Communicating the sum of sources in a
3-sources/3-terminals network; revisited

Michael Langberg Aditya Ramamoorthy
Computer Science Division Department of Electrical and Computer Engineering
Open University of Israel lowa State University
Email: mikel@openu.ac.il Email: adityar@iastate.edu

Abstract—We consider the problem of multicasting sums over between each source/terminal pair, then there exists arline
directed acyclic networks with unit capacity edges. A set afource  network coding scheme in which the suly + X, + X3 is

nodess; observe independent unit-entropy Source processes:  ghtained at each termina). Moreover, such a network code
and want to communicate) . X; to a set of terminals¢;. Previous .
can be found efficiently.

work on this problem has established necessary and sufficien
conditions on thes; — t; connectivity in the case when there are In the above theorem we assume that the source proXess
two sources or two terminals (Ramamoorthy ‘08), and in the cae  emits symbols from a finite field and the sum is also computed
of three sources and three terminals (Langberg-Ramamoorth qgver the finite field.

‘09). In particular the latter result establishes that eachterminal

can recover the sum if there are two edge disjoint paths betwen II. PROOF OFTHEOREM 1
eachs; —t; pair. In this work, we provide a new and significantly . . .
simpler proof of this result, and introduce techniques thatmay In the interest of a self contained presentation, we repeat

be of independent interest in other network coding problems  some of the material from [2] that is essential in setting up
the basic definitions required for the rest of the discussion
|. INTRODUCTION Nevertheless, for a detailed model for linear network cgdin
We consider the problem of communicating sums ovejease refer to [2].
networks. There are source nodes each of which is observin@ur proof for determining the desired network code has
independent sources. In addition there is a set of terminglee steps. In the first step, we turn our grépmto a graph
nodes that are only interested in the sum of these sourges— (v £) in which each internal node € V is of total
over a finite field, i.e., unlike the multicast scenario whitre degree at most three. We refer to these graphstrastured
terminals are actually interested in recovering all therses, graphs This is outlined in [2] and explained in detail in [4].
in this case the terminals are only interested in the sumef th can be shown that proving Theorem 1 on structured graphs
sources. is equivalent to providing a proof for general graphs(see
The rate region for this problem was characterized Hg], [4]). For notational reasons, from this point on in the
Ramamoorthy in [1] for the case of directed acyclic networkgiscussion we will assume that our input graplis structured
(DAGs) with unit capacity edges and independent, unit gatro— which is now clear to be w.l.o.g.
sources in which the network has at most two sources or|n the second step of our proof, we give edges and vertices
two terminals. In this case a single path between each souii¢ghe graphG certain labels depending on the combinatorial
terminal pair is both necessary and sufficient. Subsequen8ructure ofG. This step induces a decomposition of the graph
the work of Langberg & Ramamoorthy [2], showed that they (hoth the vertex set and the edge set) into certhigssets
characterization of [1] does not hold in the case of networlggat play a major role in our analysis. The decomposition of
with three sources and three terminals (see also [3]) apdis given in detail in Section II-A.
proposed an achievable region. Reference [2], shows that af the third and final step of our proof, using the labeling
long as each source terminal pair is connectedvay edge above we present a case analysis for the proof of Theorem 1.
disjoint paths, the terminals can recover the sum. Namely, based on the terminology set in Section II-A, we
The main aim of this paper is to provide a significantlygentify several scenarios, and prove Theorem 1 assumatg th
simpler proof of the result of [2]. Our proof technique is BOV they hold. It will be evident that our proof also results in an
and may be of independent interest in other network codiggicient construction of the desired network code ar
problems. To summarize, the main result of this paper is a
new proof for the following theorem: A. The decomposition
Theorem 1:Let G = (V, E) be a directed acyclic network |n this section we present our structural decomposition of
with unit capacity edges and three souregss, s3 containing G = (V, E). We assume throughout thét is directed and
independent unit-entropy source processés X2, X3 and acyclic, that it has three sources, s, s3, three terminals
three terminalgy, to, ¢3. If there exist two edge disjoint pathst, ¢, ¢; and that any internal vertex it (namely, any vertex
: . which is neither a source or a sink) has total degree at most
~ Authors are in alphabetical order. The work of M. Langberg wapported three. Moreover, we assume th@tsatisfies the connectivity
in part by ISF grant 480/08. The work of A. Ramamoorthy waspsuied in )
part by NSF grant CNS-0721453. requirements specified in Theorem 1.



We start by labeling the vertices @f. A vertexv € V' additional problems as well (such as the characterizafitimeo
is labeled by a pair(cs, c;) specifying how many sourcesmultiple-unicast capacity in 3-source/3-terminal netv&)r
(terminals) it isconnectedto. Specifically,cs(v) equals the o Case 0.There exists a node of typ@, 3) in G.
number of sources; for which there exists a path connecting « Case 1.There exists a node of typ@, 3) in G.

s; andv in G. Similarly, ¢;(v) equals the number of terminals o Case 2.There exists a node of typ&,2) in G.

t; for which there exists a path connectimgand¢; in G. » Case 3There do not exist nodes of tyj#, 3), (2,3) and
For example, any source is labeled by the gair3), and any (3,2) in G.
terminal by the pair(3,1). An internal vertexv labeled(-, 1) I1l. ANALYSIS OF CASE 3

is connected to a single terminal only. This implies that any We now prove Theorem 1 under the assumption tHat
information leavingv will reach at most a single terminal.haS no nodes of typd3,3),(2,3) and (3,2). Note that

Such verticesy play an important role in the definitions t0y,o node |abeling procedure presented above assigns a label
come. This concludes the labeling bt _ (es(v), c:(v)) to a nodev wherec, (v) (c;(v)) is the number of

An edgec = (u,v) for which v is labeled(,, 1) will g4, cag (terminals) thatis connected to. This labeling ignores
be (eferred to as mrmlnal edge. Namely, any_lnformathnt e actual identity of the sources and terminals that have
flowing one is constrained to reach at most a single terrn'r'aitlannections ta. It turns out that the labeling is sufficient to
If this terminal is¢; then we will say thate is at;-edge. pahqie cases 0, 1 and 2 (see [2]). However, we need to use an
Clearly_, the set ofl-edges_ IS d|5]0|nf[ from the set tbj-edges _additional, somewhat finer notion of node connectivity when
(and S'm""f‘“y for any pair of terminals). An _e_dge which 'Sve want to analyze case 3. We emphasize that throughout
not a terminal edge will be referred to aseamainingedge or this section, we still operate under the assumption that the

anvr\'/-edge fof[ sthort. tructural . f the ed reduction outlined in Section Il has been performed and that
€ now state some structural properties ol theé €age Skl 154e has a total degree at most three.

we have defined. First of all, there exists an ordering of sdge Towards this end, for case 3 (i.e., in a graghwithout

in E in which anyr-edge comes before any terminal edg?3,3)7 (2,3) and (3,2) nodes) we introduce the nation of the

and in addition there is no path from a terminal edge to Aor of a node. For eack2,2) node in G, the color of
r-edge. This is obtained by an appropriate topological ordgy; ’ ' :

in G f inal. th # -ed ¢ e node is defined as thetuple of sources and terminals
n & Morgov%r, or ﬁnétermlg > ¢ (_T_seto Jh'.e ges %rml;i it is connected to, e.g., ib is connected to sources and
connected subgrap rooted atr;. To see this note that Y5, and terminalst; and ¢, then its color, denoted col is
definition eacht;-edgee is connected td; an_d all the edges (1,52, t1,2). We shall also say that the source colorof
on a path betweem andt; are ¢;-edges. Finally, the head. /.~ V

e . ~%Yis (s1,s2) and the terminal color of is (¢1,¢2). The source
of an r-edge is either of typ&-,2) or (-,3) (as otherwise it ;.4 terminal colors are sometimes referred to as source and

would be a term_inal edge). , . éerminal labels. The following claim is immediate.
For each terminal; we now define a set of vertices referred ~15im 1: I there is a(2,2) nodev in G of color col@)
?r%p%srtatt?s rlﬁgfinsgrﬁg d?gcfj];s;r:lls definition shall play an then each terminal in the terminal color ofhas at least one
S i : . _ leaf with color col). For example, if colg) = (s1,s2,t1,t2),
Definition 1. Leaf set of a terminal.Let P = then botht; andt, have leaves with colofsy, sa,t1,t2).
(v1,v ve) be a path froms; to ¢; (heres;, = v o
1& 2 Tt c 'dp the int i . J o _tﬁ th_ 1t Proof: W.l.o.g, let col@) = (s1,s2,t1,t2). This implies
andt; = ). onsider he ntersection wi € Sel that there exists a patk betweenv andt;. Let ¢ be a leaf
of ¢;-edges, This intersection consists of a §prﬂh of ¢t; on P. Recall that/ is defined as the last node dn
(vp,...,ve = t-jzj Ot: PI ft?rl WP'Ch th?} label Of”;;( S either it terminal label at leas?, namelyc; (¢) > 2. As ¢ is down
(-.2) or (-, 3), and the label of any other vertex i is (,1). = gtream ofy it holds thatc;(v) > ¢:(¢) and that the terminal
We refer toup as the leaf of; corresponding to pati?, and 5|4 of ,, includes that off. Thus we conclude that; (¢)
the\.\Nset of allklﬁ?vtes Oijhasl thfe lef‘f SeL{H t of nod ¢ is exactly2 and no larger as otherwisg(v) would also be
_VVe remark tha (&) the leaf se .Oﬂf.'s € set ol hodes o greater than 2 contradicting our assumptions in the claims T
in-degree 0 in the subgraph consstmgt_pfedges ‘f’md (b) a implies that the terminal color of is exactly (1, t2).
source node cap be a leaf node for a given terminal. As ¢ is downstream of it also holds that, () > ¢, (v) = 2
B. Case analysis and that the source color éfincludes that of. Thus, it holds
We now classify networks based on the node labelinbat cs(¢) is exactly2, otherwise/ would be a(3,2) node
procedure introduced above. For each class of networkspntradicting our assumption for case 3). This implies tha
we argue that (given the requirement stated in Theorem the source color of is (s1,s2). Therefore,t; has a leaf of
a network code can be found (efficiently) that allows theolor (s1, s2,%1,%2). A similar argument holds fots. ]
recovery onfZl X, at the terminals. The proofs of cases The notion of a color is useful for the set of graphs under
0, 1 and 2 below can be found in [2] and are skipped. ltase 3, since we can show that there can never be an edge
[2] and [5] we also present an elaborate proof for the finbetween nodes of different colors. We exploit this property
and most complicated case 3. The contribution of the curresxtensively below.
paper is in a significantly simpler analysis of case 3 which Lemma 1:Consider a graphG, with sources,s;,i =
involves a refined labeling of the vertex st Our new 1,...,3, and terminalg;,j = 1,...3, such that it does not
refined labeling and analysis techniques may be of independeave any(3, 3), (2, 3) or (3,2) nodes. There does not exist an
interest and will hopefully yield a better understanding ofdge betweer(2,2) nodes of different color irG.



(s1,82,t1,t2) (s1,82,t2,t3) (s2,83,t1,t3)

Proof: Assume otherwise and consider t{®, 2) nodes
v; andwvy such that cdlv;) # col(vs), for which there is an AN
edge(v1,v2) in G. Note that if the source colors of ¢ol)
and colvy) are different, thenv, has to be a(3,2) node,
which is a contradiction. Likewise, if the terminal color§ o
col(vy) and colv2) are different, therv; has to be &2, 3)
node, which is also a contradiction. [ |
. .Lemma 1 implies thaF we are free to aSSign any COding.Cogrgr.ni:rL]éls /i\s?;,s;,igl)e. i'lr'ﬁzteane(i\eco%ti;r?gzsgvehceifri]e(tjh?nd;gge;gzenqduedngﬁot%fstr:ﬁe
ficients on a subgraph induced by nodes of one color, wnh%oding to be propagated downstream to the leaf nodes.
having to worry about the effect of this on another subgraph
induced by nodes of a different color (simply because thereincoming symbols depending on which action yields the
no such effect). “largest support”. For example, if the two input edges conta
The basic idea of our proof is the following. We divide theX; and X5, then the outgoing edge will carr¥; + X, if
set of graphs under case 3, into various classes, dependinghey carryX; and X; 4+ X», the outgoing edge will still carry
the number of colors that exist in the graph. It turns out #sat X1 + X», and if they carryXs; and X + X, then the outgoing
long as the number of colors in the graph is not 2, i.e., eithedge will carryX; + X, + X3. If the incoming information of
0,1 or 3 and higher, then there is a simple argument whichs X; 4+ X on one edge and’; + X3 on another (or more
shows that each terminal can be satisfied. The argumentgienerally, the support of the incoming edges is not disjoint
the case of two colors is a bit more involved and is develop#ttiuded), then greedy encoding will not be used.
separately. It can be shown that our counter-example in [2]Lemma 2:Consider a graphG, with sources,s;,i =
is a case where there are two colors. Note however, thatlin .., 3, and terminals;,j = 1,...3, such that (a) it does
our counter-example there are certain- ¢; pairs that have not have any3, 3), (2, 3) or (3,2) nodes, and (b) there exists
only one path between them. We now proceed to develop theédeast ones; — t; path for all and j. Consider the set of
arguments formally. all (2,2) nodes inG and their corresponding colors. If there
Claim 2: Consider the subgraph induced by a certain colgxists no colors, exactly one color or at least three distinc
w.l.o.g. (s1, s2,t1,t2) in G, denoted byG s, s, 1, +,). There colorsinG, then there existgs a set of coding vectors such that
exists an assignment of encoding vectors ofey, , ¢, +,), €ach terminal can recover; , X;.
such that any (unit entropy) function of the source processe Proof: Note that all leaves itz are of type(1,2),(1,3)
X, and X, can be multicasted to all nodes @, s, 1, +,)- O (2,2). This implies that any terminal; that does not have
Moreover, such encoding vector assignments can be den@,2) leaf with source color including;, must have a leaf at
independently over subgraphs of different colors. which X is received in the clear. The above follows directly
Proof: Note that we are working with directed acycliddy the connectivity assumption (b) stated in the Lemma.
graphs. Thus, there is a node in Gy, ,,,.1,), Such that (0) Case 0.There are no colors i.
it has no incoming edges i/, s, ,).- There are paths This implies that there are n®,2) nodes inG and thus
from both s; and sy to v*. Note that the path froms; to all terminalst; have distinct leaves holding;, X», and X3
v* has no intersection with any path frosm or s3. To see respectively. This suffices to design a simple greedy code on
this, suppose that there was such an intersection at viodfe  the paths from those leaves tpwhich enableg; to recover
there is a path from; to v/, thenv* is a(3,2) node (which the sumX; + X5 + Xs.
contradicts the assumption that is a (2,2) node). If there (i) Case 1.There is only one color irG.
is a path froms, to ¢/, thenv’ and the remaining vertices In this case perform greedy encoding on thedges. We show
connectingv’ to v* on the path froms; to v* have color that each terminal can recovdr,_, X, from the content of
(s1,82,t1,t2). Contradicting the fact that* has no incoming its leaves. W.l.0.g, suppose that the color(is, so,t1,t2).
edges inG s, s, 1, 1,)- Likewise, we see that the path from  Using Claim 1, this means that both and ¢, have leaves
to v* has no intersection with a path from or ss. of this color. The greedy encoding implies thatand¢, can
Therefore, the path from; to v* carriesX; in the clear, obtainX;+ X, from the corresponding leaves. Moreover, both
and likewise for the path from, to v*. Thus,v* can obtain ¢, andt, have a leaf containing a singleto¥i;, because of
both X; and X, and can compute any (unit entropy) functionhe connectivity requirements. Therefore, they can comput
of them. Moreoverp* can transmit this function to all nodeszfz1 X;. The terminaltz has only singleton leaves, such that
of G (s, ss.11,1,) dOWNstream ob™. As the argument above canthere exists at least on&;, X, and X3 leaf. Thus it can
be repeated for any node of in-degree 0 inG/(,, , 1, 1,) it compute their sum.
follows that all nodes of~(,, ., :,) can obtain the desired (i) Case 2.There exist exactly three distinct colors
function of X; and X5. It is useful to introduce an auxiliary bipartite graph that
Finally, we note that the assignments over subgraphs dénotes the existence of the colors at the leaves of theeliffe
different colors can be done independently, since there daerminals. This bipartite graph denotéd,,,. is constructed as
not exist any edge between nodes of different colors (frofollows. There are three nodés: = 1,...,3 that denote the
Lemma 1). B terminals on one side and three nodési = 1,...,3 that
In what follows, agreedyencoding at node either takes denote the colors on the other side. If the calphast; in
the sum of incoming symbols or just forwards one of thiés support, then there is an edge betwegrandt’, i.e., t;

.
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TABLE |
ENCODING ON SUBGRAPHS OF DIFFERENT SOURCE COLORBECOVERY
OF Y% | X; IS POSSIBLE FROM ANY TWO OF THE RECEIVED VALUES
USING ADDITIONS OR SUBTRACTIONS

(s1,82,t1,t2) (s2,83,t1,t2) (S2,83,11,t3)

N '/'.

Legend
e 2X1 4+ Xs

Source color Encoding

AN T Xat+2Xs (81,82) 2X1 + X2
b Xo+ X3 (82, 83) Xo 4+ 2X3
t th t (s1,53) X1 — X3

Fig. 2. A possible instance ofiq.. when the degree sequence of thed€duce the sunX; + X, + X;). Here also we assume that

terminals is (3,2,1). The encoding specified in the legend denotes ththe field characteristic is greater than two.

encoding to be propagated downstream to the leaf nodes. c) The degree sequence is a permutatiorilof 3)_

In this case, the degree sequence dictates that there have to

be two terminals that share two colors. This implies that the

(i) Each¢, has degree-2. (ii) Eaclf has degree at most 3 source _Iabel of those colors has to be different. For the sub-
graphs induced by these colors, we use the encoding proposed

(iii) There are no multiple edges i@ . . C
Note that there are exactly three possible source cold?s-r""bIe | For the subgraph induced by the remaining color,

((s1,52), (s2,53) and (sa,51)) and three possible terminal V€ perform greedy encoding. For example, suppose that the
colors (t1,1s), (t2,t3) and (t3,t1)). We now perform a case colors are(si, sz, 11, t2), (52, 83,11, 2) @nd(sa, 53, 41, 13). AS
analysis depending upon the degree sequence of ripdes- shown in Figure 2¢; andt, are clearly satisfied (even without

1,...,3 in Guus. The degree sequence is specified by a ]ngj_smg tne |nf0rn_1at||0n fr?meOIO(SQ.’?XZ”’tg t?’%)' Terminalts
tuple, where the sum of the entries has to be six. as to have a singleton leaf containing by the connectivity

. . condition and is therefore satisfied.
a) The degree sequence is a permutatio0o8, 3). - h h blish that in th a h
This only happens if the terminal label of all color$,i = ogether, these arguments establish that in the case wer t

1 3 is the same and in turn implies that the sourc re three colors, all terminals can be satisfied.
label of each color is distinct, i.e.. the source colorsudel (i) Case 3.There exist more than three distinct colorsGin
(s1,59), (s2,53) and (s1, s3) Iﬁ thi’s case, greedy enCOdingNote that if there are at least four colorsGi then (a) there are

works for the two terminals in the color support. This idwo colors with the same terminal label, since there aretgxac

because each terminal will obtail; + X, X» + X3 and three possible terminal labels, and (b) for the colors wlith t

X, + X; at its leaves (using Lemma 1), from which theame terminal labels, the source labels necessarily have to

terminal can compute 2321 X, (here we assume that thedn‘ferent. Our strategy is as follows. For the terminalsttha

field characteristic is greater than two). The remainingieal share_ two COIOKS’ use the encoding proposed in Table I. If the
is not connected to any (2,2) leaf, so that all its leavesaiont remaining terminal has access to only one source color, then

singleton values, from which it can compuzéf’:1 X;. use grletedylen;:oltf:h_r;% and note tpat ttrlns t?rtmmal has to ?ave
b) The degree sequence(® 2, 2). a singleton leaf. If it has access to at least two source splor

This only happens if all the terminal labels of the colorgImply use the encoding in Table | for it as well.

are distinct, i.e., the terminal labels af@,t,), (t2,t3) and We thus conclude our proof. u
(t1,t3). Now consider the possibilities for the source labels!t remains to develop the argument in the case when there are
If there is only one source label, then greedy encodir@yactly two distinct colors irz. For this we need to explicitly
ensures that the sum of exactly two of the sources reach&e the fact that there are two edge-disjoint paths between
each terminal. The connectivity condition guarantees tihat €achs; — ¢; pair.

remaining source is available as a singleton at a leaf of eacHh-emma 3:Consider a graphG, with sources,s;,i =
terminal. Therefore we are done. 1,...,3, and terminalg;,j = 1,...3, such that (a) it does

If there are exactly two distinct source colors, then we argmot have any(3,3), (2,3) or (3,2) nodes, and (b) there exist
as follows. On the subgraphs induced by the colors with tiaé least twos; —t; paths for alli andj. Consider the set of
same source label, perform greedy encoding. On the rengain&l (2,2) nodes inG' and their corresponding colors. If there
subgraph, propagate the remaining useful source. Weralest exist exactly two distinct colors itr, then there exists a set of
this with an example that is w..0.g. Suppose that the caloes coding vectors such that each terminal can recovér , X;.
(81,82,t1,t2), (81, 82,t2,t3) and (sq, s3,t1,t3). We perform Proof: As in the proof of Lemma 2, we argue based on
greedy encoding on the subgraphs of the first two colors, aif@ content of the leaves of the terminals. Suppose that the
only propagateXs; on the subgraph of the third color. Asauxiliary bipartite graphG,.. is formed. If both the colors
shown in Figure 1, this means that terminajsandt; are have the same terminal label (see Figure 3 for an example),
satisfied. Note that the connectivity condition dictatestth then it is clear that the encoding in Table | on the subgraphs
has to have a leaf that has a singletdi, therefore it is induced by the colors suffices for the corresponding terfaina
satisfied as well. The third terminal has singgleton leaves corresponding th ea
Finally, suppose that there are three distinct source solosource and can compule; | X;.

In this case we use the encoding specified in Table | on theAnother possibility is that the terminal labels of the cslor
subgraphs of each source color. It is clear on inspection tleae different, but the source labels are the same. This ease ¢
Zle X; can be recovered from any two of the received valués handled by greedy encoding on the colors.

(as from any two of the linear combinations stated, one canThe situation is more complicated when the terminal and

has a leaf of coloe;. The following properties of7,.. are
immediate.
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(51,5911, t2) (2,83, 10, ta) following claim shows that with high probability (givenlarge
enough), will receive two linearly independent combinations
Legend of X; and X, atu; andus. The proof is omitted due to space
' limitations (it follows the line of analysis presented if)[6
Claim 4: LetU; = a3 X1+ 31 X2 be the incoming informa-
- f, CP tion of uy, andUs = as X + (32 X2 the incoming information
! 2 ? of us. With probability (1 —2/¢)™ the vector iy Bi) i
Fig. 3. An instance of7,.. When there exist exactly two distinct colors U2 d pd t ty( /Q) S{(a“ ﬂl)}l_lg
under case 3, such that the terminal labels of the colorsharsdame. are independent. . ) .
Now, consider the terminal; and its two edge disjoint
paths froms; denotedP; and P,. Let u; and uy be the

(51,82, t1,t2) (82,83, 12, 13)

\

N corresponding leaves on patRs and P, (to simplify notation
AN we use the same notation as previously used4{prHere, we

i consider two cases, if botl; andus are (2,2) nodes, then
é . by Claim 4 we are done (with high probability). Namely, with
i 0 i high probability (giveng large enough); will receive two

Fig. 4. An instance ofGq.. When there exist exactly two distinct colors“nealrIy md_ependent combinations df, and X? atu; and
under case 3, such that both the source labels and the tératiets of the 2. Otherwise,t; has at least one leaf witl(; in the clear.
colors are different. Denote this leaf ag;. Notice thatt; must have at least a
source labels of the colors are different, see, e.g., FigureSindle(2,2) leaf (by Claim 1), denote this leaf by,. Finally,

In the case depicted, greedy encoding does not work sir@éCla'm 3 it holds th"’.lt V.V'th high probability the informatio

it satisfiest; and ¢z but nott,. W.l.o.g., we assume that thePresent a; and atu, is independent. .
colors are(si, ss, tr, ts) and (ss, s3, ta, t3). Now, we know To conclude, notice that the discussion above (when applied

that there exist two vertex-disjoint paths betweer(a similar Symmetrically forty, ¢;, and the colol(ss, s3, 12, t5)) implies

argument can be made feg) andt,. Each of these paths hasthat all terminals are able to obtain the desired si¥m-+

a leaf forts. If one of the leaves contains a singlet&n, then X2+ X; (by an appropriate setting of the encoding functions

performing greedy encoding on the two colors works sitice on their(, 1) edges). u
obtains X; + X,, X; and X, + X3 on its leaves and the IV. CONCLUSIONS
other terminals will obtain singleton leaves that satisfgit ~ In this work we have addressed the network arithmetic

demand. Likewise, if there is a singleton leaf containiygon problem in the scenario in which the network has three ssurce

the vertex disjoint paths froms to t,, then greedy encoding and three terminals. We have presented a new and significantl

works. simpler proof for Theorem 1 based on a refined labeling
Thus, the leaves of, must be of typg2,2). This implies scheme which decomposes the given gréaghto independent

that there are at least four distinct leaves obf type (2,2), components.

two of color (s1, s2,t1,t2) and two of color(ss, s3,t2,t3). Several questions remain open. Primarily, is the 2-

We now conclude our proof by the following claims. connectivity condition (betweer;/¢; pairs) tight or can
Consider the subgraph induced by nodes colored by oneadfier combinatorial connectivity requirements charaotethe

the colors above, w.l.o.gs1, s2,%1,%2), in G together with capacity of the network arithmetic problem for the/3¢ case.

the (1,-) nodes inG. Denote this subgraph by’. Consider a Secondly, it is natural to ask what happens with more than 3

random linear network code on the nodeg®f(namely, each sources and terminals. More specifically, our proof 3ey3t

node outputs a random linear combination of its incominig strongly based on our notion of labeling and coloring. Séhe

information over the underlying finite field). We show, withnotions extend naturally to sources and terminals, however,

high probability (given the field size is large enough), thaur line of proof becomes much more complicated #as 3.

such a code allows both, andt, to receive two linearly The question whether there exists a unified line of analysis f
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