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Abstract—We consider the problem of multicasting sums over
directed acyclic networks with unit capacity edges. A set ofsource
nodessi observe independent unit-entropy source processesXi

and want to communicate
∑

Xi to a set of terminalstj . Previous
work on this problem has established necessary and sufficient
conditions on thesi − tj connectivity in the case when there are
two sources or two terminals (Ramamoorthy ‘08), and in the case
of three sources and three terminals (Langberg-Ramamoorthy
‘09). In particular the latter result establishes that eachterminal
can recover the sum if there are two edge disjoint paths between
eachsi−tj pair. In this work, we provide a new and significantly
simpler proof of this result, and introduce techniques thatmay
be of independent interest in other network coding problems.

I. I NTRODUCTION

We consider the problem of communicating sums over
networks. There are source nodes each of which is observing
independent sources. In addition there is a set of terminal
nodes that are only interested in the sum of these sources
over a finite field, i.e., unlike the multicast scenario wherethe
terminals are actually interested in recovering all the sources,
in this case the terminals are only interested in the sum of the
sources.

The rate region for this problem was characterized by
Ramamoorthy in [1] for the case of directed acyclic networks
(DAGs) with unit capacity edges and independent, unit entropy
sources in which the network has at most two sources or
two terminals. In this case a single path between each source
terminal pair is both necessary and sufficient. Subsequently,
the work of Langberg & Ramamoorthy [2], showed that the
characterization of [1] does not hold in the case of networks
with three sources and three terminals (see also [3]) and
proposed an achievable region. Reference [2], shows that as
long as each source terminal pair is connected bytwo edge
disjoint paths, the terminals can recover the sum.

The main aim of this paper is to provide a significantly
simpler proof of the result of [2]. Our proof technique is novel
and may be of independent interest in other network coding
problems. To summarize, the main result of this paper is a
new proof for the following theorem:

Theorem 1:Let G = (V, E) be a directed acyclic network
with unit capacity edges and three sourcess1, s2, s3 containing
independent unit-entropy source processesX1, X2, X3 and
three terminalst1, t2, t3. If there exist two edge disjoint paths
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between each source/terminal pair, then there exists a linear
network coding scheme in which the sumX1 + X2 + X3 is
obtained at each terminaltj. Moreover, such a network code
can be found efficiently.
In the above theorem we assume that the source processXi

emits symbols from a finite field and the sum is also computed
over the finite field.

II. PROOF OFTHEOREM 1

In the interest of a self contained presentation, we repeat
some of the material from [2] that is essential in setting up
the basic definitions required for the rest of the discussion.
Nevertheless, for a detailed model for linear network coding,
please refer to [2].

Our proof for determining the desired network code has
three steps. In the first step, we turn our graphG into a graph
Ĝ = (V̂ , Ê) in which each internal nodev ∈ V̂ is of total
degree at most three. We refer to these graphs asstructured
graphs. This is outlined in [2] and explained in detail in [4].
It can be shown that proving Theorem 1 on structured graphs
is equivalent to providing a proof for general graphsG (see
[2], [4]). For notational reasons, from this point on in the
discussion we will assume that our input graphG is structured
— which is now clear to be w.l.o.g.

In the second step of our proof, we give edges and vertices
in the graphG certain labels depending on the combinatorial
structure ofG. This step induces a decomposition of the graph
G (both the vertex set and the edge set) into certainclasssets
that play a major role in our analysis. The decomposition of
G is given in detail in Section II-A.

In the third and final step of our proof, using the labeling
above we present a case analysis for the proof of Theorem 1.
Namely, based on the terminology set in Section II-A, we
identify several scenarios, and prove Theorem 1 assuming that
they hold. It will be evident that our proof also results in an
efficient construction of the desired network code forG.

A. The decomposition

In this section we present our structural decomposition of
G = (V, E). We assume throughout thatG is directed and
acyclic, that it has three sourcess1, s2, s3, three terminals
t1, t2, t3 and that any internal vertex inV (namely, any vertex
which is neither a source or a sink) has total degree at most
three. Moreover, we assume thatG satisfies the connectivity
requirements specified in Theorem 1.



We start by labeling the vertices ofG. A vertex v ∈ V
is labeled by a pair(cs, ct) specifying how many sources
(terminals) it isconnectedto. Specifically,cs(v) equals the
number of sourcessi for which there exists a path connecting
si andv in G. Similarly, ct(v) equals the number of terminals
tj for which there exists a path connectingv and tj in G.
For example, any source is labeled by the pair(1, 3), and any
terminal by the pair(3, 1). An internal vertexv labeled(·, 1)
is connected to a single terminal only. This implies that any
information leavingv will reach at most a single terminal.
Such verticesv play an important role in the definitions to
come. This concludes the labeling ofV .

An edge e = (u, v) for which v is labeled (·, 1) will
be referred to as aterminal edge. Namely, any information
flowing one is constrained to reach at most a single terminal.
If this terminal is tj then we will say thate is a tj-edge.
Clearly, the set oft1-edges is disjoint from the set oft2-edges
(and similarly for any pair of terminals). An edge which is
not a terminal edge will be referred to as aremainingedge or
an r-edge for short.

We now state some structural properties of the edge sets
we have defined. First of all, there exists an ordering of edges
in E in which anyr-edge comes before any terminal edge,
and in addition there is no path from a terminal edge to an
r-edge. This is obtained by an appropriate topological order
in G. Moreover, for any terminaltj , the set oftj-edges form a
connected subgraph ofG rooted attj . To see this note that by
definition eachtj-edgee is connected totj and all the edges
on a path betweene and tj are tj-edges. Finally, the head
of an r-edge is either of type(·, 2) or (·, 3) (as otherwise it
would be a terminal edge).

For each terminaltj we now define a set of vertices referred
to as the leaf setLj of tj . This definition shall play an
important role in our discussions.

Definition 1: Leaf set of a terminal. Let P =
(v1, v2, . . . , vℓ) be a path fromsi to tj (here si = v1

and tj = vℓ). Consider the intersection ofP with the set
of tj-edges, This intersection consists of a subpathP ′,
(vP , . . . , vℓ = tj) of P for which the label ofvP is either
(·, 2) or (·, 3), and the label of any other vertex inP ′ is (·, 1).
We refer tovP as the leaf oftj corresponding to pathP , and
the set of all leaves oftj as the leaf setLj .

We remark that (a) the leaf set oftj is the set of nodes of
in-degree 0 in the subgraph consisting oftj-edges and (b) a
source node can be a leaf node for a given terminal.
B. Case analysis

We now classify networks based on the node labeling
procedure introduced above. For each class of networks,
we argue that (given the requirement stated in Theorem 1)
a network code can be found (efficiently) that allows the
recovery of

∑3
i=1 Xi at the terminals. The proofs of cases

0, 1 and 2 below can be found in [2] and are skipped. In
[2] and [5] we also present an elaborate proof for the final
and most complicated case 3. The contribution of the current
paper is in a significantly simpler analysis of case 3 which
involves a refined labeling of the vertex setV . Our new
refined labeling and analysis techniques may be of independent
interest and will hopefully yield a better understanding of

additional problems as well (such as the characterization of the
multiple-unicast capacity in 3-source/3-terminal networks).

• Case 0.There exists a node of type(3, 3) in G.
• Case 1.There exists a node of type(2, 3) in G.
• Case 2.There exists a node of type(3, 2) in G.
• Case 3.There do not exist nodes of type(3, 3), (2, 3) and

(3, 2) in G.
III. A NALYSIS OF CASE 3

We now prove Theorem 1 under the assumption thatG
has no nodes of type(3, 3), (2, 3) and (3, 2). Note that
the node labeling procedure presented above assigns a label
(cs(v), ct(v)) to a nodev wherecs(v) (ct(v)) is the number of
sources (terminals) thatv is connected to. This labeling ignores
the actual identity of the sources and terminals that have
connections tov. It turns out that the labeling is sufficient to
handle cases 0, 1 and 2 (see [2]). However, we need to use an
additional, somewhat finer notion of node connectivity when
we want to analyze case 3. We emphasize that throughout
this section, we still operate under the assumption that the
reduction outlined in Section II has been performed and that
each node has a total degree at most three.

Towards this end, for case 3 (i.e., in a graphG without
(3, 3), (2, 3) and (3, 2) nodes) we introduce the notion of the
color of a node. For each(2, 2) node in G, the color of
the node is defined as the4-tuple of sources and terminals
it is connected to, e.g., ifv is connected to sourcess1 and
s2 and terminalst1 and t2, then its color, denoted col(v) is
(s1, s2, t1, t2). We shall also say that the source color ofv
is (s1, s2) and the terminal color ofv is (t1, t2). The source
and terminal colors are sometimes referred to as source and
terminal labels. The following claim is immediate.

Claim 1: If there is a(2, 2) nodev in G of color col(v),
then each terminal in the terminal color ofv has at least one
leaf with color col(v). For example, if col(v) = (s1, s2, t1, t2),
then botht1 and t2 have leaves with color(s1, s2, t1, t2).

Proof: W.l.o.g, let col(v) = (s1, s2, t1, t2). This implies
that there exists a pathP betweenv and t1. Let ℓ be a leaf
of t1 on P . Recall thatℓ is defined as the last node onP
with terminal label at least2, namelyct(ℓ) ≥ 2. As ℓ is down
stream ofv it holds thatct(v) ≥ ct(ℓ) and that the terminal
color of v includes that ofℓ. Thus we conclude thatct(ℓ)
is exactly2 and no larger as otherwisect(v) would also be
greater than 2 contradicting our assumptions in the claim. This
implies that the terminal color ofℓ is exactly(t1, t2).

As ℓ is downstream ofv it also holds thatcs(ℓ) ≥ cs(v) = 2
and that the source color ofℓ includes that ofv. Thus, it holds
that cs(ℓ) is exactly 2, otherwiseℓ would be a(3, 2) node
(contradicting our assumption for case 3). This implies that
the source color ofℓ is (s1, s2). Therefore,t1 has a leaf of
color (s1, s2, t1, t2). A similar argument holds fort2.

The notion of a color is useful for the set of graphs under
case 3, since we can show that there can never be an edge
between nodes of different colors. We exploit this property
extensively below.

Lemma 1:Consider a graphG, with sources,si, i =
1, . . . , 3, and terminalstj , j = 1, . . . 3, such that it does not
have any(3, 3), (2, 3) or (3, 2) nodes. There does not exist an
edge between(2, 2) nodes of different color inG.
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Proof: Assume otherwise and consider two(2, 2) nodes
v1 andv2 such that col(v1) 6= col(v2), for which there is an
edge(v1, v2) in G. Note that if the source colors of col(v1)
and col(v2) are different, thenv2 has to be a(3, 2) node,
which is a contradiction. Likewise, if the terminal colors of
col(v1) and col(v2) are different, thenv1 has to be a(2, 3)
node, which is also a contradiction.

Lemma 1 implies that we are free to assign any coding coef-
ficients on a subgraph induced by nodes of one color, without
having to worry about the effect of this on another subgraph
induced by nodes of a different color (simply because there is
no such effect).

The basic idea of our proof is the following. We divide the
set of graphs under case 3, into various classes, depending on
the number of colors that exist in the graph. It turns out thatas
long as the number of colors in the graph is not 2, i.e., either
0,1 or 3 and higher, then there is a simple argument which
shows that each terminal can be satisfied. The argument in
the case of two colors is a bit more involved and is developed
separately. It can be shown that our counter-example in [2]
is a case where there are two colors. Note however, that in
our counter-example there are certainsi − tj pairs that have
only one path between them. We now proceed to develop these
arguments formally.

Claim 2: Consider the subgraph induced by a certain color,
w.l.o.g. (s1, s2, t1, t2) in G, denoted byG(s1,s2,t1,t2). There
exists an assignment of encoding vectors overG(s1,s2,t1,t2),
such that any (unit entropy) function of the source processes
X1 and X2 can be multicasted to all nodes inG(s1,s2,t1,t2).
Moreover, such encoding vector assignments can be done
independently over subgraphs of different colors.

Proof: Note that we are working with directed acyclic
graphs. Thus, there is a nodev∗ in G(s1,s2,t1,t2), such that
it has no incoming edges inG(s1,s2,t1,t2). There are paths
from both s1 and s2 to v∗. Note that the path froms1 to
v∗ has no intersection with any path froms2 or s3. To see
this, suppose that there was such an intersection at nodev′. If
there is a path froms3 to v′, thenv∗ is a (3, 2) node (which
contradicts the assumption thatv∗ is a (2, 2) node). If there
is a path froms2 to v′, then v′ and the remaining vertices
connectingv′ to v∗ on the path froms1 to v∗ have color
(s1, s2, t1, t2). Contradicting the fact thatv∗ has no incoming
edges inG(s1,s2,t1,t2). Likewise, we see that the path froms2

to v∗ has no intersection with a path froms1 or s3.
Therefore, the path froms1 to v∗ carriesX1 in the clear,

and likewise for the path froms2 to v∗. Thus,v∗ can obtain
bothX1 andX2 and can compute any (unit entropy) function
of them. Moreover,v∗ can transmit this function to all nodes
of G(s1,s2,t1,t2) downstream ofv∗. As the argument above can
be repeated for any nodev∗ of in-degree 0 inG(s1,s2,t1,t2) it
follows that all nodes ofG(s1,s2,t1,t2) can obtain the desired
function of X1 andX2.

Finally, we note that the assignments over subgraphs of
different colors can be done independently, since there does
not exist any edge between nodes of different colors (from
Lemma 1).

In what follows, agreedyencoding at nodev either takes
the sum of incoming symbols or just forwards one of the

Legend

Fig. 1. A possible instance ofGaux when the degree sequence of the
terminals is (2, 2, 2). The encoding specified in the legend denotes the
encoding to be propagated downstream to the leaf nodes.

incoming symbols depending on which action yields the
“largest support”. For example, if the two input edges contain
X1 and X2, then the outgoing edge will carryX1 + X2, if
they carryX1 andX1 +X2, the outgoing edge will still carry
X1+X2, and if they carryX3 andX1+X2 then the outgoing
edge will carryX1 +X2 +X3. If the incoming information of
v is X1 + X2 on one edge andX2 + X3 on another (or more
generally, the support of the incoming edges is not disjointor
included), then greedy encoding will not be used.

Lemma 2:Consider a graphG, with sources,si, i =
1, . . . , 3, and terminalstj , j = 1, . . . 3, such that (a) it does
not have any(3, 3), (2, 3) or (3, 2) nodes, and (b) there exists
at least onesi − tj path for all i and j. Consider the set of
all (2, 2) nodes inG and their corresponding colors. If there
exists no colors, exactly one color or at least three distinct
colors inG, then there exists a set of coding vectors such that
each terminal can recover

∑3
i=1 Xi.

Proof: Note that all leaves inG are of type(1, 2), (1, 3)
or (2, 2). This implies that any terminaltj that does not have
a (2, 2) leaf with source color includingsi, must have a leaf at
which Xi is received in the clear. The above follows directly
by the connectivity assumption (b) stated in the Lemma.
(0) Case 0.There are no colors inG.
This implies that there are no(2, 2) nodes inG and thus
all terminalstj have distinct leaves holdingX1, X2, andX3

respectively. This suffices to design a simple greedy code on
the paths from those leaves totj which enablestj to recover
the sumX1 + X2 + X3.
(i) Case 1.There is only one color inG.
In this case perform greedy encoding on ther-edges. We show
that each terminal can recover

∑3
i=1 Xi from the content of

its leaves. W.l.o.g, suppose that the color is(s1, s2, t1, t2).
Using Claim 1, this means that botht1 and t2 have leaves
of this color. The greedy encoding implies thatt1 and t2 can
obtainX1+X2 from the corresponding leaves. Moreover, both
t1 and t2 have a leaf containing a singletonX3, because of
the connectivity requirements. Therefore, they can compute∑3

i=1 Xi. The terminalt3 has only singleton leaves, such that
there exists at least oneX1, X2 and X3 leaf. Thus it can
compute their sum.
(ii) Case 2.There exist exactly three distinct colors inG.
It is useful to introduce an auxiliary bipartite graph that
denotes the existence of the colors at the leaves of the different
terminals. This bipartite graph denotedGaux is constructed as
follows. There are three nodest′i, i = 1, . . . , 3 that denote the
terminals on one side and three nodesc′i, i = 1, . . . , 3 that
denote the colors on the other side. If the colorc′i has tj in
its support, then there is an edge betweenc′i and t′j , i.e., tj
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Legend

Fig. 2. A possible instance ofGaux when the degree sequence of the
terminals is (3, 2, 1). The encoding specified in the legend denotes the
encoding to be propagated downstream to the leaf nodes.

has a leaf of colorc′i. The following properties ofGaux are
immediate.
(i) Each c′i has degree-2. (ii) Eacht′i has degree at most 3.

(iii) There are no multiple edges inGaux.
Note that there are exactly three possible source colors
((s1, s2), (s2, s3) and (s3, s1)) and three possible terminal
colors ((t1, t2), (t2, t3) and (t3, t1)). We now perform a case
analysis depending upon the degree sequence of nodest′j , j =
1, . . . , 3 in Gaux. The degree sequence is specified by a 3-
tuple, where the sum of the entries has to be six.
a) The degree sequence is a permutation of(0, 3, 3).
This only happens if the terminal label of all colors,c′i, i =
1, . . . , 3 is the same and in turn implies that the source
label of each color is distinct, i.e., the source colors include
(s1, s2), (s2, s3) and (s1, s3). In this case, greedy encoding
works for the two terminals in the color support. This is
because each terminal will obtainX1 + X2, X2 + X3 and
X1 + X3 at its leaves (using Lemma 1), from which the
terminal can compute2

∑3
i=1 Xi (here we assume that the

field characteristic is greater than two). The remaining terminal
is not connected to any (2,2) leaf, so that all its leaves contain
singleton values, from which it can compute

∑3
i=1 Xi.

b) The degree sequence is(2, 2, 2).
This only happens if all the terminal labels of the colors
are distinct, i.e., the terminal labels are(t1, t2), (t2, t3) and
(t1, t3). Now consider the possibilities for the source labels.
If there is only one source label, then greedy encoding
ensures that the sum of exactly two of the sources reaches
each terminal. The connectivity condition guarantees thatthe
remaining source is available as a singleton at a leaf of each
terminal. Therefore we are done.
If there are exactly two distinct source colors, then we argue
as follows. On the subgraphs induced by the colors with the
same source label, perform greedy encoding. On the remaining
subgraph, propagate the remaining useful source. We illustrate
this with an example that is w.l.o.g. Suppose that the colorsare
(s1, s2, t1, t2), (s1, s2, t2, t3) and (s2, s3, t1, t3). We perform
greedy encoding on the subgraphs of the first two colors, and
only propagateX3 on the subgraph of the third color. As
shown in Figure 1, this means that terminalst1 and t3 are
satisfied. Note that the connectivity condition dictates that t2
has to have a leaf that has a singletonX3, therefore it is
satisfied as well.
Finally, suppose that there are three distinct source colors.
In this case we use the encoding specified in Table I on the
subgraphs of each source color. It is clear on inspection that∑3

i=1 Xi can be recovered from any two of the received values
(as from any two of the linear combinations stated, one can

TABLE I
ENCODING ON SUBGRAPHS OF DIFFERENT SOURCE COLORS. RECOVERY
OF

∑
3

i=1
Xi IS POSSIBLE FROM ANY TWO OF THE RECEIVED VALUES,

USING ADDITIONS OR SUBTRACTIONS.

Source color Encoding
(s1, s2) 2X1 + X2

(s2, s3) X2 + 2X3

(s1, s3) X1 − X3

deduce the sumX1 + X2 + X3). Here also we assume that
the field characteristic is greater than two.
c) The degree sequence is a permutation of(1, 2, 3).
In this case, the degree sequence dictates that there have to
be two terminals that share two colors. This implies that the
source label of those colors has to be different. For the sub-
graphs induced by these colors, we use the encoding proposed
in Table I. For the subgraph induced by the remaining color,
we perform greedy encoding. For example, suppose that the
colors are(s1, s2, t1, t2), (s2, s3, t1, t2) and(s2, s3, t1, t3). As
shown in Figure 2,t1 andt2 are clearly satisfied (even without
using the information from color(s2, s3, t1, t3)). Terminalt3
has to have a singleton leaf containingX1 by the connectivity
condition and is therefore satisfied.
Together, these arguments establish that in the case when there
are three colors, all terminals can be satisfied.
(iii) Case 3.There exist more than three distinct colors inG.
Note that if there are at least four colors inG, then (a) there are
two colors with the same terminal label, since there are exactly
three possible terminal labels, and (b) for the colors with the
same terminal labels, the source labels necessarily have tobe
different. Our strategy is as follows. For the terminals that
share two colors, use the encoding proposed in Table I. If the
remaining terminal has access to only one source color, then
use greedy encoding and note that this terminal has to have
a singleton leaf. If it has access to at least two source colors,
simply use the encoding in Table I for it as well.

We thus conclude our proof.
It remains to develop the argument in the case when there are
exactly two distinct colors inG. For this we need to explicitly
use the fact that there are two edge-disjoint paths between
eachsi − tj pair.

Lemma 3:Consider a graphG, with sources,si, i =
1, . . . , 3, and terminalstj , j = 1, . . . 3, such that (a) it does
not have any(3, 3), (2, 3) or (3, 2) nodes, and (b) there exist
at least twosi − tj paths for alli and j. Consider the set of
all (2, 2) nodes inG and their corresponding colors. If there
exist exactly two distinct colors inG, then there exists a set of
coding vectors such that each terminal can recover

∑3
i=1 Xi.

Proof: As in the proof of Lemma 2, we argue based on
the content of the leaves of the terminals. Suppose that the
auxiliary bipartite graphGaux is formed. If both the colors
have the same terminal label (see Figure 3 for an example),
then it is clear that the encoding in Table I on the subgraphs
induced by the colors suffices for the corresponding terminals.
The third terminal has singleton leaves corresponding to each
source and can compute

∑3
i=1 Xi.

Another possibility is that the terminal labels of the colors
are different, but the source labels are the same. This case can
be handled by greedy encoding on the colors.

The situation is more complicated when the terminal and
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Legend

Fig. 3. An instance ofGaux when there exist exactly two distinct colors
under case 3, such that the terminal labels of the colors are the same.

Fig. 4. An instance ofGaux when there exist exactly two distinct colors
under case 3, such that both the source labels and the terminal labels of the
colors are different.

source labels of the colors are different, see, e.g., Figure4.
In the case depicted, greedy encoding does not work since
it satisfiest1 and t3 but not t2. W.l.o.g., we assume that the
colors are(s1, s2, t1, t2) and (s2, s3, t2, t3). Now, we know
that there exist two vertex-disjoint paths betweens1 (a similar
argument can be made fors3) andt2. Each of these paths has
a leaf fort2. If one of the leaves contains a singletonX1, then
performing greedy encoding on the two colors works sincet2
obtainsX1 + X2, X1 and X2 + X3 on its leaves and the
other terminals will obtain singleton leaves that satisfy their
demand. Likewise, if there is a singleton leaf containingX3 on
the vertex disjoint paths froms3 to t2, then greedy encoding
works.

Thus, the leaves oft2 must be of type(2, 2). This implies
that there are at least four distinct leaves oft2 of type (2, 2),
two of color (s1, s2, t1, t2) and two of color(s2, s3, t2, t3).
We now conclude our proof by the following claims.

Consider the subgraph induced by nodes colored by one of
the colors above, w.l.o.g.(s1, s2, t1, t2), in G together with
the (1, ·) nodes inG. Denote this subgraph byG′. Consider a
random linear network code on the nodes ofG′ (namely, each
node outputs a random linear combination of its incoming
information over the underlying finite field). We show, with
high probability (given the field size is large enough), that
such a code allows botht1 and t2 to receive two linearly
independent combinations ofX1 and X2 at their leaves. An
analogous argument also holds fort2 andt3 when considering
the color(s2, s3, t2, t3) and the informationX2 andX3. This
suffices to conclude our assertion. In what follows, we denote
the size ofV by n and the underlying field size byq.

Claim 3: Let u be any leaf inG′. Let U = αX1 + βX2 be
the incoming information ofu. With probability (1 − 2/q)n

both α andβ are not zero.
Proof: The proof is standard and omitted due to space

limitations. We use the techniques presented in [6].
Consider the terminalt2 and its two edge disjoint paths from

s1 denotedP1 and P2. Let u1 and u2 be the corresponding
leaves on pathsP1 and P2. As the leaves oft2 are of type
(2, 2) and as bothu1 and u2 are connected tos1 it holds
that bothu1 andu2 are of color(s1, s2, t1, t2) and inG′. The

following claim shows that with high probability (givenq large
enough)t2 will receive two linearly independent combinations
of X1 andX2 at u1 andu2. The proof is omitted due to space
limitations (it follows the line of analysis presented in [6]).

Claim 4: Let U1 = α1X1+β1X2 be the incoming informa-
tion of u1, andU2 = α2X1 +β2X2 the incoming information
of u2. With probability(1− 2/q)n the vectors{(αi, βi)}i=1,2

are independent.
Now, consider the terminalt1 and its two edge disjoint

paths froms1 denotedP1 and P2. Let u1 and u2 be the
corresponding leaves on pathsP1 andP2 (to simplify notation
we use the same notation as previously used fort2). Here, we
consider two cases, if bothu1 and u2 are (2, 2) nodes, then
by Claim 4 we are done (with high probability). Namely, with
high probability (givenq large enough)t1 will receive two
linearly independent combinations ofX1 and X2 at u1 and
u2. Otherwise,t1 has at least one leaf withX1 in the clear.
Denote this leaf asv1. Notice thatt1 must have at least a
single(2, 2) leaf (by Claim 1), denote this leaf byv2. Finally,
by Claim 3 it holds that with high probability the information
present atv1 and atv2 is independent.

To conclude, notice that the discussion above (when applied
symmetrically fort2, t3, and the color(s2, s3, t2, t3)) implies
that all terminals are able to obtain the desired sumX1 +
X2 + X3 (by an appropriate setting of the encoding functions
on their (·, 1) edges).

IV. CONCLUSIONS

In this work we have addressed the network arithmetic
problem in the scenario in which the network has three sources
and three terminals. We have presented a new and significantly
simpler proof for Theorem 1 based on a refined labeling
scheme which decomposes the given graphG into independent
components.

Several questions remain open. Primarily, is the 2-
connectivity condition (betweensi/tj pairs) tight or can
other combinatorial connectivity requirements characterize the
capacity of the network arithmetic problem for the3s/3t case.
Secondly, it is natural to ask what happens with more than 3
sources and terminals. More specifically, our proof for3s/3t
is strongly based on our notion of labeling and coloring. These
notions extend naturally tok sources andk terminals, however,
our line of proof becomes much more complicated fork > 3.
The question whether there exists a unified line of analysis for
all k (or evenk = 4) is left open in this work.
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