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Rate and Power Allocation Under the
Pairwise Distributed Source Coding Constraint
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Abstract—We consider the problem of rate and power al-
location for a sensor network under the pairwise distributed
source coding constraint. For noiseless source-terminal channels,
we show that the minimum sum rate assignment can be found
by finding a minimum weight arborescence in an appropriately
defined directed graph. For orthogonal noisy source-terminal
channels, the minimum sum power allocation can be found by
finding a minimum weight matching forest in a mixed graph.
Numerical results are presented for both cases showing that our
solutions always outperform previously proposed solutions. The
gains are considerable when source correlations are high.

Index Terms—Distributed source coding, Slepian-Wolf theo-
rem, matching forest, directed spanning tree, resource allocation.

I. INTRODUCTION

THE availability of low-cost sensors has enabled the
emergence of large-scale sensor networks in recent years.

Sensor networks typically consist of sensors that have limited
power and are moreover energy constrained since they are
usually battery-operated. The data that is sensed by sensor
networks and communicated to a terminal1 is usually corre-
lated. Thus, for sensor networks it is important to allocate
resources such as rates and power by taking the correlation
into account. The famous Slepian-Wolf theorem [1] shows that
the distributed compression (or distributed source coding) of
correlated sources can in fact be as efficient as joint com-
pression. Coding techniques that approach the Slepian-Wolf
bounds have been investigated [2] and their usage proposed in
sensor networks [3]. Typically one wants to minimize metrics
such as the total rate or total power expended by the sensors
in such situations. A number of authors have considered
problems of this flavor [4]–[6]. These papers assume the
existence of Slepian-Wolf codes that work for a large number
of sensors.

In practice, the design of low-complexity Slepian-Wolf
codes is well understood only for the case of two sources
(denoted 𝑋 and 𝑌 ) and there have been constructions that are
able to operate on the boundary of the Slepian-Wolf region.
In particular, the design of codes (eg.[7],[8],[9]) is easiest
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for the corner points (asymmetric Slepian-Wolf coding) where
the rate pair is either (𝐻(𝑋), 𝐻(𝑌 ∣𝑋)) or (𝐻(𝑋 ∣𝑌 ), 𝐻(𝑌 )).
Several symmetric code designs are proposed in [10],[11],[12]
in which the authors mainly focus on two correlated sources.
In [7], the correlation between two binary sources are assumed
to be symmetric and the LDPC code is designed for a virtual
BSC correlation channel, while the codes designed in [9], [10]
and [11] are suitable for arbitrary correlation between the two
binary sources. The authors of [13] proposed code designs for
multiple sources. For two uniformly distributed binary sources
whose correlation can be modeled as a BSC channel, their
design supports both symmetric and asymmetric coding and
approaches Slepian-Wolf bound. However, when it comes to
more than two sources, in order to achieve optimum rate (joint
entropy), they have a strong assumption on correlation model,
i.e., the correlation between all the sources is solely described
by their modulo-2 sum. Thus, given the current state of the
art in code design it is of interest to consider coding strategies
for sensor networks where pairs of nodes can be decoded at
a time instead of all at once. This observation was made in
the work of Roumy and Gesbert in [14]. In that work they
formulated the pairwise distributed source coding problem
and presented algorithms for rate and power allocation under
different scenarios. In particular, they considered the case
when there exist direct channels between each source node
and the terminal. Furthermore, the terminal can only decode
the sources pairwise. We briefly review their work below. The
work of [14] considers two cases.

i) Case 1 - Noiseless node-terminal channels.
Under this scenario, they considered the problem of de-
ciding which particular nodes should be decoded together
at the terminal and their corresponding rate allocations so
that the total sum rate is minimized.

ii) Case 2 - Orthogonal noisy node-terminal channels.
In this case the channels were assumed to be noisy and
orthogonal and the objective was to decide which nodes
would be paired so that overall power consumption is
minimized.

In [14], the problem was mapped onto the problem of choosing
the minimum weight matching [15] of an appropriately defined
weighted undirected graph. Each node participate in joint
decoding only once.

In this paper we consider a class of pairwise distributed
source coding solutions that is larger than the ones considered
in [14]. The basic idea is that previously decoded data can
be used as side information for other sources. A simple
example demonstrates that it is not necessary to only consider
matchings Consider four correlated sources 𝑋1, 𝑋2, 𝑋3 and
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𝑋4. The solution of [14] constructs a complete graph on
the four nodes 𝑋1, . . . , 𝑋4 and assigns the edge weights as
the joint entropies i.e. the edge (𝑋𝑖, 𝑋𝑗) is assigned weight
𝐻(𝑋𝑖, 𝑋𝑗). A minimum weight matching algorithm is then
run on this graph to find the minimum sum rate and the rate
allocation. Suppose that this yields the matching (𝑋1, 𝑋3) and
(𝑋2, 𝑋4) so that the sum rate becomes

4∑
𝑖=1

𝑅𝑖 = 𝐻(𝑋1, 𝑋3) + 𝐻(𝑋2, 𝑋4).

Since conditioning reduces entropy, it is simple to observe that

𝐻(𝑋1, 𝑋3) + 𝐻(𝑋2, 𝑋4)

≥ 𝐻(𝑋1) + 𝐻(𝑋3∣𝑋1) + 𝐻(𝑋2∣𝑋3) + 𝐻(𝑋4∣𝑋2).

We now show that an alternative rate allocation: 𝑅1 =
𝐻(𝑋1), 𝑅2 = 𝐻(𝑋2∣𝑋3), 𝑅3 = 𝐻(𝑋3∣𝑋1) and 𝑅4 =
𝐻(𝑋4∣𝑋2) can still allow pairwise decoding of the sources
at the terminal. Note that at the decoder we have,
a) 𝑋1 is known since 𝑅1 = 𝐻(𝑋1).
b) 𝑋3 can be recovered by jointly decoding for 𝑋3 and

𝑋1 since 𝑋1 is known and the decoder has access to
𝐻(𝑋3∣𝑋1) amount of data.

c) 𝑋2 can be recovered since 𝑋3 is known (from above) and
the decoder has access to 𝐻(𝑋2∣𝑋3) amount of data.

d) Similarly, 𝑋4 can be recovered.
As we see above, the sources can be decoded at the terminal
in a pipelined manner. Note that we can leverage the coding
solutions proposed for two sources at the corner points in this
case since the encoder for 𝑋3 can be designed assuming that
𝑋1 is known perfectly, the encoder for 𝑋2 can be designed
assuming that 𝑋3 is known perfectly etc. The method of
source-splitting [16], [17] is closely related to this approach.
Given 𝑀 sources and an arbitrary rate point in their Slepian-
Wolf region, it converts the problem into a rate allocation at
a Slepian-Wolf corner point for appropriately defined 2𝑀 − 1
sources. However as pointed out before, code designs even for
corner points are not that well understood for more than two
sources. Thus, while using source-splitting can result in sum-
rate optimality i.e. the sum rate is the joint entropy, it may not
be very practical given the current state of the art. Moreover,
for 𝑀 sources it requires the design of approximately twice
as many encoders and more decoding sub-modules that also
comes at the cost of complexity.

In this paper, motivated by complexity issues, we present
an alternate formulation of the pairwise distributed source
coding problem that is more general than [14]. We demonstrate
that for noiseless channels the minimum sum rate allocation
problem becomes one of finding a minimum weight arbores-
cence of an appropriately defined directed graph. Next, we
show that in the case of noisy channels, the minimum sum
power allocation problem can be mapped onto finding the
minimum weight matching forest of an appropriately defined
mixed graph2. Simulation results show that our solutions are
significantly better than those in [14] in the cases when
correlations are high.

This paper is organized as follows. We formulate the prob-
lem and briefly review previous solutions based on matching

2A mixed graph has both directed and undirected edges

in Section II. In Section III and IV we present our solution for
noiseless channels and noisy channels respectively. Numerical
results for the both cases are given in Section V and Section
VI concludes this paper.

II. PROBLEM FORMULATION AND OVERVIEW OF RELATED

WORK

Consider a set of correlated sources 𝑋1, 𝑋2, . . . , 𝑋𝑛 trans-
mitting data to one sink in a wireless sensor network. We
assume that every source can transmit data directly to the
terminal. The source 𝑋𝑖 compresses its data at rate 𝑅𝑖 and
sends it to the sink. We assume that the sources encode only
their own data. Furthermore, we consider the class of solutions
where the sink can recover a given source with the help of at
most one other source. The problem has two cases.

i) Case 1 - Noiseless node-terminal channels.
Assume that there is no noise in the channel. In order to
reduce the storage requirement at the sensors, we want
to minimize the sum rate, i.e., min

∑𝑛
𝑖=1 𝑅𝑖.

ii) Case 2 - Orthogonal noisy node-terminal channels.
Assume that channels between sources and sink are
corrupted by additive white Gaussian noise and there
is no internode interference. In this case, source chan-
nel separation holds [18]. The capacity of the channel
between node 𝑖 and the sink with transmission power
𝑃𝑖 and channel gain 𝛾𝑖 is 𝐶𝑖(𝑃𝑖) ≜ log(1 + 𝛾𝑖𝑃𝑖),
where noise power is normalized to one and channel
gains are constants known to the terminal. Rate 𝑅𝑖

should satisfy 𝑅𝑖 ≤ 𝐶𝑖(𝑃𝑖). Let [𝑛] denote the index
set {1, . . . , 𝑛}. The transmission power is constrained
by peak power constraint:∀𝑖 ∈ [𝑛], 𝑃𝑖 ≤ 𝑃𝑚𝑎𝑥. In this
context, our objective is to minimize the sum power ,
i.e., min

∑𝑛
𝑖=1 𝑃𝑖. Note that in the implementation from

the practical point of view, we can use joint distributed
source coding and channel coding [19], [20], once the
pairing of nodes involved in jointly decoding are known
from the resource allocation solution.

We now overview the work of [14]. For noiseless case, in
order for the terminal to recover data perfectly, the rates for
a pair of nodes 𝑖 and 𝑗 should be in the Slepian and Wolf
region

𝑆𝑊𝑖𝑗 ≜

⎧⎨
⎩

𝑅𝑖 ≥ 𝐻(𝑋𝑖∣𝑋𝑗)
(𝑅𝑖, 𝑅𝑗) 𝑅𝑗 ≥ 𝐻(𝑋𝑗 ∣𝑋𝑖)

𝑅𝑖 + 𝑅𝑗 ≥ 𝐻(𝑋𝑖, 𝑋𝑗)

⎫⎬
⎭ .

Note that 𝐻(𝑋𝑖, 𝑋𝑗) is the minimum sum rate while 𝑖 and 𝑗
are paired to perform joint decoding. The matching solution of
the problem is as follows. Construct an undirected complete
graph 𝐺 = (𝑉, 𝐸) , where ∣𝑉 ∣ = 𝑛. Let 𝑊𝐸(𝑖, 𝑗) denote
weight on undirected edge (𝑖, 𝑗), 𝑊𝐸(𝑖, 𝑗) = 𝐻(𝑋𝑖, 𝑋𝑗).
Then, find a minimum weight matching 𝒫 of 𝐺. For (𝑖, 𝑗) ∈
𝒫 , the optimal rate allocation (𝑅𝑖, 𝑅𝑗) can be any point on the
slope of the SW region of nodes 𝑖 and 𝑗 since they give same
sum rate for a pair. We can simply set (𝑅𝑖, 𝑅𝑗) for (𝑖, 𝑗) ∈ 𝒫
to be either (𝐻(𝑋𝑖), 𝐻(𝑋𝑗 ∣𝑋𝑖)) or (𝐻(𝑋𝑗), 𝐻(𝑋𝑖∣𝑋𝑗)), i.e.,
at the corner points of SW region.

For noisy case, the rate region for a pair of nodes is
the intersection of SW region and capacity region 𝐶𝑖𝑗 :
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𝐶𝑖𝑗(𝑃𝑖, 𝑃𝑗) ≜ {(𝑅𝑖, 𝑅𝑗) : 𝑅𝑖 ≤ 𝐶𝑖(𝑃𝑖), 𝑅𝑗 ≤ 𝐶𝑗(𝑃𝑗)}. It
is easy to see that for a node 𝑖 with rate 𝑅𝑖 and power 𝑃𝑖, at
the optimum 𝑅∗

𝑖 = 𝐶𝑖(𝑃
∗
𝑖 ), i.e. the inequality 𝑅𝑖 ≤ 𝐶𝑖(𝑃𝑖)

constraint is met with equality. Thus, the power assignment
is given by the inverse function of 𝐶𝑖 which we denote by
𝑄𝑖(𝑅𝑖), i.e., 𝑃 ∗

𝑖 = 𝑄𝑖(𝑅
∗
𝑖 ) = (2𝑅

∗
𝑖 −1)/𝛾𝑖. This problem can

also be solved by finding minimum matching on a undirected
graph. However the weights in this case are the minimum sum
power for each pair of nodes. The solution has two steps:

1) Find optimal rate-power allocations for all possible node
pairs: ∀(𝑖, 𝑗) ∈ [𝑛]2 s.t. 𝑖 < 𝑗:

(𝑅∗
𝑖𝑗(𝑖), 𝑅

∗
𝑖𝑗(𝑗)) = argmin𝑄𝑖(𝑅𝑖𝑗(𝑖)) + 𝑄𝑗(𝑅𝑖𝑗(𝑗))

(1)
𝑠.𝑡.(𝑅𝑖𝑗(𝑖), 𝑅𝑖𝑗(𝑗)) ∈ 𝑆𝑊𝑖𝑗 ∩ 𝐶𝑖𝑗(𝑃𝑚𝑎𝑥, 𝑃𝑚𝑎𝑥) (2)

The power allocations are given by 𝑃 ∗
𝑖𝑗(𝑖) = 𝑄𝑖(𝑅

∗
𝑖𝑗(𝑖))

and 𝑃 ∗
𝑖𝑗(𝑗) = 𝑄𝑗(𝑅

∗
𝑖𝑗(𝑗)). The rates 𝑅𝑖𝑗(𝑖), 𝑅𝑖𝑗(𝑗) are

the rates for node 𝑖 and node 𝑗 when 𝑖 and 𝑗 are paired.
Note that when 𝑖 and another node 𝑘 ∕= 𝑗 are considered
as a pair, the rate for 𝑖 may be different,i.e., 𝑅𝑖𝑗(𝑖) ∕=
𝑅𝑖𝑘(𝑖).

2) Construct an undirected complete graph 𝐺 = (𝑉, 𝐸),
where 𝑊𝐸(𝑖, 𝑗) = 𝑃 ∗

𝑖𝑗(𝑖) + 𝑃 ∗
𝑖𝑗(𝑗) for edge (𝑖, 𝑗),

and find a minimum matching 𝒫 in 𝐺. The power
allocation for node pair (𝑖, 𝑗) ∈ 𝒫 denoted by (𝑃𝑖, 𝑃𝑗)
is (𝑃 ∗

𝑖𝑗(𝑖), 𝑃
∗
𝑖𝑗(𝑗)) and the corresponding rate allocation

can be found.

The solution for step (1) is given in [14] and denoted as
(𝑃 ∗

𝑖𝑗(𝑖), 𝑃
∗
𝑖𝑗(𝑗), 𝑅

∗
𝑖𝑗(𝑖), 𝑅

∗
𝑖𝑗(𝑗)). This solution is the optimum

rate-power allocation between a pair of nodes 𝑖 and 𝑗 under
the peak power constraint and SW region constraint. Note that
in this case, the rate assignments for 𝑖 and 𝑗 do not necessarily
happen at the corner of the SW region.

III. NOISELESS CASE

As shown by the example in Section I, the rate allocation
given by matching may not be optimum and in fact there exist
other schemes that have a lower rate while still working with
the current coding solutions to the two source SW problem.
We now present a formal definition of the pairwise decoding
constraint.

Definition 1: Pairwise property of rate assignment. Con-
sider a set of discrete memoryless sources 𝑋1, 𝑋2, . . . , 𝑋𝑛

and the corresponding rate assignment R = (𝑅1, 𝑅2, . . . , 𝑅𝑛).
The rate assignment is said to satisfy the pairwise property if
for each source 𝑋𝑖, 𝑖 ∈ [𝑛], there exists an ordered sequence
of sources (𝑋𝑖1 , 𝑋𝑖2 , . . . , 𝑋𝑖𝑘) such that

𝑅𝑖1 ≥ 𝐻(𝑋𝑖1), (3)

𝑅𝑖𝑗 ≥ 𝐻(𝑋𝑖𝑗 ∣𝑋𝑖𝑗−1 ), for 2 ≤ 𝑗 ≤ 𝑘, and (4)

𝑅𝑖 ≥ 𝐻(𝑋𝑖∣𝑋𝑖𝑘). (5)

Note that a rate assignment that satisfies the pairwise property
allows the possibility that each source can be reconstructed at
the decoder by solving a sequence of decoding operations at
the SW corner points e.g. for decoding source 𝑋𝑖 one can
use 𝑋𝑖1 (since 𝑅𝑖1 ≥ 𝐻(𝑋𝑖1)), then decode 𝑋𝑖2 using the
knowledge of 𝑋𝑖1 . Continuing in this manner finally 𝑋𝑖 can

be decoded. A rate assignment R shall be called pairwise valid
(or valid in this section), if it satisfies the pairwise property.
In this section, we focus on looking for a valid rate allocation
that minimizes the sum rate. An equivalent definition can be
given in graph-theoretic terms by constructing a graph called
the pairwise property test graph corresponding to the rate
assignment.
Pairwise Property Test Graph Construction

1) Inputs : the number of nodes 𝑛, 𝐻(𝑋𝑖) for all 𝑖 ∈ [𝑛],
𝐻(𝑋𝑖∣𝑋𝑗) for all 𝑖, 𝑗 ∈ [𝑛]2 and the rate assignment R.

2) Initialize a graph 𝐺 = (𝑉, 𝐴) with a total of 2𝑛 nodes
i.e. ∣𝑉 ∣ = 2𝑛. There are 𝑛 regular nodes denoted
1, 2, . . . , 𝑛 and 𝑛 starred nodes denoted 1∗, 2∗, . . . , 𝑛∗.

3) Let 𝑊𝐴(𝑗 → 𝑖) denote the weight on directed edge
(𝑗 → 𝑖). For each 𝑖 ∈ [𝑛]:

i) If 𝑅𝑖 ≥ 𝐻(𝑋𝑖) then insert edge (𝑖∗ → 𝑖) with
𝑊𝐴(𝑖

∗ → 𝑖) = 𝐻(𝑋𝑖).
ii) If 𝑅𝑖 ≥ 𝐻(𝑋𝑖∣𝑋𝑗) then insert edge (𝑗 → 𝑖) with

𝑊𝐴(𝑗 → 𝑖) = 𝐻(𝑋𝑖∣𝑋𝑗).

4) Remove all nodes that do not participate in any edge.

We denote the resulting graph for a given rate allocation by
𝐺(R) = (𝑉, 𝐴). Note that if R is valid, the graph still contains
at least one starred node. Next, based on 𝐺(R) we define a
set of nodes that are called the parent nodes. Parent(R) =
{𝑖∗∣(𝑖∗ → 𝑖) ∈ 𝐴}, i.e., Parent(R) corresponds to the starred
nodes for the set of sources for which the rate allocation is
at least the entropy. Mathematically if 𝑖∗ ∈ Parent(R), then
𝑅𝑖 ≥ 𝐻(𝑋𝑖). We now demonstrate the equivalence between
the pairwise property and the construction of the graph above.

Lemma 1: Consider a set of discrete correlated sources
𝑋1, . . . 𝑋𝑛 and a corresponding rate assignment R =
(𝑅1, . . . , 𝑅𝑛). Construct 𝐺(R) based on the algorithm above.
The rate assignment R satisfies the pairwise property if and
only if for all regular nodes 𝑖 ∈ 𝑉 there exists a starred node
𝑗∗ ∈ Parent(R) such that there exists directed path from 𝑗∗

to 𝑖 in 𝐺(R).
Proof: Suppose that 𝐺(R) is such that for all regular nodes
𝑖 ∈ 𝑉 , there exists a 𝑗∗ ∈ Parent(R) so that there is a
directed path from 𝑗∗ to 𝑖. We show that this implies the
pairwise property for 𝑋𝑖. Let the path from 𝑗∗ to 𝑖 be
denoted 𝑗∗ → 𝑗 → 𝛼1 . . . → 𝛼𝑘 → 𝑖. We note that
𝑅𝑗 ≥ 𝐻(𝑋𝑗) by construction. Similarly edge (𝛼𝑙 → 𝛼𝑙+1)
exists in 𝐺(R) only because 𝑅𝛼𝑙+1

≥ 𝐻(𝑋𝛼𝑙+1
∣𝑋𝛼𝑙

) and
likewise 𝑅𝑖 ≥ 𝐻(𝑋𝑖∣𝑋𝛼𝑘

). Thus for source 𝑖 we have
found the ordered sequence of sources (𝑋𝑗 , 𝑋𝛼1 , . . . , 𝑋𝛼𝑘

)
that satisfy properties (3), (4) and (5) in definition 1.

Conversely, if R satisfies the pairwise property, then for
each 𝑋𝑖, there exists an ordered sequence (𝑋𝑖1 , . . . , 𝑋𝑖𝑘) that
satisfies properties (3), (4) and (5) from definition 1. This
implies that there exists a directed path from 𝑖∗1 to 𝑖 in 𝐺(R),
since (𝑖∗1 → 𝑖1) ∈ 𝐴 because 𝑅𝑖1 ≥ 𝐻(𝑋𝑖1) and furthermore
(𝑖𝑗−1 → 𝑖𝑗) ∈ 𝐴 because 𝑅𝑖𝑗 ≥ 𝐻(𝑋𝑖𝑗 ∣𝑋𝑖𝑗−1 ), for 𝑗 =
2, . . . , 𝑘.

We define another set of graphs that are useful for present-
ing the main result of this section.

Definition 2: Specification of 𝐺𝑖∗(R). Suppose that we
construct graph 𝐺(R) as above and find Parent(R). For each
𝑖∗ ∈ Parent(R) we construct 𝐺𝑖∗(R) in the following manner:
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For each 𝑗∗ ∈ Parent(R)∖{𝑖∗} remove the edge (𝑗∗ → 𝑗) and
the node 𝑗∗ from 𝐺(R).

For the next result we need to introduce the concept of an
arborescence [15].

Definition 3: An arborescence (also called directed span-
ning tree) of a directed graph 𝐺 = (𝑉, 𝐴) rooted at vertex
𝑟 ∈ 𝑉 is a subgraph 𝑇 of 𝐺 such that it is a spanning tree
if the orientation of the edges is ignored and there is a path
from 𝑟 to all 𝑣 ∈ 𝑉 when the direction of edges is taken into
account.

Theorem 1: Consider a set of discrete correlated sources
𝑋1, . . . , 𝑋𝑛 and let the corresponding rate assignment R be
pairwise valid. Let 𝐺(R) be constructed as above. There exists
another valid rate assignment R

′
that can be described by the

edge weights of an arborescence of 𝐺𝑖∗(R) rooted at 𝑖∗ where
𝑖∗ ∈ Parent(R) such that 𝑅

′
𝑗 ≤ 𝑅𝑗 , for all 𝑗 ∈ [𝑛].

Proof: We shall show that a new subgraph can be constructed
from which R

′
can be obtained. This shall be done by a series

of graph-theoretic transformations.
Pick an arbitrary starred node 𝑗∗ ∈ Parent(R) and construct

𝐺𝑗∗(R). We claim that in the current graph 𝐺𝑗∗(R) there
exists a path from the starred node 𝑗∗ to all regular nodes
𝑖 ∈ [𝑛]. To see this note that since R is pairwise valid, for
each regular node 𝑖 there exists a path from some starred node
to 𝑖 in 𝐺(R). If for some regular node 𝑖, the starred node
is 𝑗∗, the path is still in 𝐺𝑗∗(R). Now consider a regular
node 𝑖1 and suppose there exists a directed path 𝑘∗ → 𝑘 →
𝛽1 . . . → 𝑖1 in 𝐺(R) where 𝑘∗ ∈ Parent(R), 𝑘∗ ∕= 𝑗∗. Since
𝑘∗ ∈ Parent(R), 𝑅𝑘 ≥ 𝐻(𝑋𝑘) ≥ 𝐻(𝑋𝑘∣𝑋𝑙) ∀𝑙 ∈ [𝑛]. This
implies that edge (𝑙 → 𝑘) is in 𝐺𝑗∗(R), ∀𝑙 ∈ [𝑛], in particular,
(𝑗 → 𝑘) ∈ 𝐺𝑗∗(R). Therefore, in 𝐺𝑗∗(R) there exists the
path 𝑗∗ → 𝑗 → 𝑘 → 𝛽1 . . . → 𝑖1. This claim implies that
there exists an arborescence rooted at 𝑗∗ in 𝐺𝑗∗(R) [15].

Suppose we find such one such arborescence 𝑇𝑗∗ of
𝐺𝑗∗(R). In 𝑇𝑗∗ every node except 𝑗∗ has exactly one incom-
ing edge (by the property of an arborescence [15]). Let 𝑖𝑛𝑐(𝑖)
denote the node such that (𝑖𝑛𝑐(𝑖) → 𝑖) ∈ 𝑇𝑗∗ . We define a
new rate assignment R

′
as

𝑅
′
𝑖 = 𝑊𝐴(𝑖𝑛𝑐(𝑖) → 𝑖) = 𝐻(𝑋𝑖∣𝑋𝑖𝑛𝑐(𝑖)), ∀𝑖 ∈ [𝑛]∖{𝑗}, and

𝑅
′
𝑗 = 𝑊𝐴(𝑗

∗ → 𝑗) = 𝐻(𝑋𝑗).

The existence of edge (𝑗∗ → 𝑗) ∈ 𝐺(R) implies 𝑅
′
𝑗 =

𝐻(𝑋𝑗) ≤ 𝑅𝑗 . Similarly, we have 𝑅
′
𝑖 ≤ 𝑅𝑖 for 𝑖 ∈ [𝑛]∖{𝑗}.

And it is easy to see that R
′

is a valid rate assignment.
Thus, the above theorem implies that valid rate assignments

that are described on arborescences of the graphs 𝐺𝑖∗(R) are
the best from the point of view of minimizing the sum rate.
Finally we have the following theorem that says that the valid
rate assignment that minimizes the sum rate can be found
by finding minimum weight arborescences of appropriately
defined graphs. For the statement of the theorem we need to
define the following graphs.

a) The graph 𝐺𝑡𝑜𝑡 = (𝑉 𝑡𝑜𝑡, 𝐴𝑡𝑜𝑡) is such that 𝑉 𝑡𝑜𝑡 con-
sists of 𝑛 regular nodes 1, . . . , 𝑛 and 𝑛 starred nodes
1∗, . . . , 𝑛∗, ∣𝑉 𝑡𝑜𝑡∣ = 2𝑛. The edge set 𝐴𝑡𝑜𝑡 consists of
edges (𝑖∗ → 𝑖), 𝑊𝐴(𝑖

∗ → 𝑖) = 𝐻(𝑋𝑖) for 𝑖 ∈ [𝑛]
and edges (𝑖 → 𝑗), 𝑊𝐴(𝑖 → 𝑗) = 𝐻(𝑋𝑗 ∣𝑋𝑖) for all
𝑖, 𝑗 ∈ [𝑛]2.

b) For each 𝑖 = 1, . . . , 𝑛 we define 𝐺𝑖∗ as the graph
obtained from 𝐺𝑡𝑜𝑡 by deleting all edges of the form
(𝑗∗ → 𝑗) for 𝑗 ∕= 𝑖 and all nodes in {1∗, . . . , 𝑛∗}∖{𝑖∗}.

Theorem 2: Consider a set of sources 𝑋1, . . . , 𝑋𝑛. Suppose
that we are interested in finding a valid rate assignment R =
(𝑅1, . . . , 𝑅𝑛) for these sources so that the sum rate

∑𝑛
𝑖=1 𝑅𝑖

is minimum. Let R𝑖∗ denote the rate assignment specified by
the minimum weight arborescence of 𝐺𝑖∗ . Then the optimal
valid rate assignment can be found as

𝑅𝑜𝑝𝑡 = arg min
𝑖∈{1,...,𝑛}

𝑛∑
𝑗=1

𝑅𝑖∗
𝑗

Proof. From Theorem 1 we have that any valid rate assignment
R can be transformed into new rate assignment that can be
described on an arborescence of 𝐺𝑖∗(R) rooted at 𝑖∗ and
suitable weight assignment. It is component-wise lower than
R. This implies that if we are interested in a minimum sum
rate solution, it suffices to focus our attention on solutions
specified by all solutions that can be described by all pos-
sible arborescences of graphs of the form 𝐺𝑖∗(R) over all
𝑖∗ = 1∗, . . . , 𝑛∗ and all possible valid rate assignments R.

Now consider the graph 𝐺𝑖∗ defined above. We note that
all graphs of the form 𝐺𝑖∗(R) where R is valid are subgraphs
of 𝐺𝑖∗ . Therefore finding the minimum cost arborescence of
𝐺𝑖∗ will yield us the best rate assignment possible within the
class of solutions specified by 𝐺𝑖∗(R). Next, we find the best
solutions R𝑖∗ for all 𝑖 ∈ [𝑛] and pick the solution with the
minimum cost. This yields the optimal rate assignment.

IV. NOISY CASE

In this section we consider the case when the sources are
connected to the terminal by orthogonal noisy channels. In this
case, the objective is to minimize the sum power. Therefore
the optimum rate allocation within a pair of sources may not
be at the corner points of SW region. We want some node pairs
working at corner points while some others working on the
slope of the SW region. Taking this into account, we generalize
the concept of pairwise property.

For a given rate assignment R, we say that 𝑋𝑖 is initially
decodable if 𝑅𝑖 ≥ 𝐻(𝑋𝑖), or together with another source
𝑋𝑗 , (𝑅𝑖, 𝑅𝑗) ∈ 𝑆𝑊𝑖𝑗 . If 𝑅𝑖 ≥ 𝐻(𝑋𝑖), it can be decoded
by itself. If (𝑅𝑖, 𝑅𝑗) ∈ 𝑆𝑊𝑖𝑗 , SW codes can be designed
for 𝑋𝑖, 𝑋𝑗 and they can be recovered by joint decoding. In
addition, if we take advantage of previously decoded source
data to help decode other sources as we did in the noiseless
case, starting with an initially decodable source, more sources
can potentially be recovered.

Definition 4: Generalized pairwise property of rate as-
signment. Consider a set of discrete memoryless sources
𝑋1, . . . , 𝑋𝑛 and the corresponding rate assignment R =
(𝑅1, . . . , 𝑅𝑛). The rate assignment is said to satisfy the
generalized pairwise property if for each 𝑋𝑖, 𝑖 ∈ [𝑛], 𝑋𝑖 is
initially decodable, or there exists an ordered sequence of
sources (𝑋𝑖1 , 𝑋𝑖2 , . . . , 𝑋𝑖𝑘) such that

𝑋𝑖1 is initially decodable, (6)

𝑅𝑖𝑗 ≥ 𝐻(𝑋𝑖𝑗 ∣𝑋𝑖𝑗−1 ), for 2 ≤ 𝑗 ≤ 𝑘. (7)

𝑅𝑖 ≥ 𝐻(𝑋𝑖∣𝑋𝑖𝑘) (8)
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A rate assignment R shall be called generalized pairwise valid
(or valid in this section), if it satisfies the generalized pairwise
property and for every rate 𝑅𝑖 ∈ R, 𝑄𝑖(𝑅𝑖) ≤ 𝑃𝑚𝑎𝑥. A
valid rate assignment allows every source to be recovered at
the sink. A power assignment P = (𝑃1, 𝑃2, . . . , 𝑃𝑛) shall be
called valid, if the corresponding rate assignment is valid.

We shall introduce generalized pairwise property test graph.
The input and initialization are the same as pairwise property
test graph construction. Then, for each 𝑖 ∈ [𝑛]:

i) If 𝑅𝑖 ≥ 𝐻(𝑋𝑖) then insert directed edge (𝑖∗ → 𝑖) with
weight 𝑊𝐴(𝑖

∗ → 𝑖) = 𝑄𝑖(𝐻(𝑋𝑖)).
ii) If 𝑅𝑖 ≥ 𝐻(𝑋𝑖∣𝑋𝑗) then insert directed edge (𝑗 → 𝑖)

with weight 𝑊𝐴(𝑗 → 𝑖) = 𝑄𝑖(𝐻(𝑋𝑖∣𝑋𝑗)).
iii) If (𝑅𝑖, 𝑅𝑗) ∈ 𝑆𝑊𝑖𝑗 , then insert undirected edge (𝑖, 𝑗)

with weight 𝑊𝐸(𝑖, 𝑗) = 𝑄𝑖(𝑅
∗
𝑖𝑗(𝑖)) + 𝑄𝑗(𝑅

∗
𝑖𝑗(𝑗)) =

𝑃 ∗
𝑖𝑗(𝑖) + 𝑃 ∗

𝑖𝑗(𝑗). Note that as pointed out in Section
II, (𝑃 ∗

𝑖𝑗(𝑖), 𝑃
∗
𝑖𝑗(𝑗), 𝑅

∗
𝑖𝑗(𝑖), 𝑅

∗
𝑖𝑗(𝑗)) are the optimum rate-

power allocation between node pair (𝑖, 𝑗) given by [14].

Finally, remove all nodes that do not participate in any edge.
We denote the resulting graph for a given rate allocation by
𝐺𝑀 (R) = (𝑉, 𝐸, 𝐴), where 𝐸 is undirected edge set and 𝐴
is directed edge set. Denote the regular node set as 𝑉𝑅 ⊂ 𝑉 .

Lemma 2: Consider a set of discrete correlated sources
𝑋1, . . . 𝑋𝑛 and a corresponding rate assignment R =
(𝑅1, . . . , 𝑅𝑛). Suppose that we construct 𝐺𝑀 (R) based on
the algorithm above. The rate assignment R is generalized
pairwise valid if and only if, ∀𝑅𝑖 ∈ R, 𝑄𝑖(𝑅𝑖) ≤ 𝑃𝑚𝑎𝑥, and
for all regular nodes 𝑖 ∈ 𝑉𝑅, at least one of these conditions
holds:

1) 𝑖 participates in an undirected edge (𝑖, 𝑖
′
), 𝑖′ ∈ 𝑉𝑅;

2) There exists a starred node 𝑖∗ and an directed edge
(𝑖∗ → 𝑖);

3) There exists a starred node 𝑗∗ such that there is a
directed path from 𝑗∗ to 𝑖;

4) There exists a regular node 𝑗 participating in edge
(𝑗, 𝑗

′
), 𝑗′ ∈ 𝑉𝑅 such that there is a directed path from

𝑗 to 𝑖;

The proof of this lemma is very similar to that of Lemma
1. If one of the conditions 1) and 2) holds, 𝑋𝑖 is initially
decodable, and vice versa. If one of the conditions 3) and
4) holds, 𝑋𝑖 can be decoded in a sequence of decoding
procedures which starts from an initially decodable source 𝑋𝑗 ,
and vice versa. Next, we introduce some definitions crucial to
the rest of the development.

Definition 5: Given a mixed graph 𝐺 = (𝑉, 𝐸, 𝐴), if 𝑒 =
(𝑖 → 𝑗) ∈ 𝐴, 𝑖 is the tail and 𝑗 is the head of 𝑒. If 𝑒 =
(𝑖, 𝑗) ∈ 𝐸, we call both 𝑖 and 𝑗 the head of 𝑒. For a node
𝑖 ∈ 𝑉 , ℎ𝐺(𝑖) denotes the number of edges for which 𝑖 is the
head.

Definition 6: The underlying undirected graph of a mixed
graph 𝐺 denoted by 𝑈𝑈𝐺(𝐺) is the undirected graph obtained
from the mixed graph by forgetting the orientations of the
directed edges, i.e., treating directed edges as undirected
edges.

As pointed out previously, we want some nodes to work
at corner points of two-dimensional SW region and others to
work on the slope. Thus, we need to somehow combine the
two concepts of arborescence and matching. The appropriate

concept for our purpose is the notion of a matching forest first
introduced in the work of Giles [21].

Definition 7: Given a mixed graph 𝐺 = (𝑉, 𝐸, 𝐴), a
subgraph 𝐹 of 𝐺 is called a matching forest [21] if 𝐹 contains
no cycles in 𝑈𝑈𝐺(𝐹 ) and any node 𝑖 ∈ 𝑉 is the head of at
most one edge in 𝐹 , i.e. ∀𝑖 ∈ 𝑉, ℎ𝐹 (𝑖) ≤ 1.

In the context of this section we also define a strict matching
forest. For a mixed graph 𝐺 containing regular nodes and
starred nodes, a matching forest 𝐹 satisfying ℎ𝐹 (𝑖) = 1, ∀𝑖 ∈
𝑉𝑅 (i.e. every regular node is the head of exactly one edge)
is called a strict matching forest(SMF). In the noisy case, the
SMF plays a role similar to the arborescence in the noiseless
case. Now, we introduce a theorem similar to Theorem 1.

Theorem 3: Given a generalized pairwise valid rate assign-
ment R and corresponding power assignment P, let 𝐺𝑀 (R)
be constructed as above. There exists another valid rate
assignment R

′
and power assignment P

′
that can be described

by the edge weights of a strict matching forest of 𝐺𝑀 (R) such
that

∑𝑛
𝑖=1 𝑃

′
𝑖 ≤ ∑𝑛

𝑖=1 𝑃𝑖.
Proof. In order to find such a SMF, we first change the

weights of 𝐺𝑀 (R), yielding a new graph 𝐺
′
𝑀 (R). Let

𝑊
′
𝐴(𝑖 → 𝑗), 𝑊

′
𝐸(𝑖, 𝑗) denote weights in 𝐺

′
𝑀 (R). Let Λ be a

sufficiently large constant. We perform the following weight
transformation on all edges.

𝑊
′
𝐸(𝑖, 𝑗) = 2Λ− 𝑊𝐸(𝑖, 𝑗), 𝑊

′
𝐴(𝑖 → 𝑗) = Λ− 𝑊𝐴(𝑖 → 𝑗).

(9)
Denote the sum weight of a subgraph 𝐺

′
of graph 𝐺

′
𝑀 (R) as

𝑊𝑡𝐺′
𝑀 (R)(𝐺

′
). Next, we find a maximum weight matching

forest of 𝐺
′
𝑀 (R).which can be done in polynomial time [22].

Lemma 3: The maximum weight matching forest 𝐹𝑀 in
𝐺

′
𝑀 (R) is a strict matching forest, i.e., it satisfies: ∀𝑖 ∈

𝑉𝑅, ℎ𝐹𝑀 (𝑖) = 1.
Proof. See Appendix.
Note that each regular node is head of exact one edge

in 𝐹𝑀 . The power allocation is performed as follows. Any
𝑖 ∈ 𝑉𝑅 is the head of one of three kinds of edges in 𝐹𝑀

corresponding to three kinds of rate-power assignment:
1) If ∃(𝑖∗ → 𝑖) ∈ 𝐹𝑀 , then set 𝑃

′
𝑖 = 𝑄𝑖(𝐻(𝑋𝑖)) and

𝑅
′
𝑖 = 𝐻(𝑋𝑖). The existence of edge (𝑖∗ → 𝑖) in 𝐺𝑀 (R)

means that 𝑅𝑖 ≥ 𝐻(𝑋𝑖), so 𝑅
′
𝑖 ≤ 𝑅𝑖 and 𝑃

′
𝑖 ≤ 𝑃𝑖 ≤

𝑃𝑚𝑎𝑥.
2) If ∃(𝑖, 𝑗) ∈ 𝐹𝑀 , set 𝑃

′
𝑖 = 𝑃 ∗

𝑖𝑗(𝑖), 𝑅
′
𝑖 = 𝑅∗

𝑖𝑗(𝑖) and
𝑃

′
𝑗 = 𝑃 ∗

𝑖𝑗(𝑗), 𝑅
′
𝑗 = 𝑅∗

𝑖𝑗(𝑗). The existence of edge
(𝑖, 𝑗) in 𝐺𝑀 (R) means that 𝑅𝑖 and 𝑅𝑗 are in the SW
region, 𝑃𝑖 ≤ 𝑃𝑚𝑎𝑥 and 𝑃𝑗 ≤ 𝑃𝑚𝑎𝑥. We know that
𝑃 ∗
𝑖𝑗(𝑖), 𝑃

∗
𝑖𝑗(𝑗) is the minimum sum power solution for

node 𝑖 and 𝑗 when the rate allocation is in SW region
and the power allocation satisfies 𝑃𝑚𝑎𝑥 constraints. So
𝑃

′
𝑖 + 𝑃

′
𝑗 ≤ 𝑃𝑖 + 𝑃𝑗 , 𝑃

′
𝑖 ≤ 𝑃𝑚𝑎𝑥, 𝑃

′
𝑗 ≤ 𝑃𝑚𝑎𝑥.

3) If ∃(𝑗 → 𝑖) ∈ 𝐹𝑀 , set 𝑃
′
𝑖 = 𝑄𝑖(𝐻(𝑋𝑖∣𝑋𝑗)) and 𝑅

′
𝑖 =

𝐻(𝑋𝑖∣𝑋𝑗) . The existence of edge (𝑗 → 𝑖) in 𝐺𝑀 (R)
means that 𝑅𝑖 ≥ 𝐻(𝑋𝑖∣𝑋𝑗), so 𝑅

′
𝑖 ≤ 𝑅𝑖 and 𝑃

′
𝑖 ≤

𝑃𝑖 ≤ 𝑃𝑚𝑎𝑥.
Therefore, the new power allocation P

′
reduces the sum

power. Notice that when we are assigning new rates to the
nodes, the conditions in Definition 4 still hold. So the new
rate R

′
is also valid. So P

′
is a valid power allocation with

less sum power.
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The following theorem says that the valid power assignment
that minimizes the sum power can be found by finding
minimum weight SMF of an appropriately defined graph.

The graph 𝐺𝑡𝑜𝑡 = (𝑉 𝑡𝑜𝑡, 𝐴𝑡𝑜𝑡, 𝐸𝑡𝑜𝑡) is such that 𝑉 𝑡𝑜𝑡 con-
sists 𝑛 regular nodes 1, . . . , 𝑛 and 𝑛 starred nodes 1∗, . . . , 𝑛∗,
and ∣𝑉 𝑡𝑜𝑡∣ = 2𝑛. The directed edge set 𝐴𝑡𝑜𝑡 consists of
edges (𝑖∗ → 𝑖), 𝑊𝐴(𝑖

∗ → 𝑖) = 𝑄𝑖(𝐻(𝑋𝑖)) for {𝑖 :
𝑖 ∈ [𝑛] and 𝑄𝑖(𝐻(𝑋𝑖)) ≤ 𝑃𝑚𝑎𝑥}, and directed edges
(𝑖 → 𝑗), 𝑊𝐴(𝑖 → 𝑗) = 𝑄𝑗(𝐻(𝑋𝑗 ∣𝑋𝑖)) for {𝑖, 𝑗 : 𝑖, 𝑗 ∈
[𝑛]2 and 𝑄𝑗(𝐻(𝑋𝑗 ∣𝑋𝑖)) ≤ 𝑃𝑚𝑎𝑥}. The undirected edge set
𝐸𝑡𝑜𝑡 consists of edges (𝑖, 𝑗), 𝑊𝐸(𝑖, 𝑗) = 𝑃 ∗

𝑖𝑗(𝑖) + 𝑃 ∗
𝑖𝑗(𝑗) for

all 𝑖, 𝑗 ∈ [𝑛]2.
Assume that 𝑃𝑚𝑎𝑥 is large enough so that there exist at

least one valid rate-power allocation, the following theorem
shows that the optimal rate-power allocation can be found in
𝐺𝑡𝑜𝑡.

Theorem 4: Consider a set of sources 𝑋1, . . . , 𝑋𝑛. Suppose
that we are interested in finding a valid rate assignment R
and its corresponding power assignment P for these sources
so that the sum power

∑𝑛
𝑖=1 𝑃𝑖 =

∑𝑛
𝑖=1 𝑄𝑖(𝑅𝑖) is minimum.

The optimal valid power assignment can be specified by the
minimum weight SMF of 𝐺𝑡𝑜𝑡.

The proof of this theorem is similar to that of Theorem
2. Note that matching is a special case of matching forest,
and is also a special case of SMF in our problem. Therefore,
minimum weight SMF solution is always no worse than
minimum matching solution.

We now show that the minimum SMF in 𝐺𝑡𝑜𝑡 can be found
by finding maximum matching forest in another mixed graph
after weight transformation. We can perform the same weight
transformation for 𝐺𝑡𝑜𝑡 as we did for 𝐺𝑀 (R). Denote the
resulting graph as 𝐺𝑡𝑜𝑡′ . Find the maximum weight matching
forest 𝐹

′
𝑀 in 𝐺𝑡𝑜𝑡′ . Denote the corresponding matching forest

in 𝐺𝑡𝑜𝑡 as 𝐹𝑀 . We claim that both 𝐹
′
𝑀 and 𝐹𝑀 are SMFs.

To see this, note that since there exists valid rate allocation
R, 𝐺

′
𝑀 (R) is a subgraph of 𝐺𝑡𝑜𝑡′ . From Lemma 3, we know

that SMF exists in 𝐺
′
𝑀 (R). Therefore, SMF also exists in

𝐺𝑡𝑜𝑡′ . Because in a SMF starred node is not head of any edge
and regular node is head of exact one edge, based on weight
transformation rules, the weight of a SMF 𝐹

′
𝑆 in 𝐺𝑡𝑜𝑡′ is:

𝑊𝑡𝐺𝑡𝑜𝑡′ (𝐹
′
𝑆) = 𝑛Λ− 𝑊𝑡𝐺𝑡𝑜𝑡(𝐹𝑆) (10)

where 𝐹𝑆 is the corresponding SMF in 𝐺𝑡𝑜𝑡. Weight of
any non-strict matching forest 𝐹𝑁𝑆 is 𝑊𝑡𝐺𝑡𝑜𝑡′ (𝐹

′
𝑁𝑆) =

𝑚Λ − 𝑊𝑡𝐺𝑡𝑜𝑡(𝐹𝑁𝑆), 𝑚 < 𝑛. Since Λ is sufficiently large,
𝑊𝑡𝐺𝑡𝑜𝑡′ (𝐹

′
𝑆) > 𝑊𝑡𝐺𝑡𝑜𝑡′ (𝐹

′
𝑁𝑆), i.e., SMFs in 𝐺𝑡𝑜𝑡 always

have larger weights. Therefore, the maximum weight matching
forest 𝐹

′
𝑀 in 𝐺𝑡𝑜𝑡′ is SMF. So is the corresponding matching

forest 𝐹𝑀 in 𝐺𝑡𝑜𝑡. From (10), it is easy to see in 𝐺𝑡𝑜𝑡 the
matching forest corresponding to 𝐹

′
𝑀 (the maximum weight

matching forest in 𝐺𝑡𝑜𝑡′ ) has minimum weight, i.e., 𝐹𝑀 is the
minimum SMF in 𝐺𝑡𝑜𝑡.

V. NUMERICAL RESULTS

We consider a wireless sensor network example in a square
area where the coordinates of the sensors are randomly chosen
and uniformly distributed in [0, 1]. The sources are assumed to
be jointly Gaussian distributed such that each source has zero

Fig. 1. Minimum arborescence solution in a WSN with 20 nodes. Noiseless
channels are assumed. Correlation parameter 𝑐 = 1. Sum rate given by MA
equals to 21.96, which is less than sum rate given by matching. The theoretical
optimal sum rate is 20.54.
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Matching solution under noiseless channel: Sum Rate = 30.27

Fig. 2. Minimum matching solution in the same WSN as Fig.1. Noiseless
channels are assumed. Correlation parameter 𝑐 = 1. Sum rate given by
matching equals to 30.27. Note that if we do not take advantage of correlation
and transmit data individually, the sum rate will be 20×𝐻1 = 40.94.

mean and unit variance (this model was also used in [23]). The
off-diagonal elements of the covariance matrix K are given by
𝐾𝑖𝑗 = exp(−𝑐𝑑𝑖𝑗), where 𝑑𝑖𝑗 is the distance between node 𝑖
and 𝑗, i.e., the nodes far from each other are less correlated.
The parameter 𝑐 indicates the spatial correlation in the data. A
lower value of 𝑐 indicates higher correlation. The individual
entropy of each source is 𝐻1 = 1

2 log(2𝜋𝑒𝜎2) = 2.05.
Consider the noiseless case first. Because the rate allocation

only depends on entropies and conditional entropies, we do not
need to care the location of the sink. It is easy to see based on

Authorized licensed use limited to: Iowa State University. Downloaded on December 20, 2009 at 12:03 from IEEE Xplore.  Restrictions apply. 



LI and RAMAMOORTHY: RATE AND POWER ALLOCATION UNDER THE PAIRWISE DISTRIBUTED SOURCE CODING CONSTRAINT 3777

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

Number of sensors n

N
or

m
al

iz
ed

 s
um

 r
at

e 
R

s0

 

 

c=1, Matching
c=1, MA
c=1, Optimal
c=3, Matching
c=3, MA
c=3, Optimal
c=5, Matching
c=5, MA
c=5,Optimal

Fig. 3. Normalized sum rate vs. number of sensors

our assumed model that 𝐻(𝑋𝑖∣𝑋𝑗) = 𝐻(𝑋𝑗 ∣𝑋𝑖), ∀𝑖, 𝑗 ∈ [𝑛]2.
Thus, 𝑊𝐴(𝑖 → 𝑗) = 𝑊𝐴(𝑗 → 𝑖). It can be shown that the
weights of minimum weight arborescences 𝐺𝑖∗, 𝑖 = 1, . . . , 𝑛
are the same. Therefore, we only need to find minimum
weight arborescence on 𝐺1∗ . A solution for a sensor network
containing 20 nodes are shown in Fig.1. Since the starred
node 1∗ is virtual in the network, we did not put it on the
graph. Instead, we marked node 1 as root in the arborescence,
whose transmission rate is its individual entropy 𝐻1. Edge
(𝑖 → 𝑗) in the arborescence implies that 𝑋𝑖 will be decoded
in advance and used as side information to help decode 𝑋𝑗 .
The matching solution for the same network is shown in
Fig.2. As noted in [14], the optimum matching tries to match
close neighbors together because 𝐻(𝑋𝑖, 𝑋𝑗) decreases with
the internode distance. Our arborescence solution also showed
similar property, i.e., a node tended to help its close neighbor
since the conditional entropies between them are small. In
Fig.3, we plot the normalized sum rate 𝑅𝑠0 ≜

∑𝑛
𝑖=1 𝑅𝑖/𝐻1

vs. the number of sensors 𝑛. If there is no pairwise decoding,
i.e., the nodes transmits data individually to the sink, 𝑅𝑖 = 𝐻1

and 𝑅𝑠0 = 𝑛. The matching solution and the minimum ar-
borescence (MA) solution are compared in the figure. We also
plotted the optimal normalized sum rate 𝐻(𝑋1, . . . , 𝐻𝑛)/𝐻1

in the figure. The rate can be achieved theoretically when
all sources are jointly decoded together. We observe that if
the nodes are highly correlated (𝑐 = 1), the present solution
outperforms the matching solution considerably. Even if the
correlation is not high, our MA solution is always better than
matching solution. It is interesting to note that even though
we are doing pairwise distributed source coding, our sum rate
is quite close to the theoretical limit which is achieved by
𝑛-dimensional distributed source coding.

Next, we consider optimizing the total power when there
are AWGN channels between the sources and the sink. The
channel gain 𝛾𝑖 is the reciprocal of the square of the dis-
tance between source 𝑋𝑖 and the sink. We assume that the
coordinates of the sink are (0, 0). An example of the strict
matching forest (SMF) solution to a network with 16 sensors
is given in Fig.4. There is one undirected edge in the SMF

Fig. 4. Minimum strict matching forest solution in a WSN with 16 nodes.
AWGN channels are assumed. Correlation parameter 𝑐 = 1. Peak power
constraint 𝑃𝑚𝑎𝑥 = 10. Sum power given by SMF equals to 16.27. The
optimal sum power when we apply 𝑛-dimensional SW codes is 14.06.

implying that the heads of this edge work on the slope of
SW region. Other 14 edges are directed edges implying that
the tails of the edges are used as side information to help
decode their heads. No node is encoded at rate 𝐻1. In fact,
most minimum SMFs in our simulations exhibit this property,
i.e., the minimum SMF contains 1 undirected edge and 𝑛− 2
directed edges between regular nodes. This fact coincides our
intuition: transmitting at a rate of conditional entropy is the
most economical way, while transmitting at a rate of individual
entropy consumes most power. The matching solution for the
same network is given in Fig.5. We compare sum powers
of the SMF solution with matching solution in Table.I. The
sum powers were averaged over three realizations of sensor
networks. We also found the theoretical optimal sum power
when 𝑛-dimensional distributed source coding is applied by
solving the following convex optimization problem.

min
𝑅1,...,𝑅𝑛

𝑛∑
𝑖=1

𝑃𝑖 =
𝑛∑

𝑖=1

(2𝑅𝑖 − 1)/𝛾𝑖

subject to (2𝑅𝑖 − 1)/𝛾𝑖 ≤ 𝑃𝑚𝑎𝑥, ∀𝑖

(𝑅1, . . . , 𝑅𝑛) ∈ 𝑆𝑊𝑛

where 𝑆𝑊𝑛 is the 𝑛-dimensional Slepian-Wolf region. From
the table, we can observe that our strategy always outperforms
the matching strategy regardless of the level of correlation, and
comes quite close to the theoretical limit that is achieved by
𝑛-dimensional SW coding.

VI. CONCLUSION

The optimal rate and power allocation for a sensor network
under pairwise distributed source coding constraint was first
introduced in [14]. We proposed a more general definition
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Matching solution example for noisy channel, Sum power = 27.12

Fig. 5. Minimum matching solution in the same WSN as Fig.4. AWGN
channels are assumed. Correlation parameter 𝑐 = 1. Peak power constraint
𝑃𝑚𝑎𝑥 = 10. Sum power given by matching equals to 27.12. Note that if we
do not take advantage of correlation and transmit data individually, the sum
power will be 47.11.

TABLE I
COMPARISON OF SUM POWERS BETWEEN MINIMUM STRICT MATCHING

FOREST AND MATCHING SOLUTION.𝑃𝑚𝑎𝑥 = 10.

Number of nodes 4 8 12

𝑐 = 1
SMF 5.57 7.49 11.17

Matching 6.20 10.71 16.99
Optimal 5.45 7.06 9.93

𝑐 = 3
SMF 6.22 16.72 21.15

Matching 6.30 17.81 23.79
Optimal 6.17 16.44 20.60

𝑐 = 5
SMF 9.68 18.65 25.14

Matching 9.92 18.91 25.83
Optimal 9.67 18.56 24.96

of pairwise distributed source coding and provided solutions
for the rate and power allocation problem, which can reduce
the cost (sum rate or sum power) further. For the case
when the sources and the terminal are connected by noiseless
channels, we found a rate allocation with the minimum sum
rate given by the minimum weight arborescence on a well-
defined directed graph. For noisy orthogonal source terminal
channels, we found a rate-power allocation with minimum sum
power given by the minimum weight strict matching forest
on a well-defined mixed graph. All algorithms introduced
have polynomial-time complexity. Numerical results show that
our solution has significant gains over the solution in [14],
especially when correlations are high.

Future research directions would include extensions to
resource allocation problems when joint decoding of three
(or more) sources [24] at one time is considered, instead of
only two in this paper. Another interesting issue is to consider
intermediate relay nodes in the network, which are able to
copy and forward data, or even encode data using network
coding [25].
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Fig. 6. Lemma 4: When ℎ𝐹 (𝑖) = 0, ℎ𝐹 (𝑗) = 0, path 𝑖 − 𝛼1 − 𝛼2 −
⋅ ⋅ ⋅ − 𝑗 can not exist in 𝑈𝑈𝐺(𝐹 ) because it will cause at lease one node
𝛼𝑙 , ℎ𝐹 (𝛼𝑙) = 2.
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APPENDIX

PROOF OF LEMMA 3

We shall first introduce and prove a lemma which facilitates
the proof of Lemma 3.

Lemma 4: Consider two nodes 𝑖 and 𝑗 in a matching forest
𝐹 such that either ℎ𝐹 (𝑖) = 0 or ℎ𝐹 (𝑗) = 0, and they do not
have incoming directed edges. Then, there does not exist a
path of the form

𝑖 − 𝛼1 − 𝛼2 − ⋅ ⋅ ⋅ − 𝛼𝑘 − 𝑗 (11)

in 𝑈𝑈𝐺(𝐹 ).
Proof. First consider the case when ℎ𝐹 (𝑖) = ℎ𝐹 (𝑗) = 0, i.e.,
𝑖, 𝑗 only have outgoing directed edge(s). Suppose there is such
a path (11), edge (𝑖, 𝛼1) should directed from 𝑖 to 𝛼1 in 𝐹
since ℎ𝐹 (𝑖) = 0, similarly, 𝑗 → 𝛼𝑘. As depicted in Fig.6,
at least one node 𝛼𝑙 in the path will have ℎ𝐹 (𝛼𝑙) = 2. But
we know that ℎ𝐹 (𝑡) ≤ 1 holds for every node 𝑡 ∈ 𝑉 in
matching forest 𝐹 . So there is no such path (11) in 𝑈𝑈𝐺(𝐹 ).
If ℎ𝐹 (𝑖) = 0, ℎ𝐹 (𝑗) = 1 and 𝑗 connects to an undirected
edge (𝑗, 𝑗′) in 𝐹 , 𝑖, 𝑗 and 𝑗′ can only have outgoing directed
edge(s). By similar arguments above, we know that at least
one node 𝛼𝑙 on the path is such that ℎ𝐹 (𝛼𝑙) = 2. Similarly,
the case when 𝑖 connects to an undirected edge and ℎ𝐹 (𝑗) = 0
can be proved.

Proof of Lemma 3: We will prove this lemma by contra-
diction. We shall show that if ℎ𝐹𝑀 (𝑖) = 0 for a regular node
𝑖, we can find another matching forest 𝐹

′
in 𝐺

′
𝑀 (R) such

that 𝑊𝑡𝐺′
𝑀(R)(𝐹

′
) > 𝑊𝑡𝐺′

𝑀(R)(𝐹𝑀 ), i.e., 𝐹𝑀 is not the
maximum matching forest. Since 𝐹𝑀 is a matching forest,
it satisfies (a) ℎ𝐹𝑀 (𝑡) ≤ 1 for every node3 𝑡 ∈ 𝑉 and (b)
no cycle exist in 𝑈𝑈𝐺(𝐹𝑀 ). Suppose ℎ𝐹𝑀 (𝑖) = 0 for a

3Actually, for a star node 𝑖∗ ∈ 𝑉 ∖𝑉𝑅 , ℎ𝐹 (𝑖∗) = 0 in all matching forest
𝐹 of 𝐺

′
𝑀 (R) because there is no incoming edge to 𝑖∗ and 𝑖∗ does not

participate in any undirected edge.
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regular node 𝑖 in 𝐹𝑀 . We shall make a set of modifications
to 𝐹𝑀 resulting in a new matching forest 𝐹

′
and prove that

these manipulations will eventually increase the sum weight,
make ℎ𝐹 ′ (𝑖) become 1 and ensure that there is no cycle in
𝑈𝑈𝐺(𝐹

′
). Also, these modifications should guarantee that

ℎ𝐹 ′ (𝑗) = 1 for 𝑗 ∈ {𝑗 : 𝑗 ∈ 𝑉𝑅∖{𝑖} and ℎ𝐹𝑀 (𝑗) = 1}, i.e.
nodes that were previously the head of some edge continue to
remain that way.During the proof, we shall use the properties
of 𝐺

′
𝑀 (R) given in Lemma 2. Since R is valid, regular node

𝑖 has at least one of those four properties in 𝐺
′
𝑀 (R). We shall

discuss these cases in a more detailed manner:

Case 1. If there exists a directed edge (𝑖∗ → 𝑖) in 𝐺
′
𝑀 (R),

add this edge to 𝐹𝑀 to form 𝐹 ′. Clearly, 𝑊𝑡𝐺′
𝑀 (R)(𝐹

′) >

𝑊𝑡𝐺′
𝑀 (R)(𝐹𝑀 ). Since there is only one outgoing edge from

𝑖∗ and it has no incoming edge, no cycle in 𝑈𝑈𝐺(𝐹
′
) is

produced in our procedure. And ℎ𝐹 ′ (𝑡) ≤ 1 still holds for
every node 𝑡 ∈ 𝑉 , so 𝐹

′
is still a matching forest.

Case 2. If there exists an undirected edge (𝑖, 𝑗) in 𝐺
′
𝑀 (R),

we can include this edge to 𝐹𝑀 to increase sum weight. Here,
ℎ𝐹𝑀 (𝑖) = 0 and there are two possibilities for ℎ𝐹𝑀 (𝑗), 0 or
1.

Case 2a. If ℎ𝐹𝑀 (𝑗) = 0, add undirected edge (𝑖, 𝑗) to 𝐹𝑀 ,
resulting a new subgraph 𝐹

′
. Obviously, the sum weight is

increased while adding one edge. Since ℎ𝐹𝑀 (𝑖) = ℎ𝐹𝑀 (𝑗) =
0, by Lemma 4 there does not exist path with form (11) in
𝑈𝑈𝐺(𝐹𝑀 ). Thus, adding (𝑖, 𝑗) does not introduce cycle in
𝑈𝑈𝐺(𝐹 ′). 𝐹

′
is a matching forest.

Case 2b. If ℎ𝐹𝑀 (𝑗) = 1, we still add (𝑖, 𝑗) but need to
perform some preprocessing steps. Based on what kind of edge
connects to node 𝑗, we have two cases:

Case 2𝑏1. If there exists one directed edge (𝑗
′ → 𝑗) in 𝐹𝑀 ,

delete edge (𝑗
′ → 𝑗), we have an intermediate matching forest

𝐹
′′

such that ℎ𝐹
′′(𝑗) = 0. Add the undirected edge (𝑖, 𝑗)

to obtain 𝐹
′
. Note that 𝐹

′
is a matching forest because of

arguments in Case 2a and 𝑊𝑡𝐺′
𝑀 (R)(𝐹

′
) > 𝑊𝑡𝐺′

𝑀(R)(𝐹𝑀 )

because for a sufficient large Λ, 2Λ − 𝑊𝐸(𝑖, 𝑗) > Λ −
𝑊𝐴(𝑗

′ → 𝑗).
Case 2𝑏2. If there exists one undirected edge (𝑗

′
, 𝑗) in 𝐹𝑀 ,

we notice that the existence of (𝑗
′
, 𝑗) in 𝐺

′
𝑀 (R) indicates

that (𝑅𝑗′ , 𝑅𝑗) ∈ 𝑆𝑊𝑗′ 𝑗 , so 𝑅𝑗′ ≥ 𝐻(𝑋𝑗′ ∣𝑋𝑗) and 𝑅𝑗 ≥
𝐻(𝑋𝑗 ∣𝑋𝑗′ ) , which implies that there exist directed edges
(𝑗 → 𝑗

′
) and (𝑗

′ → 𝑗) in 𝐺
′
𝑀 (R). So we can first delete

edge (𝑗
′
, 𝑗) and then add edges (𝑖, 𝑗) and (𝑗 → 𝑗

′
) to form

𝐹
′
. Adding (𝑗 → 𝑗

′
) is to make sure ℎ𝐹 ′ (𝑗

′
) = 1. These mod-

ifications are shown in Fig.7. After removing edge (𝑗
′
, 𝑗), we

have an intermediate matching forest 𝐹 1 such that ℎ𝐹 1(𝑗) = 0
and ℎ𝐹 1(𝑗

′
) = 0. We add edge (𝑖, 𝑗) to obtain 𝐹 2. Because

of Lemma 4, 𝐹 2 is still a matching forest and ℎ𝐹 2(𝑗
′
) = 0.

Then we add (𝑗 → 𝑗
′
) to obtain a new subgraph 𝐹

′
. From

Lemma 4, we know that (𝑗 → 𝑗
′
) will not introduce cycle.

Therefore, 𝐹
′

is still a matching forest. For a large enough
Λ, (2Λ− 𝑊𝐸(𝑖, 𝑗)) + (Λ − 𝑊𝐴(𝑗 → 𝑗

′
)) > 2Λ− 𝑊𝐸(𝑗, 𝑗

′
)

holds, so the sum weight will increase.

Case 3. If there exist a path from ℎ to 𝑖 in 𝐺
′
𝑀 (R):ℎ →

𝛾1 → 𝛾2 → ⋅ ⋅ ⋅ → 𝛾𝑘1 → 𝑖, where ℎ is a starred node
or participates in an undirected edge in 𝐺

′
𝑀 (R), we use the

following approach. Note that 𝛾1, . . . , 𝛾𝑘1 may participate in
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Fig. 7. Case 2𝑏2 When ℎ𝐹𝑀
(𝑖) = 0, ℎ𝐹𝑀

(𝑗) = 1, (𝑗, 𝑗
′
) ∈ 𝐹𝑀 , by

introducing two intermediate matching forest 𝐹 1, 𝐹 2, we can find a new
matching forest 𝐹

′
with larger sum weight.

undirected edges. On this path, we find the node 𝑗 closest to
𝑖 such that 𝑗 participates in an undirected edge in 𝐺

′
𝑀 (R)

or it is a starred node. 𝑗 may be the same as ℎ or be some
𝛾𝑙. We will focus on the path from 𝑗 to 𝑖, denoted by 𝑗 →
𝛼1 → 𝛼2 → ⋅ ⋅ ⋅ → 𝛼𝑘 → 𝑖. The basic idea is to add edge
𝛼𝑘 → 𝑖 into 𝐹𝑀 . However, if we just simply add this edge,
it may produce cycle in underlying undirected graph. So we
need more manipulations.

Case 3a. If 𝑗 is a starred node, denote 𝑗 as 𝑗∗, we want to
add the path

𝑗∗ → 𝛼1 → 𝛼2 → ⋅ ⋅ ⋅ → 𝛼𝑘 → 𝑖 (12)

to 𝐹𝑀 . First, in 𝐹𝑀 , remove all incoming directed edges to 𝛼𝑙

(1 ≤ 𝑙 ≤ 𝑘), then we have an intermediate matching forest 𝐹 1.
Note that 𝑗∗, 𝑖, and 𝛼𝑙’s only have outgoing edges, by Lemma
4, we know that there does not exist undirected path with the
form 𝑗∗(or 𝛼𝑙1)−𝛽1−𝛽2−⋅ ⋅ ⋅−𝛽𝑘− 𝑖(or 𝛼𝑙2) in 𝑈𝑈𝐺(𝐹 1)
where 𝛽’s are nodes outside the path (12). Therefore, adding
path (12) into 𝐹 1 to form 𝐹

′
will not introduce a cycle. All

nodes 𝛼𝑙(1 ≤ 𝑙 ≤ 𝑘) on the path, ℎ𝐹 ′ (𝛼𝑙) = 1. 𝐹
′

is a
matching forest. Next we shall consider the weights. At some
nodes, take 𝛼𝑙 for example, although we deleted directed edge
(𝛼𝑙′ → 𝛼𝑙), where 𝛼𝑙′ is a node outside path (12), we add an-
other directed edge (𝛼𝑙−1 → 𝛼𝑙). The weight might decrease
by (Λ − 𝑊𝐴(𝛼𝑙′ → 𝛼𝑙)) − (Λ − 𝑊𝐴(𝛼𝑙−1 → 𝛼𝑙)). Suppose
we delete and add edges around 𝑑 nodes:𝛼𝑙1, 𝛼𝑙2 , . . . , 𝛼𝑙𝑑 , the
total weight decrease is

∑𝑑
𝑖=1 𝑊𝐴(𝛼𝑙𝑖−1 → 𝛼𝑙𝑖)−𝑊𝐴(𝛼𝑙𝑖′ →

𝛼𝑙𝑖). It may be positive but it does not contain a Λ term. At
the end, we will add (𝛼𝑘 → 𝑖) without deleting any edge
coming into 𝑖 since ℎ𝐹𝑀 (𝑖) = 0, the weight will increase
(Λ − 𝑊𝐴(𝛼𝑘 → 𝑖)) by this operation. If Λ is large enough,
the sum weight will finally increase.
Case 3b. If 𝑗 participates in an undirected edge (𝑗

′
, 𝑗) in

𝐺
′
𝑀 (R). Note that 𝑗

′ ∕= 𝛼1, . . . , 𝛼𝑘 since 𝑗 is the first node in
the path that participates in an undirected edge. In this case,
if (𝑗

′
, 𝑗) is already in 𝐹𝑀 , we just need to add the path (12)

from 𝑗 to 𝑖 as we did in the case above to form 𝐹
′
. The

resulting path is : 𝑗
′ − 𝑗 → 𝛼1 → 𝛼2 → ⋅ ⋅ ⋅ → 𝛼𝑘 → 𝑖 Note

that in 𝐹𝑀 , 𝑗
′
, 𝑗 do not have directed incoming edges. By

similar argument in the previous case, we know that 𝐹
′

is a
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Fig. 8. Case 3𝑏4−1: When ℎ𝐹𝑀
(𝑗) = ℎ𝐹𝑀

(𝑗
′
) = 1, (𝑗

′
, 𝑗) ∈

𝐺
′
𝑀 (R), (𝑗

′′ → 𝑗) ∈ 𝐹𝑀 , (𝑗
′
, 𝑗

′′′
) ∈ 𝐹𝑀 , remove (𝑗

′′ → 𝑗) to
form an intermediate matching forest 𝐹 1 where ℎ𝐹1(𝑗) = 0, ℎ𝐹1(𝑗

′
) =

1, and (𝑗
′
, 𝑗

′′′
) ∈ 𝐹 1. Then apply the same operations as case(2𝑏2),

resulting another matching forest 𝐹 2. Finally add the path from 𝑗 to 𝑖 to
get 𝐹

′
.

matching forest. If (𝑗
′
, 𝑗) is not in 𝐹𝑀 , we want to add (𝑗

′
, 𝑗)

to 𝐹𝑀 and then add the path (12). We have four possibilities,
some of which require preprocessing:

Case 3𝑏1. ℎ𝐹𝑀 (𝑗) = 0 and ℎ𝐹𝑀 (𝑗
′
) = 0; we can add (𝑗

′
, 𝑗)

as we did in Case 2a, and then we add path (12) as we did
above.
Case 3𝑏2. ℎ𝐹𝑀 (𝑗) = 0 and ℎ𝐹𝑀 (𝑗

′
) = 1; we can add (𝑗

′
, 𝑗)

after some preprocessing as we did in Case 2𝑏1 and Case 2𝑏2,
and then we add path (12) as we did above.
Next we discuss cases in which ℎ𝐹𝑀 (𝑗) = 1. In this case, we
only need to consider some directed edge (𝑗

′′ → 𝑗) comes into
𝑗 in 𝐹𝑀 . If there some undirected edge (𝑗

′′
, 𝑗) connecting 𝑗

in 𝐹𝑀 , this case has been discussed in Case 3𝑏 above, by
treating 𝑗

′′
as 𝑗

′
.

Case 3𝑏3. ℎ𝐹𝑀 (𝑗) = 1, (𝑗
′′ → 𝑗), and ℎ𝐹𝑀 (𝑗

′
) = 0; We can

delete (𝑗
′′ → 𝑗) and add (𝑗, 𝑗

′
) as we did in Case 2𝑏1, node 𝑗

′

is regarded as 𝑖 in Case 2𝑏1, it is guaranteed that the resulting
subgraph is a matching forest. And then we add path (12) as
we did above.
Case 3𝑏4. ℎ𝐹𝑀 (𝑗) = 1, (𝑗

′′ → 𝑗), and ℎ𝐹𝑀 (𝑗
′
) = 1; For 𝑗

′
, it

could be head of an undirected edge or a directed edge. If 𝑗
′

is head of an undirected edge (𝑗
′
, 𝑗

′′′
), we perform operations

shown in Fig.8 to get 𝐹 ′. The possible weight decrease during
our operations around node 𝑗 is (𝑊𝐴(𝑗

′ → 𝑗
′′′
)−𝑊𝐴(𝑗

′′ →
𝑗))+((𝑊𝐸(𝑗, 𝑗

′
)−𝑊𝐸(𝑗

′
, 𝑗

′′′
)). We will add edge (𝛼𝑘 → 𝑖)

on path (12) with weight Λ− 𝑊𝐴(𝛼𝑘 → 𝑖). Since Λ is large
enough, the sum weight will still increase. If 𝑗

′
is head of

a directed edge (𝑗
′′′ → 𝑗

′
), we perform operations shown in

Fig.9 to get 𝐹 ′. Similarly, because Λ is large enough, the sum
weight will increase.
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