
1

Protograph E2RC Codes
Cuizhu Shi and Aditya Ramamoorthy

Department of Electrical and Computer Engineering
Iowa State University

Ames, Iowa 50011
Email: {cshi, adityar}@iastate.edu

Abstract—We propose a construction of rate-compatible punc-
tured codes based on protographs that have a special E2RC
structure in their parity part (E2RC codes were introduced
in Kim, Ramamoorthy and McLaughlin ‘06) . The protograph
representation of these codes facilitates their asymptotic perfor-
mance analysis and allows the implementation of high speed
decoders. The construction process starts with a good high rate
protograph. The protographs of lower rate codes are derived
from the higher rate protographs via the process of check-
splitting. The check-splitting is done in a specific manner so
that the parity nodes in the protograph have the special E2RC
structure. We also present additional design rules that ensure
that the gap to capacity remains low across the range of rates.
Using our approach we exhibit protographs that have a gap of
at most 0.27 dB to capacity across the range of rates 1/2 to 8/9.
These conclusions are supported by our simulation results. Our
work, therefore presents a systematic method for the design of
E2RC-like codes.

I. INTRODUCTION

LDPC codes introduced in [1] have near-capacity perfor-
mance on a large variety of channels and low decoding
complexity, and have been proposed in a number of new
applications and standards. There have been numerous con-
structions of LDPC codes proposed in the literature ranging
from random choice to algebraic constructions [2] [3] [4] [5]
[6]. Most LDPC codes used in industry need to have some
structure that allows parallelizable decoding. Moreover the
amount of storage required to store the description of the
parity-check matrix needs to be small, i.e., storing completely
random permutations is not feasible due to implementation
issues. The protograph based LDPC codes introduced in [4]
address this issue in part. The main idea here is to start with
a small mini-graph (called a protograph) and construct the
LDPC code by replacing each edge in the protograph by a
random permutation of a fixed size. Protograph codes have
the advantage that the asymptotic threshold of the code can
be found by performing density evolution [2] [7] [3] on the
protograph. Moreover, if instead of a random permutation we
choose a random circulant permutation that can be specified by
a circular shift of the identity matrix then the storage require-
ment can be reduced tremendously and a fast parallelizable
decoder can be implemented in hardware.

Another desirable feature in practice especially for wireless
channels is rate-compatibility. Rate-compatible puncturing was
introduced in [8] as a technique to obtain a family of codes
of varying rates while retaining the same encoder-decoder

pair. Rate-compatible punctured codes are a practical low-
complexity solution that are useful in hybrid-ARQ protocols
and situations where the channel quality varies over time.
The mother code (which is systematic) in these systems
corresponds to the lowest code rate. Higher code rates can be
obtained by only transmitting a subset of the parity bits. The
parity bits that are not transmitted are said to be punctured.
The parity bits of higher-rate codes are chosen to be a subset
of the parity bits of the lower rate codes.

A number of papers have investigated the construction of
rate-compatible punctured LDPC codes [9] [10] [11] [12] [13]
[14] [15]. The main challenge here is the design of a mother
code and the puncturing pattern such that the BER/FER of the
codes of all rates is low. There are two main approaches that
address the problem of rate compatibility.

• Optimizing puncturing patterns or distributions.
In [10], the authors found the optimal degree distributions
for puncturing using density evolution analysis. In [11]
[12] [14], the authors proposed algorithms for finding
good puncturing patterns for given mother code.

• Design of a good mother code and the puncturing pattern.
Here the attempt is to design LDPC codes with a specific
structure that allows good performance across a range of
rates. Some recent works include [9] [13] [15]. These
approaches have been guided in part by the criteria used
in design good puncturing patterns as well.

In this paper, we consider the construction of high-
performance rate-compatible LDPC codes based on pro-
tographs. As mentioned before rate-compatibility is a desirable
goal, while the protograph structure allows asymptotic analysis
and efficient implementation. Our protograph construction
technique is inspired by the structure of the E2RC codes in
[9]. We start from a high-rate protograph and present a step-
by-step check-splitting technique guided by density evolution
analysis to generate the protograph of the low-rate mother
code. The check-splitting is done in a specially designed order
so that the parity part of the low-rate mother code exhibits
an E2RC-like structure which ensures good performance
under puncturing. This yields a systematic technique for the
design of E2RC-like codes, as it becomes possible to perform
asymptotic threshold analysis of the mother code and the
punctured codes, while ensuring that practical implementation
is possible.

We note that the idea of check-splitting to obtain new codes
from existing codes has been around in the work of [16]

[17] [18]. The contribution of this paper is the usage of this
technique in constructing protographs such that their parity
part retain the E2RC structure that ensures good performance
across rates. Moreover, the design space for the remaining part
of the protograph can be potentially very large. We provide
some criteria for pruning the search space while maintaining
a low threshold gap from capacity across all rates.

The paper is organized as follows. In section II we overview
the related work and basic notations that we use in this
paper. Section III presents the proposed construction of the
protograph E2RC codes. The material in section IV contains
the simulation results with comparisons with previous work
and section V outlines the conclusions.

II. PRELIMINARIES AND RELATED WORK

A. LDPC Codes and Protograph Based LDPC Codes

An LDPC code can be defined by its parity-check matrix
or equivalently by a bipartite graph representation, where each
edge in the graph connects a variable node (representing the
bits) on one side with a check node (representing the parity-
check equations) on the other side. Throughout this paper for
the bipartite graph representation, we follow the convention
that a blank circle represents an unpunctured variable node
that participates in the transmission and a filled circle repre-
sents a punctured variable node that does not participate in
transmission. A check node is represented by a blank circle
with a cross sign in it.

LDPC codes based on protographs were introduced in [4].
The main idea here is to start with a small mini-graph (called
a protograph) and construct the LDPC code by replacing each
edge in the protograph by a random permutation of a fixed size
(see Figure 1 for an example). Protograph based codes can be
considered as a subclass of the multi-edge type LDPC codes
[3]. In the protograph representation, each edge represents one
edge type, and parallel edges are allowed. Density evolution
can be performed on protographs to determine their asymptotic
performance.

Protograph Copies Derived graph

Types 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Types A B A B A B A B A B

Fig. 1. Copy-and-permute in generating larger graph from protograph

B. Efficiently Encodable Rate-Compatible LDPC Codes

A significant amount of research work has dealt with
the construction and analysis of punctured LDPC codes [9]
[10] [11] [12] [13] [14] [15]. In this subsection we briefly
explain the construction introduced by Kim, Ramamoorthy
and Mclaughlin [9] as our work is inspired by it. Let the
parity-check matrix of a systematic LDPC code be denoted
H = [H1|H2] where H1 denotes the sub-matrix correspond-
ing to the information bits and H2 denotes the sub-matrix
corresponding to the parity bits. We say that a parity node in

H2 is k-step recoverable (or k − SR) if it can be recovered
in exactly k iterations of iterative decoding assuming that all
the parity bits are punctured and all the information bits are
unpunctured (Figure 2 shows an example). Intuitively, a large
number of low-SR nodes tend to reduce the required number
of decoding iterations in the high SNR regime and result in
good puncturing performance.

1-SR node 2-SR node 3-SR node

Fig. 2. The figure shows an example of 1-SR, 2-SR and 3-SR nodes.

In [9] the submatrix H2 consists of exclusively degree-2 and
degree-1 nodes. Moreover half the nodes in H2 are 1 − SR,
one-fourth are 2 − SR and so on1. The special structure of
H2 for E2RC codes results in good puncturing performance
with a simple puncturing pattern. The puncturing pattern is
such that 1−SR nodes should be punctured first and then the
2−SR nodes and so on depending upon the rate requirement.

In this paper we design a class of protographs that is inspired
by the approach in [9]. These protographs have thresholds
0.3 dB away from the Shannon limit across a wide range of
rates. Moreover they have excellent finite length performance
as well. In estimating the asymptotic performance of the
protograph based LDPC codes we use the reciprocal channel
approximation [19] of density evolution that has been found
to be fast and very accurate in practice.

Throughout this paper, we consider the case when the codes
are transmitted over additive white gaussian noise (AWGN)
channel with binary phase-shift keying (BPSK) modulation
and belief propagation decoding is used.

III. PROTOGRAPH E2RC CODES CONSTRUCTION

In this section, we outline our technique for the construction
of the protograph E2RC codes. Given the desirable code
rate range Rmin ≤ R ≤ Rmax for the code family, The
construction algorithm goes as follows.

1) Find a good high-rate protograph.
Using density evolution we first identify a high-rate
protograph with a low threshold.

2) Use check-splitting to obtain lower-rate protographs
with low thresholds.
We split check nodes in the high-rate protograph in a
systematic manner to obtain good low-rate protographs.
The check-splitting operation is explained in detail in
subsections III-B and III-C.

3) Construct the LDPC code by replacing edges with
carefully chosen permutations.
With the protograph constructed from above steps, a
larger graph defining the LDPC code is constructed by
using techniques such as those in [20] [21] [22].

The construction procedure ensures that the parity part of
the code maintains a E2RC like structure during the process.

1This is strictly true if the number of parity nodes is a power of two and
approximately true otherwsie

2

One minor difference is that we do not have any degree-1
check node in the protograph. In the sequel we illustrate the
construction process by means of an example.

A. Starting Protograph

A protograph of size M0 ×N0 (M0 - number of constraint
nodes, N0 - number of variable nodes) with low threshold
serves as a starting point; we call it the starting protograph.
Given the desirable code rate range Rmin ≤ R ≤ Rmax,
we decide the size of the mother code protograph M × N
and the size of the starting protograph M0 × N0, such that
N−M

N ≤ Rmin, N0−M0
N0

≥ Rmax and N − M = N0 − M0.
These conditions guarantee that the desirable code rate range
is achievable by the construction. In addition, these parameters
should be kept relatively small, say less than 50, to keep the
construction complexity manageable. The construction will
give a family of protographs with code rates ranging from
N−M

N to N0−M0
N0

. We impose the constraint that the degree of
all variable nodes in the starting protograph is at least three.
This is because the presence of degree two nodes causes a
relatively high error floor.

In our example, Rmin = 0.5, Rmax = 0.85, and the
size parameters are decided as M0 = 1, N0 = 9 and
M = 8, N = 16. The protograph shown in Figure 3 is used
as our starting protograph. It consists of one check node and
nine variable nodes of degree {24,8,3,3,3,3,3,3,3} respectively.
It has a threshold of 3.27 dB which is 0.24 dB away from the
theoretical limit of 3.03 dB.

324 8 33 3 3 3 3

V
0

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

Fig. 3. Example of a starting protograph. The number next to an edge denotes
the number of parallel edges between the variable and the check node.

B. Check-Splitting

Consider a check node c of degree d in the protograph. The
operation of check-splitting proceeds as follows. We split c
into two check nodes c1 and c2, such that the degree of c1

is d1 and the degree of c2 is d2 and d = d1 + d2. Next we
introduce a punctured variable node v′ and introduce edges
c1 − v′ and c2 − v′, so that the degree of v′ is two. This is
shown pictorially in Fig. 4.

Check-splitting was used in [16] to construct protograph
LDPC codes with linear minimum distance. In [17], a rig-
orous proof was given in lemma 3 and theorem 5 about
the asymptotic decoding performance equivalence between a
non-punctured high-rate LDPC code and a punctured low-rate
LDPC code whose parity-check matrix can be built from that
of the high-rate LDPC code through check-splitting. This is
confirmed by our density evolution analysis on the first two
graphs in Figure 4, which give the same asymptotic iterative
decoding threshold.

V
1

V
3

V
2 V

4
V

5

C

V
1 V

3
V

2
V

4
V

5

C
1

C
2

V
6

V
1 V

3
V

2
V

4
V

5

C
1

C
2

V
6

G
1

G
2

G
3

Fig. 4. Check c with degree-5 is divided into c1 and c2. The new check
nodes c1 and c2 are connected by a new degree-2 variable node v6.

In this paper we use check-splitting as follows. We start
with the high-rate protograph (as explained above) and split its
check nodes in a specific manner. To obtain lower rates, after
splitting a given check node, we convert the newly introduced
punctured node into a transmitted node (e.g. see G3 in Fig.
4). By applying check-splitting to a protograph of higher rate
codes repeatedly, we finally arrive at the protograph of low rate
mother code. In fact, the protographs produced in the check-
splitting process form a family of rate-compatible protographs
if we consider the newly added degree-two variable nodes
in check-splitting as parity nodes that are used to provide
incremental redundancy. However we note that the check-
splitting needs to be done carefully (as shown later), otherwise
it may not be possible to have good performance across all
rates.

C. Constructing Protographs with E2RC Like Structure

In this subsection we present a specific check-splitting
technique that ensures the parity part of the code has the
E2RC structure. In what follows we call the original variable
nodes of degree at least three in the starting protograph, old
nodes and the variable nodes of degree two introduced due to
check-splitting, new nodes.

During the construction, each check node has some con-
nections with the old nodes and some connections with the
new nodes. Accordingly, for a given check node we define its
old node degree to be the number of connections to the old
nodes and its new node degree to be the number of connections
to the new nodes. Consider a check node c0. When we split
c0 into c01 and c02, a decision needs to be made on how
the connections of c0 are divided between them. To obtain
the E2RC structure, c01 is allocated all of c0’s new node
degree. The parity node that is introduced in the check-splitting
process has one connection to both c01 and c02. The old node
degree also needs to be divided between c01 and c02 in a
manner that ensures that the threshold of the new protograph
is low. The division of the old node degree is discussed in
more detail in the next subsection.

The construction proceeds in different stages. In each stage,
we perform check-splitting on all check nodes in the current
protograph. We now use the starting protograph in Figure 3 to
demonstrate the process. Note that here we have M0 = 1. We
want to obtain a protograph with M = 8. Thus in this case
we shall have log2 8 = 3 stages in the construction.

old new
v0 v1 v2 v3 v4 v5 v6 v7 v8

c0 24 8 3 3 3 3 3 3 3 -

3

Let Mns denote the number of check nodes in the current
protograph at the beginning of stage ns. In this stage, we
perform check-splitting on each of the Mns

check nodes. Each
check-splitting operation on the current protograph generates
a protograph of next lower code rate. So at stage ns, a set of
Mns protographs of decreasing rates are generated. The order
in which the check nodes are chosen for splitting can affect
the thresholds at those rates.

We now show the first and second splitting stages for
protograph in Figure 3. In the first stage, check-splitting on
the single check node generates a new protograph of code rate
8
10 .

old new
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

c01 12 4 2 1 2 1 2 1 2 1
c02 12 4 1 2 1 2 1 2 1 1

In the second stage, there are two check nodes in the
protograph for splitting. Density evolution analysis tells us
that performing check-splitting on c01 first gives a protograph
of code rate 8

11 with a better decoding threshold than that of
protograph generated by performing check-splitting on c02. So
in this stage, we first split c01 to generate a protograph of rate
8
11 and then split c02 to generate a protograph of rate 8

12 . The
corresponding protographs are shown below.

old new
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c011 6 2 1 1 1 0 1 1 1 1 1
c012 6 2 1 0 1 1 1 0 1 0 1
c02 12 4 1 2 1 2 1 2 1 1 0

old new
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

c011 6 2 1 1 1 0 1 1 1 1 1 0
c012 6 2 1 0 1 1 1 0 1 0 1 0
c021 6 2 1 1 0 1 1 1 0 1 0 1
c022 6 2 0 1 1 1 0 1 1 0 0 1

The third stage proceeds in a similar manner. Note that
following this procedure we get node v9 is 2-SR, while nodes
v10 and v11 are 1-SR. More generally, we can show that when
the algorithm finishes executing stage ns, it adds Mns new
parity nodes all of which are 1-SR. Consider parity nodes that
existed at the beginning of stage ns as k-SR nodes. We can
also show that at the end of stage ns, all those nodes become
(k+1)-SR. The proof is skipped due to lack of space. It turns
out that the construction ensures that half of the parity nodes
in the final protograph are 1-SR, one-fourth are 2-SR and so
on i.e. our construction technique results in protographs that
have the E2RC structure.

We puncture the parity nodes of the resultant protograph
to obtain higher rates. The puncturing order is the inverse
of the order in which the parity nodes are added during the
construction i.e. a parity node that was added at the end will be
punctured first, a parity node that was added at the penultimate
stage will be punctured second and so on. This puncturing
order ensures that the gap to capacity at the different rates is
as predicted by the construction process.

D. Deciding Splitting Patterns

As pointed out before, in check-splitting, the old node
degree of a given check node can be divided among the new
check nodes in many ways. Now we explain how to decide
proper splitting patterns to ensure good code performance.
Let c0 be the check node that needs to be split. Let s0 be
the vector of connections between c0 and the old nodes e.g.
s0 = [24 8 3 3 3 3 3 3 3]. The splitting pattern refers
to the set of vectors s01 = [12 4 2 1 2 1 2 1 2] and
s02 = [12 4 1 2 1 2 1 2 1] that determine the connections
between the nodes c01 and c02 and the old nodes. Thus
s0 = s01 + s02.

Our search for good splitting patterns is guided by two main
points.

a) Trade-off between the performance of high-rate and low-
rate protographs. In our experiments, we have found that
there exists a tradeoff between the performance of high-
rate and low-rate protographs during the construction.
For example, it is possible to obtain very low thresholds
for the higher rate protographs, however this typically
comes at the expense of higher thresholds for the low-
rate protographs in a later stage of the construction.

b) Uniform splitting patterns give good performance. Note
that considering all possible splitting patterns at all
possible stages is essentially computationally infeasible
since the number of possible splitting patterns grows
exponentially. We have found that splitting patterns that
split the connections roughly equally between the new
check nodes have good performance across all code
rates in the family. This reduces the search space a lot
and it becomes possible to perform density evolution
analysis (using the fast reciprocal channel approximation)
to determine the thresholds.

In the tables shown below we present two of the protographs
that we have constructed using the construction algorithm
described above. Both protographs are constructed from start-
ing protograph in Figure 3. At the bottom of each table we
show the gap to Shannon limit for the protograph at different
puncturing levels for rates 8/9− 8/16 from left to right. For
protograph-1 , there is a good balance on the code performance
at all code rates. For protograph-2, we chose the splitting
patterns to lower the threshold for the high rate protographs,
which resulted in somewhat worse performance at the low
code rates.

Mother code Protograph-1
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

3 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0
3 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0
3 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0
3 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0
3 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0
3 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0
3 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1
3 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1
Gap to Shannon limit in dB (rates 8/9, 8/10 - 8/16)
0.24 0.25 0.22 0.21 0.24 0.26 0.27 0.26

4

Mother code Protograph-2
v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

2 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0
4 2 0 1 0 1 0 1 1 0 0 0 1 0 0 0
3 0 0 0 0 0 2 0 0 0 1 0 0 1 0 0
3 2 1 0 2 0 0 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
3 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1
3 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0
3 4 1 0 0 0 0 0 1 0 0 0 0 0 1 0
Gap to Shannon limit in dB (rates 8/9, 8/10 - 8/16)
0.24 0.17 0.19 0.24 0.21 0.23 0.35 0.36

E. Comparison with Previous Results

Here we give comparisons with some existing results in the
literature. The asymptotic performance comparison between
the protograph E2RC code family represented by protograph-
1 above and the AR4JA code family in [16] is given in Figure
5. Higher rate codes in the protograph E2RC code family are
obtained by puncturing parity nodes of the same type as v15,
v14,...v9 in turn. We note that the thresholds of our protographs
are closer to the Shannon limit than that of AR4JA codes for all
the rates 1/2, 2/3 and 4/5. The average variable node degree
of our codes is a little higher than that of AR4JA family.
Note, however that the codes in [16] are not rate-compatible
punctured codes.

1/2 2/3 4/5
0

0.5

1

1.5

2

2.5

Code rates

T
hr

es
ho

ld
s

(d
B

)

Shannon
PRCP
AR4JA

Fig. 5. Asymptotic performance comparison between protograph E2RC
codes and AR4JA codes.

IV. SIMULATIONS

The simulation results for the protograph E2RC codes and
the comparison with E2RC codes [23] are presented in this
section. Larger graphs defining protograph E2RC codes with
longer block length are constructed from protograph-1 above
by using ACE algorithm to select circulants for each edge
in the protograph. Mother codes of block length 1200 bits
and 4096 bits are used. Puncturing to get higher rate codes
in the family follows the order that parity nodes of the same
type as v15 be punctured first, followed by parity nodes of the
same type as v14, v13, v12, v11, v10 and v9. The simulation
results and comparison with E2RC codes are shown in Figure
6 and Figure 7. From the simulation, we see that protograph
E2RC codes are almost as good as E2RC codes for block
length 1200 bits and when the block gets longer, say 4096
bits, protograph E2RC codes get better than E2RC codes
especially considering performance in terms of frame error
rate. For the block length 4096 codes, at code rate R = 0.5,
the performance gain in terms of bit error rate at 10−4 is more

than 0.2 dB and in terms of frame error rate at 10−2 is much
more than 0.4 dB. The performance gain reduces when the
code rate gets close to 1. The performance gaps of protograph
E2RC code family of block length 4096 bits to Shannon limits
are measured at bit error rate 10−4 in simulation which show
a uniform 1 dB gap over all code rates.

1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
it

E
rr

or
 R

at
e/

F
ra

m
e

E
rr

or
 R

at
e

E2RC
PRCPFER

BER

Fig. 6. Performance comparison between protograph E2RC codes and
E2RC codes: block length 1200 bits; code rates are 0.5, 0.6, 0.7 and 0.8
from left to right. The solid lines represent the BER and the dotted lines
represent FER.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

B
it

E
rr

or
 R

at
e/

F
ra

m
e

E
rr

or
 R

at
e

E2RC
PRCP

Shannon
limit
R=0.5
0.187dB

Shannon
limit
R=0.6
0.679dB

Shannon
limit
R=0.7
1.273dB

Shannon
limit
R=0.8
2.041dB

Fig. 7. Performance comparison between protograph E2RC codes and
E2RC codes: block length 4096 bits; code rates are 0.5, 0.6, 0.7 and 0.8
from left to right. The solid lines represent the BER and the dotted lines
represent FER. Shannon limits at the different rates are also indentified.

V. CONCLUSION

We propose a construction of rate-compatible codes based
on protographs inspired by the E2RC codes designed in
[23]. Protograph E2RC codes have protograph representations
which facilitate their asymptotic performance analysis and
allow the implementation of high speed decoders. The con-
struction starts with a high rate protograph with low threshold.
Protographs of lower rate codes are iteratively derived from
the higher rate protographs via the process of check-splitting.

5

The check-splitting process is specially designed to ensure that
the parity nodes in the protograph have the E2RC structure.
Furthermore the construction process guided by density evolu-
tion also produces protographs that have low thresholds at all
rates. Thus, this paper introduces a systematic technique for
the design of E2RC-like codes. Both asymptotic performance
analysis and simulation results demonstrate that the protograph
E2RC code family has good performance across all code
rates.

REFERENCES

[1] R. G. Gallager, Low Density Parity Check Codes. MIT press,
Cambridge, MA, 1963.

[2] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity
approaching irregular low-density parity-check codes,” IEEE Trans.
Inform. Theory, vol. 47, pp. 619–637, 2001.

[3] T. Richardson, “Multi-edge type ldpc codes,” presented at the Workshop
honoring Prof. Bob McEliece on his 60th birthday, California Institute
of Technology, Pasadena, California, May. 2002.

[4] J. Thorpe, “Low density parity check (ldpc) codes constructed from
protographs,” JPL INP Progress Report 42-154, Aug., 2003.

[5] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Analysis
of low density codes and improved designs using irregular graphs,” IEEE
Trans. Inform. Theory, vol. 47, pp. 585–598, 2001.

[6] Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based
on finite geometries: A rediscovery and new results,” IEEE Transactions
on Information Theory, vol. 47, pp. 2711 –2736, Nov. 2001.

[7] T. Richardson and R. Urbanke, “The capacity of low-density parity
check codes under message-passing decoding,” IEEE Trans. Inform.
Theory, vol. 47, pp. 599–618, 2001.

[8] J. Hagenauer, “Rate compatible punctured convolutional codes (rcpc
codes) and their applications,” IEEE Trans. Commun., vol. 36, no. 4,
p. 389C400, Apr. 1988.

[9] J. Kim, A. Ramamoorthy, and S. W. McLaughlin, “Design of efficiently-
encodable rate-compatible irregular ldpc codes,” in IEEE International
Conference on Communications, 2006.

[10] J. Ha, J. Kim, and S. W. McLaughlin, “Rate-compatible puncturing of
low-density parity-check codes,” IEEE Trans. Inform Theory, vol. 50,
no. 11, Nov. 2004.

[11] J. Ha, J. Kim, D. Klinc, and S. W. McLaughlin, “Rate-compatible
punctured low-density parity-check codes with short block lengths,”
IEEE Trans. Inform. Theory, vol. 52, no. 2, Feb. 2006.

[12] J. Ha, J. Kim, and S. W. McLaughlin, “Puncturing for finite length low-
density parity-check codes,” in Proc. Int. Symp. Inform. Theory, Chicago,
2004.

[13] M. R. Yazdani and A. H. Banihashemi, “On construction of rate-
compatible low-density parity-check codes,” IEEE Comm. Letters, vol.
8, no. 3, pp. 159–161, Mar. 2004.

[14] G. Yue, X. Wang, and M. Madihian, “Design of rate-compatible irregular
repeat accumulate codes,” IEEE Trans. Commun., vol. 55, no. 6, pp.
1153–1163, Jun. 2007.

[15] J. Li and K. R. Narayanan, “Rate-compatible low-density parity-check
codes for capacity-approaching arq schemes in packet data communica-
tions,” in Proc. Int. Conf. Commun., Internet, and Inform. Tech. (CIIT),
US Virgin Islands, Nov. 2002.

[16] D. Divsalar, S. Dolinar, and C. Jones, “Construction of protograph ldpc
codes with linear minimum distance,” in Proc. International Symposium
on Information Theory, Jul. 2006.

[17] H. Pishro-Nik and F. Fekri, “Results on punctured low-density parity-
check codes and improved iterative decoding techniques,” IEEE Trans-
actions on Information Theory, vol. 53, no. 2, pp. 599 – 614, Feb.,
2007.

[18] M. Good and F. R. Kschischang, “Incremental redundancy via check
splitting,” IEEE 23rd Biennial Symposium on Communications, 2006.

[19] S. Y. Chung, On the Construction of Some Capacity-Approaching Cod-
ing Schemes. Ph.D. dissertation, Massachusetts Institute of Technology,
Cambridge,Massachusetts, Sep., 2000.

[20] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive edge-growth
tanner graphs,” IEEE Global Telecommunications Conference 2001,
vol. 2, pp. 995 – 1001, Nov., 2001.

[21] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Selective avoidance
of cycles in irregular ldpc code construction,” IEEE Transactions on
Communications, vol. 52, no. 8, pp. 1242 – 1247, Aug., 2004.

[22] A. Ramamoorthy and R. D. Wesel, “Construction of short block length
irregular ldpc codes,” in IEEE International Conference on Communi-
cations, 2004.

[23] J. Kim, A. Ramamoorthy, and S. W. McLaughlin, “Design of efficiently-
encodable rate-compatible irregular ldpc codes,” IEEE Trans. Commun.
(to appear).available at http://arxiv.org/abs/0705.0543.

6

