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Abstract

This work considers the problem of distributed source coding of multiple sources
over a network with multiple receivers. Work by Ho et. al [1] demonstrates that
random network coding can solve this problem at the high cost of jointly decod-
ing the source and the network code. Motivated by complexity considerations we
consider the problem of separating the source coding from the delivery of an ap-
propriate number of coded bits to each receiver. A multiplicative factor called the
“price of separation” is defined that measures the gap to separability for a partic-
ular network and source distribution. Both networks with capacities and networks
with costs on links are studied. We show that the problem with 2 sources and 2 re-
ceivers is always separable, and present counter-examples for other cases. Bounds
are presented on the “price of separation”. While examples can be constructed
where separation does not hold, our experimental results show that in most cases
separation holds implying that existing solutions to the classical Slepian-Wolf prob-
lem can be effectively used over a network as well.

1 Introduction

The Slepian-Wolf theorem [2] states that the lossless compression of two correlated
sources that do not communicate with each other can be as efficient as the compres-
sion of the two sources when they do communicate with each other. Csiszár showed in
[3] that linear codes were sufficient to achieve the Slepian-Wolf bounds and computed
error-exponents for various decoders. In that paper, he also showed the existence of a
universal decoder that is insensitive to the actual correlation structure of the sources. In
recent years there has been a flurry of activity (see [4] [5] and their references) on code
design for this distributed compression problem (hereby referred to as the S-W problem),
spurred mainly by applications in sensor networks and video coding problems.

In a somewhat different line of work that can be broadly described as “Network
Coding” a number of researchers have been investigating different network flow problems
when intermediate nodes in the network have the ability to forward functions of received



packets rather than simply adopting a replicate and forward strategy. The seminal work
of Ahlswede et. al [6] showed that network coding achieves the capacity of single-source,
multiple-terminal multicast. Subsequent work [7][8] showed that random linear network
coding was an efficient distributed strategy to achieve this capacity. Variants of this
problem involving multiple sources and multiple receivers are significantly harder and
not much is known about them.

It is important to note that the classical S-W problem does not consider the sources
to be communicating over a network i.e. there is a direct link from each source to the
receiver. In addition the links do not have capacities on them. The S-W problem over a
network has been considered by Razvan et. al [9] in the context of one receiver but they
impose costs on links rather than considering capacities. In practical applications such as
sensor networks, however one would expect that the sources communicate over a network
with capacities on the edges to multiple receivers. This makes the problem of deciding
the feasibility of a given distributed source coding problem with multiple sources and
multiple receivers an interesting and important one. This problem was considered by Ho
et. al [1]. They showed by using the approach pioneered by Csiszár that as long as the
minimum cuts between all non-empty subsets of sources and a particular receiver were
larger than the corresponding conditional entropies (more details follow), random linear
network coding followed by appropriate decoding at the receivers would achieve the S-W
bounds.

From a practical perspective one would like to leverage existing solutions to the clas-
sical S-W problem and thus separate the problem of sending the appropriate number of
coded bits over a network from the source coding part. The solution proposed by Ho
et. al comes at the cost of high complexity as the decoder at the receiver jointly de-
codes the code defined by the source code and the random network code. In general, the
randomness in the network code destroys the structure in the source coder that allows
tractable decoding. This paper formally defines the problem of separation between dis-
tributed source coding and network coding and investigates the conditions under which
separation holds. We also define a parameter that quantifies the “price of separation” in
terms of a multiplicative factor and study the range of values this parameter can take
under different scenarios.

Section 2 explains the formulation of the problem. The notion of separation and the
“price of separation” are formally defined in Section 2.1. Sections 3 and 4 present results
on separation for networks with capacities and networks with costs on links respectively.
Section 5 outlines the conclusions and suggests directions for future work. Due to lack
of space we omit most of the proofs and refer to the reader to [10].

2 Problem Formulation

In this section we define an instance of the distributed source coding problem over a
network. We are given

a) NS discrete memoryless sources denoted by Xi, i = 1, ..., NS whose output values
are drawn i.i.d. from a joint distribution p(X1, ..., XNS

). Each source alphabet is
without loss of generality assumed to be a Galois field of a power of 2. All joint
and conditional entropies are assumed to be rational, to keep the arguments simple.
However this assumption is not essential and our arguments can be reformulated
more generally.

b) A graph G = (V,E, C), where V is the set of nodes, E is the set of edges and C is a



function that gives the capacity of each edge, a set of source nodes S ⊂ V, |S| = NS,
a set of receiver nodes T ⊂ V, |T | = NR. We assume that all the capacities are
rational-valued (the comments in (a) apply).

With the above information as input, we can define the following items that help us in
setting up the problem,

a) The S-W region of the sources, is denoted

RSW = {[R1R2...RNS
] : ∀B ⊆ {1, 2, ..., NS},

∑
i∈B

Ri > H(XB/XBc)}

where XB represents the vector of random variables (Xi1 , Xi2 , ..., Xi|B|), for ik ∈
B, k = 1, ..., |B| .

b) For a given Ti ∈ T we can define a capacity region with respect to S. This is the
region that defines the maximum flow from each subset of S to the receiver Ti.
Formally,

CTi
= {[R1R2...RNS

] : ∀B ⊆ S,
∑
i∈B

Ri ≤ min-cut(B, Ti)}.

An instance of a distributed source coding problem over a network is defined by

P =< RSW , G, S, T >

c) The network coding model used here is explained in detail in [1]. We communicate
n symbols in a block. This means that each source Xi is encoded into some nRi bits
by its source encoder. This also means that links of capacity C bits/symbol can
communicate bnCc bits per block. Linear network coding is done over vectors of
bits in the binary field. Conceptually each link can be thought of as multiple unit
capacity links and each such new link corresponds to one bit in the code vectors.

d) We introduce NS virtual nodes denoted S ′1, ..., S
′
NS

, that can be thought of as the
source encoders. According to Csiszár [3] it is sufficient for S ′i to perform linear
encoding defined by a function fn

i : [Xi,1, Xi,2, ..., Xi,n] → [Ui,1Ui,2...Ui,nRi
]. The

vector [Ui,1Ui,2...Ui,nRi
] is denoted by Un

i . We define an augmented graph denoted
by G′ = (V

⋃
S ′, E

⋃
E ′, C ′). Here, E ′ represents the edges from S ′ to G and C ′ is

a function that returns the capacities on the edges in G′.

e) We denote the graph G when considered over n time-steps by Gn = (V,En, Cn). As
explained above, when considered over n time-steps we can consider a unit-capacity
link between 2 nodes in G to now consist of n unit-capacity links. En denotes the
edge set at block length n and Cn denotes the function that returns the capacity
of each edge in En. G′n is similarly defined.

f) A solution to the problem P =< RSW , G, S, T > is defined by the set of local
encoding vectors on each link in G′n. If ge represents the local encoding vector on
link e belonging to G′n, then the solution to P at block length n, denoted by P n

sol

is given by P n
sol = {g1, g2, ..., g|{E∪E′}n|}.

Definition 1 Feasibility Condition :- Consider an instance of a distributed source coding
problem over a network defined by P =< RSW , G, S, T >. Let CTi

be the capacity region
of each receiver Ti ∈ T with respect to S.If,

CTi

⋂
RSW 6= φ, ∀i = 1, ..., NR (1)

then the feasibility condition is said to be satisfied and P is said to be feasible.



Theorem 1 [1] Consider an instance of a distributed source coding problem over a net-
work defined by P =< RSW , G, S, T >. If the feasibility condition (Definition 1) is
satisfied, then randomized network coding over G′n followed by minimum-entropy [3] or
maximum-likelihood decoding at each receiver causes the probability of decoding error to
go to 0 as n →∞.

This theorem follows from Theorem 1 in [1].
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Figure 1: The figure shows a network with NS sources (Xi’s), source encoders (S ′i’s) and
source nodes (Si’s). The source coded bits are represented by the Ui’s. There are NR

receivers (Ti’s)

2.1 Notion of Separation of Distributed Source Coding and
Network Coding

In the sequel we shall always work in the problem formulation presented in Section
2. As mentioned before the result of Theorem 1 assumes the existence of a minimum-
entropy/maximum-likelihood decoder that can be arbitrarily complex when random net-
work codes are used. In this paper we study the feasibility of performing these operations
independent of each other. For this we need a formal definition of separation between
distributed source coding and network coding that is presented below.

Definition 2 Separable Problem:- Consider a distributed source coding problem over a
network, P =< RSW , G, S, T >. P is said to be separable if for all n sufficiently large
there exists a solution P n

sol so that ∀Ti ∈ T, there exists a rate vector [RTi
S1

, ..., RTi
SNS

] ∈ RSW
such that for each Sj ∈ S, there exists BTi

Sj
⊆ Un

j , |BTi
Sj
| ≥ nRTi

Sj
and the transfer function

induced by P n
sol from BTi

S1
×BTi

S2
× ...×BTi

SNS
to Ti is one-to-one.

For a given P it follows from [3] that if fn
i is chosen to be a random linear block code

and a solution P n
sol is separable, reconstruction of the sources at each receiver is possible

with probability of error going to 0 as n → ∞. Thus a separable solution allows us to
leverage existing solutions ([4][5]) for the classical S-W problem. One need not worry
about the complexity of jointly decoding the source and the network code.

2.2 Price of Separation

It should be clear that the set of solutions that joint decoding can achieve is larger than
the set of solutions that can be achieved by separability. By increasing the capacity of the
network sufficiently it is always possible to achieve a separable solution e.g. if we increase



the capacity of all links to the joint entropy of the sources then, surely separability will
hold. With this in mind a multiplicative factor ηcap is defined which we call the “Price
of Separation”.

Definition 3 Price of Separation - Consider a distributed source coding problem over
a network, P =< RSW , G, S, T >. Let α ≥ 1 be a multiplicative factor by which the
capacities of all the links in the network are increased so that a separable solution exists.
We define Gα to be the graph Gα = (V,E, αC), i.e. the graph G with capacities multiplied
by α. The price of separation is defined to be,

ηcap = min
<RSW ,Gα,S,T> is separable

α (2)

The factor ηcap characterizes the gap to separability as a single parameter. In the
sequel we present worst case bounds on this parameter and also compute it for some
typical instances.

3 Results for Networks with Capacities

In this section we present various results on separability and the “Price of Separation”.
We note that when we have NR = 1, i.e. there is only one receiver in the system, then
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Figure 2: The two dotted regions are the capacity regions of T1 and T2 respectively. P2

and P1 are the closest operating points for each terminal on the S-W boundary.

separation trivially holds as the minimum cut conditions guarantee that there exist a
sufficient number of edge-disjoint paths from each source node to the receiver so that
routing itself would suffice to ensure the delivery of a terminal rate vector that lies in
the S-W region of the sources. Of course the case corresponding to NS = 1 is not a
distributed source coding problem.

3.1 The 2-Sources, 2-Receivers Case

Theorem 2 Consider a problem P =< RSW , G, S, T >, with |S| = 2, |T | = 2 . If P is
feasible, then P is separable.

Proof :- Since the connection is feasible the capacity regions of T1 and T2 intersect RSW
as shown in Fig. 2. This further means that there exists a rational ε > 0 such that the
line RX1 + RX2 = H(X1, X2) + ε has a non-empty intersection with CT1 and CT2 . We



force the terminals T1 and T2 to operate on the points marked P1 and P2 respectively on
Fig. 2. Then, the following properties hold true,

1. RT1
S1
≥ RT2

S1
, RT2

S2
≥ RT1

S2
and RTi

S1
+ RTi

S2
= H(X1, X2) + ε, for i = 1, 2

2. For P ′
1 ∈ CT1 ∩RSW ∩ {(x1, x2) : x1 + x2 = H(X1, X2) + ε} and P ′

2 ∈ CT2 ∩RSW ∩
{(x1, x2) : x1 + x2 = H(X1, X2) + ε},

dist(P1, P2) ≤ dist(P ′
1, P

′
2) where dist represents the distance function (3)

if dist(P1, P2) = 0, then a separable solution exists by the multicast result of Ahlswede
et. al [6], so we focus on the case when dist(P1, P2) > 0.

We assume that we operate over n large enough so that n(H(X1, X2)+ε), nH(X1) and
nH(X2) and the capacities of all links in G′n are integral. The proof below is inspired
by the technique used in [11]. For now consider only RT1

S1
, RT2

S1
and RT2

S2
. For ease of

explanation we put g = nRT1
S1

, r1 = nRT2
S1

and r2 = nRT2
S2

. Menger’s theorem guarantees
the existence of edge-disjoint paths in G′n corresponding to these numbers. We denote
the sets of edge-disjoint paths by G,R1 and R2, so that |G| = g, |R1| = r1, |R2| = r2.
Note that paths in R1 ∪ R2 are disjoint.

Each edge e in each path belonging to G ∪ R1 ∪ R2 will be labelled (as explained
below) with a pair of colors (ce

1, c
e
2). Some edges may be labelled with just one color.

We label all edges in paths belonging to G, “green” and edges belonging to paths in
R1 and R2, “red”. At the end of this procedure, some edges will be labelled by two colors
whereas others would have just one.

We claim that we can always find (g − r1) exclusively green paths from S1 to T1. To
prove this, we define an algorithm A that takes as input path P1 ∈ G.

Algorithm A(P1) :-

1. Traverse P1 starting at node S1 and find the first edge e1 that has color (“green”,“red”).

2. If no such e1 is found then STOP.

3. ELSE There are two possibilities,

a) e1 belongs to a path in R2.
We claim that this is impossible. To see this, suppose that e1 belonged to a
path P ′ ∈ R2 such that P ′ = P ′

1 − e1 − P ′
2, where P ′

1 represents the portion of
P ′ from S2 to e1 and P ′

2 represents the portion of P ′ from e1 to T2.

We can color all edges on P1 from S1 to e1, “red” (in addition to their existing
color), and remove “red” from the color of edges in P ′

1. This effectively means
that we can increase a bit from S1 to T2 and reduce a bit from S2 to T2. But,
doing so implies that P2 and P1 can be brought closer, which is a contradiction.

b) e1 belongs to a path in R1.
If e1 is the first edge of P1, then STOP
ELSE Again suppose that e1 belonged to a path P ′ ∈ R1, such that P ′ =
P ′

1 − e1 − P ′
2, where P ′

1 represents the portion of P ′ from S1 to e1 and P ′
2

represents the portion of the P ′ from e1 to T2. Color all edges on P1 from S1

to e1, “red” (in addition to their existing color), and remove “red” from the
color of the edges in P ′

1.



Now we define a condition that each path P1 ∈ G has to satisfy.

Cond(P1) = {All edges in P1 are “green”}
or {the first edge of P1 is (“green”, “red”)} (4)

We continue applying A to each path of G until all paths in G satisfy Cond. It is
easy to see that A will always halt.

At the end of this process, we claim that there exist (g − r1) paths belonging to G
that are colored exclusively with “green”. This can easily be seen to be true, because
if Algorithm A above changes a path P ′ ∈ R1, then it removes the color “red” from
one outgoing edge of S1 and places it on another outgoing edge. Thus, the number of
outgoing edges that have the color “red” remains constant = r1. Therefore, there have
to be (g − r1) outgoing edges that are purely “green”, which in turn means that there
exist (g− r1) paths from S1 to T1 that are exclusively “green”. To summarize, the above
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Figure 3: The figure shows that every 2-source 2-terminal distributed source coding
problem can be decomposed into two uncoded flows and one coded flow.

argument shows that by choosing n sufficiently larger and carefully choosing paths, we
can

a) Route (RT1
S1
−RT2

S1
) bits from S1 to T1.

b) A similar argument shows that we can route (RT2
S2
−RT1

S2
) bits from S2 to T2.

c) Each terminal needs exactly (RT2
S1

+RT1
S2

) bits more to satisfy it’s requirement. But,
we can send this via network coding, by invoking the multicast result of Ahlswede
et. al [6].

Thus, the 2-sources, 2-receivers problem can always be decomposed as depicted in Fig.
3 which in turn implies separability. ¥

3.2 Cases with Higher Number of Sources and Terminals

This above proof shows the surprising result that in the case of 2-sources and 2-receivers
separability always holds. In fact for the case of 2-sources, 3-receivers (Fig. 4(a)) and
3-sources, 2-receivers (Fig. 4(b)) we have explicit counter-examples where even though
the connection is feasible, separation does not hold. In Fig. 4(a), no coding strategy can
result in separability at T3 and in Fig. 4(b), T2 cannot separate out the bits from X1 and
X3.

Counter-examples for higher number of sources and receivers can be constructed by
simply choosing the counter-examples above as appropriate subgraphs in the network.
Upper bounds on ηcap based on the number of terminals in the system can also be found.



8

X 2X

1T

3T

2T

1a 1b 2a 2b

1 2

3
4

5

7

9

6

11

10

1

(a)

1 X2 X3

T 1 T 2

X

(b)

Figure 4: (a)Counter example to separability for the case of 2 sources and 3 receivers.
H(X1) = H(X2) = 2. H(X1, X2) = 3. (b)Counter example to separability for the case
of 3 sources and 2 receivers. H(X1) = H(X2) = H(X3) = 1. Correlation model - X1

independent of X2 and X2 = X3. In both (a) and (b) the capacity of all the links = 1.

Lemma 1 Bound on the “Price of Separation” :- For any P =< RSW , G, S, T >, we
have ηcap ≤ |T |.
Proof :- The proof follows from a simple time-sharing strategy and is omitted.

3.3 Results on Typical Instances

The previous results demonstrate that there exist networks and source distributions where
separation does not hold in general. To test whether separation holds on typical instances
of the problem we generated a large number of graphs and corresponding S-W regions.
Our simulation methodology is explained below,

a) A total of M nodes were scattered randomly on the unit disk. To ensure acyclicity1,
an order was enforced whereby connections could only go from left to right, e.g.
nodes v1 and v2 would be connected only if their distance was less than a parameter
d and v1 was to the left of v2.

b) The first NS nodes were declared to be the source nodes and the last NR nodes
were declared receiver nodes. In the simulation we were able to handle only small
values (NS ≤ 3, NR ≤ 3).

c) Minimum cuts were computed between all subsets of the sources and each of the
terminals. Based on these values a S-W region was generated, such that none of
the constraints was trivial, and the problem was feasible (Definition 1).

d) To enforce separability, a linear program was developed that took the the graph and
S-W region as input. The total flow from the sources to the terminals was broken
up into (2NS −1)(2NR−1) flows. The capacity on each edge was split into a portion
for each flow, and within each flow, network coding was allowed. In addition the
S-W constraints were enforced by summing the values of appropriate flows. The
objective function to be minimized was the price of separation, ηcap.

1This constraint was enforced since network coding has been empirically found to be more effective
for acyclic networks.



Since the number of flows is approximately exponential in NS +NR, it is hard to solve the
LP for large values of this sum. A feasible solution for the LP implies the existence of a
separable solution for the problem. This is because, each flow can transport its value (i.e.
rate) to it’s respective terminals using network coding. Since the capacity of each edge
is split across the flows, we can assume that each flow is operating independent of others
over the network. The notion of separability under which the LP operates is however
slightly weaker than the definition in Section 2.1. Here, a receiver Ti is allowed to recover
RTi

Sj
linear combination of the bits from Un

j as long as the linear transformation specifying
the combination is full-rank. We suspect that these results hold for the stronger definition
as well.

In all the trials we ran (over 200 in number) we did not find a single instance where
ηcap > 1. Thus, separation does seem to hold in most typical instances of the problem.
It is important to point out that “if” the LP has a solution “then” we are guaranteed
the existence of a separable solution, however the existence of a separable solution may
not always imply the existence of feasible solution to the LP.

4 Results for Networks with Cost Constraints

The minimum cost version of the problem where each link in the network has a constant
cost per bit of usage but no capacity constraint (as in [9]) was also investigated. Here
the input graph is G = (V,E, cost) where cost is a function that returns the cost on each
link per bit. A problem instance is defined as before, P =< RSW , G, S, T >.

Definition 4 Cost of a solution :- Suppose in a given solution P n
sol, each link e has re

bits flowing over it. The total cost of the solution is given by,

κ(P n
sol) =

1

n

∑
e∈Gn

re × cost(e) (5)

Definition 5 Consider a distributed source coding problem over a network, P =< RSW , G, S, T >.
Let P n

sol be a solution to P . Let, ηn
cost be defined as,

ηn
cost =

min{P n
sol is separable} κ(P n

sol)

min κ(P n
sol)

(6)

Separability is said to hold if for large enough n, ηn
cost is arbitrarily close to 1.

As before we can show that separability still holds in the case of 2 sources and 2 receivers
and does not hold in other cases.

Theorem 3 Consider a distributed source coding problem over a network, P =< RSW , G, S, T >
with costs but no capacity constraints and |S| = 2 and |T | = 2. The costs on each link
are assumed to be ≥ 0. Then P is separable.

Proof :- It follows from the proof of Theorem 2 with minor modifications.
Counter-examples similar to ones in Section 3.2 can be found for the cost version as

well.



5 Conclusion

The problem of distributed source coding of multiple sources over a network with multiple
receivers was considered. In particular we focused on investigating whether the source
coding part could be separated from the problem of transmitting an appropriate number
of coded bits to each receiver. Both networks with capacities and networks with costs
on links were considered. While in general the answer is negative, we showed that in
the specific case of 2 sources and 2 receivers, a separable solution always exists. Our
experiments on randomly generated networks show that in fact separation almost always
holds2. In the full version of the paper we also consider separability issues when the
network employs random network coding and show that separation depends upon the
input bit rate in this situation and the “price of separation” may be much higher as
compared to the case when we perform careful network coding. In the future we propose
to look at selective network coding so that the complexity of joint source and network
code decoding is tractable.
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