of H2 may induce a large spread in
the check node degree distribution that may cause a loss of
performance. In recent work, Song et al. [10] showed that
E2RC codes exhibit high error floors at their mother code rate
and claimed that this stems from their dispersive right degree
distribution and high maximum right degree. They presented
a modified approach that fixes the high error floor problem.
In Section IV-B, we show that our approach also effectively
eliminates the high error floors of E2RC codes at the mother
code rate. In fact we obtain codes whose performance is
slightly better than those in [10].

B. EXIT Chart Overview

EXIT charts [20] were first proposed for understanding
the convergence behavior of iteratively decoded parallel con-
catenated codes, and were later generalized to the analysis
of LDPC codes [18] [21] [22] [23]. The components of an
EXIT chart are the EXIT functions of the constituent code
components of the iterative decoder, which relates the a priori
mutual information available to a code component, denoted IA

and the extrinsic mutual information generated after decoding,
denoted IE . The advantage of EXIT charts is that the code

design problem can be reduced to a curve fitting problem
between the code components (usually two in number).
For log-domain belief propagation decoding of unstructured

LDPC codes, if the incoming messages to a variable node v
of degree dv are assumed to be Gaussian and independent, the
EXIT function for the code component involving all variable
nodes is given by [21],

IE,V (IA,V , σ2
mch)

=
∑
dv

λdvJ(
√

(dv − 1)[J−1(IA,V )]2 + σ2
mch,v), (1)

where σ2
mch,v = 4/σ2

n for unpunctured v (σ2
n represents the

channel noise variance), σ2
mch,v = 0 for punctured v and

{λdv} is the edge perspective degree distribution of variable
nodes. Similarly, the EXIT function for the code component
involving all check nodes is given by

IE,C(IA,C)

= 1 −
∑
dc

ρdcJ(
√

(dc − 1)[J−1(1 − IA,C)]2), (2)

where {ρdc} is the edge perspective degree distribution of
check nodes.

IV. SEMI-STRUCTURED E2RC-LIKE CODE DESIGN

In this section, we propose our design method for semi-
structured E2RC-like codes using EXIT charts. We consider
the unstructured part and the structured part of E2RC codes
shown in Fig. 1 as the two constituent code components.
This code division for EXIT chart analysis is justified by the
random edge interleaver between the two code components.
We denote the set of variable nodes in the Tanner graph by

V = V1 ∪V2 where V1 is the subset of nodes in H1 and V2 is
the subset of nodes inH2. The check node set is denoted by C.
In the semi-structured E2RC codes, H2 has a base protograph
structure of the form proposed in [6]. The base protograph
shall be parameterized by the number of check nodes in
it, denoted by M . The H2 part of semi-structured E2RC
codes is obtained by simply replicating the base protograph
an appropriate number of times. For example, the case of
M = 8 is shown in Fig. 1. Check nodes are connected to
the set V1 by a random interleaver (denoted Π in Fig. 1). We
shall frequently need to refer to the protograph representation
of H2. Let Vp and Cp denote the variable node set and the
check node set in the protograph representation of H2. Let
ε(vi) and ε(ci) denote the set of edges connected to vi ∈ Vp

and ci ∈ Cp respectively. We shall use εL(ci) to denote the
set of edges connecting ci and the random edge interleaver
and use εR(ci) to denote the set of edges connecting ci and
Vp, i.e., ε(ci) = εL(ci)∪ εR(ci). Given a protograph structure
on H2, the problem of code design becomes one of finding
good degree distributions for the variable nodes in V1 and
that for the edges in ∪ci∈CpεL(ci) (henceforth referred to
as the left check degree distribution). In our examples, we
only consider concentrated or near-concentrated total check
degrees. We have found experimentally that these tend to give
the best performance. Note that since the H2 part is fixed, this
implies that the left check degree distribution is also more or
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less fixed. Accordingly in our design process we experiment
with a few check degree distributions and focus on optimizing
the degree distribution for the nodes in V1.
We explain our design method in the context of the binary-

input AWGN (BIAWGN) channel. It can be adapted to the
BEC and other channels in a straightforward manner. Suppose
that we are given a channel noise variance σ2

n, the protograph
specifyingH2 and the left check degree distribution. The code
design problem is to find the degree distribution {λdv , v ∈ V1}
so as to minimize the gap between code rate R and channel
capacity C (corresponding to σ2

n), while constraining the
maximum variable node degree to be dv,max. Denote the EXIT
function of the structured part by IE,S(IA,S). For a given
{λdv , v ∈ V1}, the EXIT function of the unstructured part
(see Fig. 1) can be expressed as (according to (1))

IE,unS(IA,unS , σ2
mch)

=
∑
dv

λdvJ(
√

(dv − 1)[J−1(IA,unS)]2 + σ2
mch), (3)

The code design or optimization problem is formulated as

minimize : C − R

subject to : 1.

dv,max∑
dv=1

λdv = 1, λdv ≥ 0

2. IE,unS(IA,unS) > IA,S(IE,S)
for IA,unS = IE,S ∈ [0, 1)

Here, the second constraint is the zero-error constraint by
ensuring the tunnel between the two EXIT curves. It is easy
to see that minimizing C − R for a fixed σ2

n is equivalent
to maximizing

∑dv,max

dv=1
λdv

dv
for v ∈ V1. The computa-

tion of IE,S(IA,S) will be elaborated on in Section IV-A.
IE,unS(IA,unS) is a linear function of {λdv , v ∈ V1} as in (3).
Therefore by a fine enough discretization of the interval [0, 1),
we can express the above optimization as a linear program.
In practice, to set up the second constraint, we need to

find the inverse map IA,S(IE,S) by using linear interpolation.
We have found that a large number (say 104) of (IA,S , IE,S)
pairs for the function IE,S(IA,S) are necessary to ensure the
accuracy of the inverse map IA,S(IE,S) and the solution to
the optimization problem. By solving the above optimization
problem at a certain channel parameter σ2

n, we get a code of
rate corresponding to the {λdv} returned from the optimiza-
tion. To get an optimized code at rate Ro, we need to solve
the above optimization problem at closely spaced channel
parameter levels below the Shannon limit corresponding to Ro

until we get a code rate close enough to Ro. This necessitates
numerous computations of IE,S(IA,S) and motivates the need
for a fast method for computing IE,S(IA,S).

A. A New Method for Computing EXIT Function of the
Structured Part

The usual approach for finding the EXIT function of a
constituent code component is proposed in [20] by using
Monte Carlo simulations. A large number of Monte Carlo
simulations are needed for obtaining smooth EXIT functions.

Moreover, this needs to be repeated at many different channel
parameters. This makes the process rather time-consuming.
Here, we present a fast and accurate method for computing

EXIT functions of structured code components of LDPC
codes, such as the structured part of E2RC codes and that
of IRA codes, without resorting to Monte Carlo simulations.
For convenience, we use the notation ER = ∪vi∈Vpε(vi)

and EL = ∪ci∈CpεL(ci). Note that ∪vi∈Vpε(vi) =
∪ci∈CpεR(ci). Suppose that the a priori inputs carried on
e ∈ EL have average mutual information IA,in and that
v ∈ Vp has channel inputs parameterized by σ2

mch,v. We
are interested in finding IE , the average mutual information
associated with the extrinsic outputs carried on e ∈ EL

after iterative decoding. For an edge e connected to node
vi(ci), we shall use the notation Ivi

A,e(likewise Ici

A,e) to denote
the mutual information describing the a priori inputs on it
and Ivi

E,e(likewise Ici

E,e) the mutual information describing
the extrinsic outputs on it. We set up the following system
of equations for the given structured code component. For
e ∈ ER and vi ∈ Vp, we have

Ivi

E,e = J

(√ ∑
e′∈ε(vi)\{e}

[J−1(Ivi

A,e′ )]2 + σ2
mch,vi

)
. (4)

Similarly, for e ∈ ER and ci ∈ Cp,

Ici

E,e = 1 − J

(( ∑
e′∈εL(ci)

[J−1(1 − IA,in)]2

+
∑

e′∈εR(ci)\{e}
[J−1(1 − Ici

A,e′ )]2
) 1

2
)

, (5)

and for e ∈ EL and ci ∈ Cp,

Ici

E,e = 1 − J

(( ∑
e′∈εL(ci)\{e}

[J−1(1 − IA,in)]2

+
∑

e′∈εR(ci)

[J−1(1 − Ici

A,e′)]2
) 1

2
)

. (6)

For each edge e ∈ ER, there are two equations in the form
of (4) and (5) respectively and two unknown variables Ivi

E,e(or
I

cj

A,e), I
cj

E,e(or Ivi

A,e) associated with it; while for each edge
e ∈ EL, there is one equation in the form (6) and one unknown
variable Ici

E,e associated with it. We want to compute Ici

E,e for
e ∈ EL. There are totally 2|ER| + |EL| equations and the
same number of unknown variables involved in this system of
equations. Note that the specific expressions for this system
of equations are totally dependent on the structure of the code
component. The main idea behind our method for computing
the EXIT function is to find the solution to this system of
equations for a given value of IA,in and channel parameter.
We now present an intuitive method for solving this system
of equations, which works in an iterative manner by applying
the sequence of updates described in equations (4), (5) and
(6). The details are given below.

1) Problem Instance. Given a structured code component,
solve the system of equations described in (4), (5) and (6)
above. The unknown variables involved in this system of
equations are Ivi

E,e(or I
cj

A,e), I
cj

E,e(or Ivi

A,e) for all e ∈ ER and
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TABLE I
COMPARISON OF APPROACHES FOR COMPUTING EXIT FUNCTIONS

AWGN: noise variance= 0.95775;104 (IA, IE) pairs generated
E2RC IRA

Method Proposed Simulation Proposed Simulation
Computing time (s) 3.7 24596 0.6 175886
MAE 0.0072 - 0.00719 -

Ici

E,e for all e ∈ EL. The known variables are Ici

A,e = IA,in for
all e ∈ EL, and the channel parameter σ2

n from which σ2
mch,vi

can be determined for each vi.
2) Initialization. Initialize all unknown variables to be 0. Set
a small value of εthresh = 10−6.
3) Iterative Updates.

(a) Check node update. For all e ∈ ER, compute Ici

E,e using
equation (5). Check to see whether the norm of the
difference between this newly computed set of Ici

E,e and
the previously computed ones is smaller than εthresh. If
yes, then terminate; otherwise, set I

vj

A,e = Ici

E,e if vj and
ci are connected by e.

(b) Variable node update. For all e ∈ ER, compute Ivi

E,e using
equation (4). Set I

cj

A,e = Ivi

E,e if cj and vi are connected
by e. Go to step 3(a).

4) Compute Ici

E,e for e ∈ EL. For all e ∈ EL, compute Ici

E,e

using equation (6). The average of these Ici

E,e is denoted by
IE and (IA,in, IE) is a point on the EXIT function.

The method can be adapted for computing EXIT functions
over other channels by using appropriate update equations.
Moreover, it can be used to compute the EXIT function of the
structured part of other codes that have a succinct protograph
representation such as IRA codes.
We demonstrate the effectiveness of our method by compar-

ing EXIT functions computed by our method and by the Monte
Carlo simulation based method for two cases: the structured
part of E2RC codes and that of IRA codes on BIAWGN
channels respectively. The structured part of the E2RC code
has a protograph structure of size 128. All check nodes have
degree 8. To get smooth curves, we apply 106 a priori inputs
in Monte Carlo simulations for computing each point on the
curves. As shown in Table I, the maximum absolute error
(MAE) between the EXIT functions computed using the two
methods is less than 0.0072.

B. Code Design Examples

In our first example, we design a semi-structured E2RC
code with dv,max = 7 and check degree distribution of
ρ6 = 0.339623, ρ7 = 0.660377. Thus, from a complexity
perspective these codes are comparable to the first design
example in Section V in [10]. The mother code is of rate 0.5
and the H2 part has a protograph structure of size M = 32.
Our optimized code (referred to as code 0) is specified by
λ3 = 0.4243, λ7 = 0.5757 for v ∈ V1 and has an asymptotic
gap of 0.38 dB to capacity at rate 0.5. Fig. 3 gives the
simulation results of this code of block length 2048 bits
generated by the algorithms in [24][25]. For comparison, we
also list the simulation results of the reference code and
original E2RC code from [10]. In this paper, our codes follow
the designed puncturing patterns of original E2RC codes in
[6] to get all puncturing code rates. From the simulation results
it is clear that our code is better than the codes in [10] for
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Fig. 3. Comparison between our code 0 and the reference code in [10] of
block length 2048 bits. The code rates are 0.5, 0.6, 0.7, 0.8 and 0.9 from left
to right. The figure on the top (bottom) corresponds to BER (FER).

all code rates. In particular they do not suffer from the high
error floor problem of original E2RC codes at the mother
code rate.
In our second example, we design another semi-structured

E2RC codes with concentrated check degree 8 and dv,max =
20. The optimized code (referred to as code 1) is given by
λ3 = 0.305825, λ7 = 0.213474, λ8 = 0.181737, λ20 =
0.298964 for v ∈ V1 and it has an asymptotic gap of 0.217
dB to capacity at rate 0.5 which is smaller than code 0. This
is expected since dv,max is higher in this case. The simulation
results of code 1 of block length 16384 bits are given in Fig. 4.
Also given are the simulation results of the E2RC code that
is constructed according to the degree distribution specified
in [6] (referred to as original E2RC). It shows that our code
achieves slightly better performance at rates near mother code
rate but suffers a little at higher code rates.
We use the following terminology in this paper. The pre-

dicted threshold refers to the decoding threshold from asymp-
totic code performance analysis and the measured threshold
refers to the channel parameter where the code achieves BER
= 10−4 in simulations. For our code 0 of length 2048 bits,
the measured threshold at rate 0.5 is 1.47 dB which is 0.9 dB
away from the predicted one. For our code 1 of length 16384
bits, this gap is only 0.4 dB.

C. Puncturing Performance Analysis and Joint Optimization
of Semi-Structured E2RC Codes

The puncturing performance of a given code is specified
in terms of its decoding thresholds at all punctured code
rates. The given semi-structured E2RC codes are specified
by λdv , v ∈ V1 and the knowledge of the protograph structure
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Fig. 4. Comparison between our second code example and original
E2RC code in [6] of block length 16384 bits. The code rates are
0.5, 0.5714, 0.6667, 0.8 and 0.8889 from left to right.

of the structured part. For a given channel parameter, we can
compute the two EXIT functions using (3) and the approach
of Section IV-A. Note that when computing EXIT functions
at different puncturing code rates, we follow the designed
puncturing pattern of E2RC codes. The decoding threshold
at a given code rate is determined by finding the channel
parameter where the two EXIT curves (computed under the
puncturing pattern at that rate) just begin to separate.
Our puncturing performance analysis of code 1 suggests that

it has asymptotic decoding thresholds of around 0.40, 0.85,
1.40, 2.45, 3.44 dB at rates 8

16 , 8
14 , 8

12 , 8
10 and

8
9 respectively.

The measured thresholds at these rates for the code of block
length 16384 bits based on the simulation results in Fig. 4
are around 0.80, 1.22, 1.75, 2.78, 3.76 dB, which are consistent
with the predicted ones with gaps uniformly around 0.35 dB.
Joint Optimization of Semi-Structured E2RC Codes
We now demonstrate that we can design our codes such that
they have a small gap to capacity at all puncturing rates. This is
because our puncturing pattern is deterministic and allows the
determination of the asymptotic threshold at any puncturing
rate for any given {λdv , v ∈ V1}. Let R be a specified set of
code rates where we want to optimize the code. Let σ(g, Ri)
denote the channel noise parameter that is at a gap of g
from the channel parameter corresponding to the Shannon
limit at rate Ri. Let IA,S(IE,S , σ(g, Ri)) denote the plot
of IA,S vs. IE,S under the puncturing pattern corresponding
to rate Ri, at the channel parameter σ(g, Ri). The notation
IA,unS(IA,unS , σ(g, Ri)) will be used analogously. We can
formulate the joint optimization problem as minimizing the
maximum gap to capacity at all rates in R as follows.

Joint optimization algorithm
for g = gmin : gmax

Solve the following linear program optimization problem

maximize:
dv,max∑
dv=1

λdv

dv

subject to:1.

dv,max∑
dv=1

λdv = 1, λdv ≥ 0,

2. IE,unS(IA,unS , σ(g, Ri)) > IA,S(IE,S , σ(g, Ri))
for IA,unS = IE,S ∈ [0, 1), for all Ri ∈ R

if mother code rate corresponding to {λdv} is acceptable

break; return {λdv} and g.

endif

endfor

Note that the second set of constraints is the zero-error
constraint by ensuring an iterative decoding tunnel for all
EXIT charts at all the required code rates. We can obtain all the
required EXIT functions relatively quickly using our approach
outlined previously under the puncturing patterns for each Ri.
To obtain optimized {λdv}, we basically keep increasing g
until we get the desired code rate. The code specified by λdv

is guaranteed to have asymptotic performance gap to capacity
no larger than g at all code rates in R.

We designed a semi-structured E2RC code that was jointly
optimized across the rate range 8

16 ∼ 8
9 , where M = 32, all

check nodes have degree 8 and dv,max = 20. The code is
specified by λ3 = 0.309090, λ6 = 0.278794, λ20 = 0.412116.
Fig. 5 gives the simulation results for the code of block
length 16384 bits (listed as code 2). Also plotted are the
simulation results in Fig. 4 for code 1 and original E2RC
code from Section IV-B. The puncturing performance anal-
ysis suggests that code 1 has asymptotic performance gaps
around 0.21, 0.32, 0.34, 0.41, 0.405 dB to capacity at rates
8
16 , 8

14 , 8
12 , 8

10 and
8
9 respectively while code 2 has much more

uniform gaps of around 0.29, 0.30, 0.25, 0.29, 0.295 dB to
capacity at these rates. The simulation results in Fig. 5 also
suggest uniformly better performance of code 2 compared to
code 1 across the range of rates. Moreover, the measured
thresholds of the two codes at all rates in simulations are
in good agreement with the predicted thresholds. At all
code rates, the gap between the measured threshold and the
predicted threshold is around 0.35 dB. Finally, we note that
code 2 achieves better or at least the same performance as
original E2RC code at all rates.

The methods described in this section apply more gen-
erally to codes that have a structured component with a
protograph representation, such as IRA codes. We applied
our method to the design of IRA codes as well and ob-
tained jointly optimized codes with performance gaps around
0.27, 0.30, 0.195, 0.27, 0.29 dB to capacity at rates 8

16 , 8
14 ,

8
12 ,

8
10 and 8

9 respectively. Though not presented here, the
simulation results of the IRA code are almost identical to the
jointly optimized E2RC code (code 2) discussed above.

To the best of our knowledge, a joint optimization algorithm
that minimizes the gap to capacity simultaneously across all
code rates has not been considered previously in the literature.
In [2], the authors found the optimal puncturing patterns for
two optimized mother codes (referred to as Ha code 1 and Ha
code 2) and also gave their asymptotic puncturing performance
using Gaussian approximation based density evolution. In
Fig. 6, we compare the asymptotic thresholds of their codes
with our code families. Note that our codes have the same
maximum variable node degree and slightly smaller average
variable node degree compared to the codes in [2]. We observe
that the gaps to capacity for our codes remain more or less
the same across the range of rates, whereas the codes in [2]
exhibit a larger gap to capacity at higher code rates.
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Fig. 5. Comparison between two semi-structured E2RC codes optimized
at mother code rate (code 1) and simultaneously optimized at multiple rates
(code 2) and original E2RC code of block length 16384 bits. The code rates
are 0.5, 0.5714, 0.6667, 0.8 and 0.8889 from left to right.
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Fig. 6. Asymptotic performance comparison between our codes and those
from [2].

V. PROTOGRAPH E2RC CODES CONSTRUCTION

In this section, we introduce the construction of a class of
structured E2RC-like codes based on protographs. The basic
idea in these codes is to impose a protograph structure on
the systematic part H1 of the parity-check matrix as well
(in addition to the protograph structure on H2). We obtain
a family of protographs with asymptotic gaps to capacity no
larger than 0.28 dB across a wide range of rates when the
maximum variable node degree is twenty. These codes have
excellent finite length performance as well. In this part of the
work, we use the reciprocal channel approximation of density
evolution for computing the threshold for a given protograph
[9][19][13]. The construction algorithm goes as follows.

1) Find a good high-rate protograph. Using density evolution
we first identify a high-rate protograph (starting protograph)
with a low threshold.
2) Use check-splitting to obtain lower-rate protographs with
low thresholds. From the starting protograph, we perform
check splitting in a systematic manner to obtain a family of
good rate-compatible punctured protographs where the parity
part has the E2RC structure. These correspond to different
code rates of the rate-compatible code family.
3) Construct the LDPC code by replacing protograph edges
with carefully chosen circulant permutations. With the pro-
tograph of mother code rate constructed from above steps, a
larger graph defining the LDPC code is constructed by replac-
ing the protograph edges with appropriately chosen circulant
permutations by using techniques in [26][24][25][27].

V1 V3
V2 V4 V5

C

V1 V3
V2 V4 V5

C1 C2

V6

V1 V3
V2 V4 V5

C1 C2

V6

G1 G2 G3

Fig. 7. Check node c with degree-5 is divided into c1 and c2. The new
check nodes c1 and c2 are connected by a new degree-2 variable node v6.

In the sequel we shall attempt to explain the construction
process by means of an example. However, it should be clear
that the techniques are applicable in general.

A. Starting Protograph

Let the desirable code rate range for the code family be
Rmin ≤ R ≤ Rmax. A high-rate protograph of size M0×N0

(M0 - number of check nodes, N0 - number of variable
nodes) with low threshold serves as the starting protograph.
The mother code protograph is of size M × N such that
N−M

N ≤ Rmin, N0−M0
N0

≥ Rmax and N − M = N0 − M0.
These conditions guarantee that the desirable code rate range
is achievable by the construction. In addition, these parameters
should be kept relatively small (less than 50) to keep the con-
struction complexity manageable. We impose the constraint
that the degree of the variable nodes in the starting protograph
is at least three to avoid a high error floor. We perform an
exhaustive search using the reciprocal channel approximation
of density evolution [19][13] to find a protograph with low
threshold of size M0 × N0 and with variable node degree
between 3 and a maximum degree dv,max. In our example,
Rmin = 0.5, Rmax = 8

9 , dv,max = 20 and the size parameters
are decided as M0 = 1, N0 = 9 and M = 8, N = 16. Our
example starting protograph consists of one check node and
nine variable nodes of degree {20,8,3,3,3,3,3,3,3} respectively.
i.e. each variable node is connected to the single check node
by multiple edges. It has a threshold (computed according to
[19][13]) of 3.27 dB which is 0.24 dB away from capacity.

B. Check-Splitting

The operation of check-splitting (also used in [28]) on a
check node c of degree d in the protograph G1 proceeds as
shown in Fig. 7. We split c into two new check nodes c1, of
degree d1, and c2, of degree d2, such that d = d1+d2. Next we
introduce a new variable node v6 and introduce edges c1 − v6

and c2 − v6, so that the degree of v6 is two. The resultant
protograph G3 is of lower rate than G1.
Starting with the high-rate starting protograph, we apply

check-splitting repeatedly in a specific manner, and finally
arrive at the protograph of low rate mother code. In fact, the
protographs produced in the check-splitting process form a
family of rate-compatible protographs if we consider the newly
added degree-two variable nodes in check-splitting as parity
nodes providing incremental redundancy. However, the check-
splitting needs to be done carefully in order to have good code
performance across all rates. We note that performing density
evolution on G1 in Fig. 7 can predict the threshold of G3

under puncturing (upon puncturing v6, the resultant G2 has
the same asymptotic decoding threshold as G1) [29].



896 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 6, AUGUST 2009

TABLE II
old new

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

c01 10 4 2 1 2 1 2 1 2 1
c02 10 4 1 2 1 2 1 2 1 1

TABLE III
old new

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

c011 5 2 1 1 1 0 1 1 1 1 1 0
c012 5 2 1 0 1 1 1 0 1 0 1 0
c021 5 2 1 1 0 1 1 1 0 1 0 1
c022 5 2 0 1 1 1 0 1 1 0 0 1

C. Constructing Protographs with E2RC-like Structure

We shall call the original variable nodes of degree at least
three in the starting protograph, old nodes and the variable
nodes of degree two introduced in check-splitting, new nodes.
For a given check node, we define its old (new) node degree to
be the number of connections to the old (new) nodes. When we
split c0 into c01 and c02, a decision needs to be made on how
the connections of c0 are divided between them. To obtain the
E2RC structure, c01 is allocated all of c0’s new node degree;
the parity node newly introduced in check-splitting has one
connection to both c01 and c02 (for a proof see the Appendix).
The old node degree also needs to be divided between c01

and c02 in a manner that ensures that the threshold of the new
protograph is low. We discuss it in more detail in Section V-D.
At each stage of the construction, we perform check-

splitting on all check nodes in the current protograph. We
use the example starting protograph from Section V-A to
demonstrate the process. Here M0 = 1 and M = 8, so we
shall have log2 8 = 3 construction stages. Let Mns denote the
number of check nodes in the protograph at the beginning of
stage ns. In stage ns, we perform check-splitting on all Mns

check nodes so that a set of Mns protographs of decreasing
rates are generated at this stage. The order in which the check
nodes are split can affect the thresholds at those rates.
We now show the first and second splitting stages for our

starting protograph. In the first stage, check-splitting on the
single check node generates a new protograph of rate 8

10 ,
shown in Table II. In the second stage, there are two check
nodes in the protograph. Density evolution analysis tells us
that performing check-splitting on c01 first gives a protograph
of rate 8

11 with a better decoding threshold. So in this stage,
we first split c01 to generate a protograph of rate 8

11 and then
split c02 to generate a protograph of rate 8

12 (see Table III).
The third stage proceeds in a similar manner. Refer to Fig.

8 for a graphical illustration of the construction process. Note
that at the end of stage ns of the algorithm, the Mns newly
added parity nodes are all 1-SR. Also a k-SR node at the end
of stage ns − 1 would become (k+1)-SR at the end of stage
ns (as shown in the appendix). In this way the construction
ensures that half of the parity nodes in the final protograph
are 1-SR, one-fourth are 2-SR and so on, i.e., our construction
results in protographs with E2RC structure. The parity nodes
of the resultant mother code protograph are punctured in the
inverse order in which they were added in the construction in
order to obtain higher puncturing rates.

D. Deciding Splitting Patterns

In check-splitting, the connections between a given check
node and the old nodes can be divided among the two new

c
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c0121
c0122

v10 v10
v14

v0
v1
v

c0
c01
c02

c011
c021
c022 c0211

c0212
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c0112

v9 v9
v11

v9

v11

v12

v13

v2
v3
v4
v5

c0221

c0222
v11
v15

1 st stage 2nd stage 3rd stage

v6
v7
v8

Fig. 8. Protograph construction from check-splitting.

check nodes in many ways. Let c0 be the check node to be
split. Let s0 be the vector of connections between c0 and
the old nodes, e.g., s0 = [20 8 3 3 3 3 3 3 3] in our
example. The splitting pattern refers to the set of vectors
s01 = [10 4 2 1 2 1 2 1 2] and s02 = [10 4 1 2 1 2 1 2 1]
(shown in Table II) that determine the connections between
c01 and c02 and the old nodes. Thus s0 = s01 + s02. It is
easily seen that the number of possible splitting patterns are
huge in each check-split and it’s impossible to evaluate all of
them in our construction. For example, when splitting s0 into
s01 and s02, we have totally 201×81×37 = 349920 possible
splitting patterns. Our search for good splitting patterns for
each check-splitting is guided by two main points.

a) Trade-off between the performance of high-rate and low-
rate protographs.We have found that there exists a tradeoff be-
tween the performance of high-rate and low-rate protographs
during the construction. For example, very low thresholds for
the higher rate protographs typically come at the expense of
higher thresholds for the low-rate protographs.
b) Equal splitting patterns give good performance. Note that
considering all possible splitting patterns at all possible stages
is essentially computationally infeasible. We have found that
splitting patterns that split the connections roughly equally
between the two new check nodes in each check-splitting
result in good thresholds across all code rates in the family.
This reduces the search space a lot and it becomes possible
to perform density evolution analysis to determine proper
splitting patterns at each stage.

In Table IV, we present one of the mother code protographs
that we have constructed from the example starting protograph
from Section V-A using the construction algorithm described
above. Also shown is the gap to Shannon limit for the
protograph at different puncturing rates 8

9 ∼ 8
16 . The gap to

capacity remains between 0.235-0.278 dB across the range
of rates. In fact, we could choose other splitting patterns such
that the protograph family has an even lower threshold at some
high code rate during the early stage of the construction, but
it would come at the expense of higher thresholds for the
lower code rates in the later stage of the construction. These
protographs are available at [30] (Due to lack of space we are
unable to include them here).

E. Results

We compared the asymptotic thresholds of the code family
represented by protograph-1 above and the AR4JA code family
in [28]. For the three common code rates 1

2 , 2
3 , and

4
5 , our
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TABLE IV
MOTHER CODE PROTOGRAPH-1

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

3 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0
2 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0
3 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0
2 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0
3 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0
2 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0
3 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
2 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1
Gap to Shannon limit in dB (rates 8

9
∼ 8

16
)

0.235 0.253 0.270 0.246 0.278 0.275 0.274 0.270

protograph is better than the AR4JA family with performance
gains of 0.17, 0.143 and 0.12 dB respectively. The average
variable node degree of our codes is a little higher than that
of AR4JA family. Note however that the codes in [28] are not
rate-compatible punctured codes.
We constructed protograph E2RC codes with block length

16384 bits by replacing each edge in protograph-1 by an
appropriate circulant permutation using the algorithms pro-
posed in [24][25]. Fig. 9 gives the simulation results of this
protograph E2RC code, the jointly optimized semi-structured
E2RC code (code 2) and original E2RC code of the same
block length from Section IV-C. From the asymptotic perfor-
mance analysis for protograph E2RC code as shown on the
bottom of Table IV and for code 2 in Section IV-C, we see that
protograph E2RC code is quite competitive to the optimized
semi-structured E2RC code. The simulation results shown
in Fig. 9 are consistent with the analysis. Moreover, both
protograph E2RC code and optimized semi-structured E2RC
code achieve better performance than the originalE2RC code.

VI. CONCLUSIONS

The E2RC codes were proposed in [6] as a promising class
of rate-compatible codes. In this work we introduced semi-
structured E2RC-like codes and protographE2RC codes. We
developed EXIT chart based methods for the design of semi-
structured E2RC-like codes that allow us to determine near-
optimal degree distributions for the systematic part of the code
while taking into account the structure of the deterministic
parity part. We presented a novel method for finding EXIT
functions for structured code components that have a succinct
protograph representation that is applicable in other scenarios
as well. This allows us to analyze the puncturing performance
of these codes and obtain codes that are better than the
original construction. Using our approach we are able to
jointly optimize the code performance across the range of rates
for our rate-compatible punctured codes. Finally we consider
E2RC-like codes that have a protograph structure (called
protograph E2RC codes) and propose design rules for rate-
compatible protographs with low thresholds. These codes are
useful in applications since the protograph structure facilitates
implementation. For both the semi-structured and protograph
E2RC families we obtain codes with small gaps to capacity
across the range of rates.
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bits at rates 0.5, 0.5714, 0.6667, 0.8 and 0.8889 from left to right.

APPENDIX

We first recall the precise construction rule. Let c0 be a
check node with a certain number of connections to new nodes
of degree-2. When c0 is split into c01 and c02, c01 inherits all
of c0’s connections to new nodes and both c01 and c02 have
one connection with the newly introduced variable node.
Suppose that the starting protograph is of size M0×N0. At

the end of stage k of the construction algorithm, it is clear that
there will be M0 ·2k check nodes andM0(2k−1) new degree-
2 parity nodes. Our aim is to show that this construction
algorithm results in an H2 part with the E2RC structure. i.e.
at the end of stage k of the algorithm, there are M0 · 2k−1

1-SR nodes, M0 · 2k−2 2-SR nodes, . . . , and M0 k-SR nodes.
We proceed by induction.
Base Case. At the end of the first stage, we will have 2M0

check nodes and M0 new degree-2, 1-SR parity nodes.
Inductive Step. Suppose that the statement is true at the end

of stage k. We will show that it is true at the end of stage k+1.
To see this note that at the end of stage k + 1 we will have
M0 ·2k+1 check nodes formed by splitting the check nodes at
the end of stage k. According to the construction algorithm,
M0·2k check nodes will inherit the previous connections while
the remaining will have just one connection to the M0 · 2k

newly introduced degree-2 variable nodes. Therefore we will
have at least M0 · 2k 1-SR nodes at the end of stage k + 1.
Next we note that any node that was of type α-SR at the
end of stage k will now become of type (α+1)-SR. This is
because each of the check nodes it is connected to will have
one additional connection. This implies that at the end of stage
k+1 there will be M0 ·2k 1-SR nodes, M0 ·2k−1 2-SR nodes,
. . . , and M0 (k+1)-SR nodes. This shows the required result.
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