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Abstract—We consider the network communication scenario communicate with the terminal over a network. Thus, con-
in which a number of sources s; each holding independent sjdering the distributed compression jointly with the netkv
information X; wish fo communicate the sum3_ X; to & set jnormation transfer is important. Network coding for a@rr
of_ term!nals t;. In this work we consider directed acycll_c graphs lated sources was first examined by Ho et al. [2]. The work
with unit capacity edges and independent sources of unit-eropy. y s - el .
The case in which there are only two sources or only two Of Ramamoorthy et al. [9] showed that in general separating
terminals was considered by the work of Ramamoorthy [ISIT distributed source coding and network coding is suboptinal
2008] where it was shown that communication is possible if ah  practical approach to transmitting correlated sources ave
only if each source terminal pair s;/t; is connected by at least network was considered by Wu et al. [11]. Reference [11]

a single path. . . .
In this work we study the communication problem in general, also introduced the problem dfetwork Arithmetidhat comes

and show that even for the case of three sources and threeUP in the design of practical systems that combine disteitbut
terminals, a single path connecting source/terminal pairsdoes source coding and network coding.
not suffice to communicate} X;. We then present an efficient  |n the network arithmetic problem, there are source nodes
encoding scheme which enables the communication &f) Xi each of which is observing independent sources. In addition
for the three sources, three terminals case, given that each there is a set of terminal nodes that are only interested in
source terminal pair is connected bytwo edge disjoint paths. R ’ ;
Our encoding scheme includes a structural decomposition ahe the sum of these sources over a finite field, i.e., unlike the
network at hand which may be found useful for other network multicast scenario where the terminals are actually istere
coding problems as well. in recovering all the sources, in this case the terminals are
|. INTRODUCTION only interested in the sum of the sources.
. i , ) The rate region of the network arithmetic problem was

Network coding is a new paradigm in networking Whergy,aacterized recently by Ramamoorthy in [8] for the case
nodes in a network have the ability to process informatiqf girected acyclic networks (DAGS) with unit capacity edge
before forwarding it. This is unlike routing where nodesy independent, unit entropy sources in which the network
in a network primarily operate in a replicate and forwarflas ot most two sources or two terminals. Basically, it was
manner. The problem of multicast has been studied intelysivep\yn that as long as there exists at least one path from each
under the paradigm of network coding. The seminal work Qb rce to each terminal, there exists an assignment of godin
Ahlswede et al. [1] showed that under network coding thgycors to each edge in the network such that the terminals
multicast capacity is the minimum of the maximum flows from.  racover the sum of the sources.
the source to each individual terminal node. The work of Li | this work we continue the study of the network arithmetic
et al. [6] showed that linear network codes were sufﬁmet&omem for networks with more than two sources and two
to achieve the multicast capacity. The algebraic approaChtérminals. Primarily, we show that the characterizatiof8)f

network coding proposed by Koetter and Médard [3] provideg, |onger holds when the number of sources and terminals is
simpler proofs of these results. _ _ greater than two. We note that a similar result was obtained

In recent years there has also been a lot of interest in t?%f'cently in an independent manner by [7]. We then turn to
development and usage of distributed source coding schemggg,in encoding schemes for the three sources - three tisnin
due to their applications in emerging areas such as sensgke g5 /31). We show that as long as each source is connected
networks. Classical distributed source coding result$ ag by two edge disjoint paths to each terminal, the network
the famous Slepian-Wolf theorem [10] usually assume a tirégithmetic problem is solvable. Namely, we present efficien
link between the sources and the terminals. However in @pRlhear encoding schemes that allow communication in this
cations such as sensor networks, typically the sourcesdvodbca our main result can be summarized as follows.

, . Theorem 1:Let G = (V, E) be a directed acyclic network
Authors are in alphabetical order. The work of M. Langberg wapported
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nalsti, t2,t3. If there exist two edge disjoint paths betweenector of edgee; is 3., = [Be;1 - [e;.n]. We shall also
each source/terminal pair, then there exists a linear mktwamccasionally use the term coding vector instead of global
coding scheme in which the suiXi; + X> + X3 is obtained coding vector in this paper. We say that a nedéor edgee;)

at each terminat;. Moreover, such a network code can bé downstream of another node (or edgee;) if there exists
found efficiently. a path fromw; (or e;) to v; (or e;).

This paper is organized as follows. Section Il presents the
network coding model that we shall be assuming. In Section Il
we present our counter example to the characterization]of [8
containing 3 sources and 3 terminals. In Sections IV and V we
present our main result: the proof of Theorem 1. In Section VI
we outline our conclusions. Due to space limitations, many o
our claims and all of Section V (our main technical section)
appear without proof. The interested reader may find a full
version of the paper in [4].

X1 Xo X3

Il. NETWORK CODING MODEL

In our model, we represent the network as a directed graph T
@)

t3

G = (V,E). The network contains a set of source nodes

S C V that are observing independent, discrete unit-entropy

sources and a set of termindlsC V. Our network coding

model is basically the one presented in [3]. We assume tHI_'éﬂ 1. Example of a network with three sources and threeitexis) such
h ed th t k h it it d t there exists at least one path between each source ahdtezaninal.

each edge in the network has unit capacity and can ransm ever all the terminals cannot compUfe?_, X;.

one symbol from a finite field of size per unit time (we are

free to choosey large enough). If a given edge has a higher l1l. EXAMPLE OF THREE SOURCES AND THREE

capacity, it can be treated as multiple unit capacity €dgegegynaLs wITH INDEPENDENT UNIT-ENTROPY SOURCES
A directed edgee between nodes; andwv; is represented

as (v; — v;). Thus head(e) = v; and tail(e) = v;. A We now present our counter example to the characterization
path between two nodes andw; is a sequence of edgesof [8] containing 3 sources and 3 terminals. Namely, we
{e1,e2,...,ex} such thattail(e1) = v;, head(ex) = v; and present a3s/3t network with at least one path connecting
head(e;) = tail(ej41),i=1,..., k — L. each source terminal pair, in which the sum of sources cannot
Our counter-example in Section Il considers arbitrargunder any network code) be transmitted to all three terlwina
network codes. However, our constructive algorithm for the Consider the network in Figure 1, with three source nodes
proof of Theorem 1 shall use linear network codes. In lineand three terminal nodes such that the source nodes observe
network coding, the signal on an edge — v;), is a linear independent unit entropy sourcés, X, and X3. All edges
combination of the signals on the incoming edgesoand the are unit capacity. As shown in Figure 1, the incoming edges
source signal at; (if v; € S). In this paper we assume that thénto terminalts contain the valueg; (X1, X») andf] (X2, X3)
source (terminal) nodes do not have any incoming (outgoinghere f; and f{ are some functions of the sources.
edges from (to) other nodes. If this is not the case one cansuppose thak’s = 0. This implies that; should be able to
always introduce an artificial source (terminal) connedt®d recoverX; + X» (that has entropy 1) from jusf; (X1, X5).
the original source (terminal) node by an edge of sufficientMoreover note that each edge is unit capacity. Therefore the
large capacity that has no incoming (outgoing) edges. \M shéntropy of f, (X, X5) also has to be 1. i.e. there exists a one-
only be concerned with networks that are directed acyclit agy-one mapping between the set of values tligitX, X»)
can therefore be treated as delay-free networks [3]. Y.et takes and the values of; + X,. In a similar manner we
(such thattail(e;) = vy andhead(e;) = v;) denote the signal can conclude that there exists a one-to-one mapping between
on thei’" edge inE and letX; denote thej"™ source. Then, the set of values thaf/(Xs, X3) takes and the values of

we have X5 + X3. At terminal t3, there needs to exist some function
Y., = Z fiaYe, if v € V\S, and h(fl(Xl,_XQ),f{(_XQ,Xg))_ = ZleXi._ By the previous_
(eslhead(eg)=ur) observations, this also implies th3e existence of a function
. (X1 +Xs, Xo+ X3) that equalsy;_; X;. We now demon-
Ye, = Z a;i X; if v, €8, strate that this is a contradiction. L&, = a, X2 =0, X3 =¢
{41X; observed avy, } andX| = a—b, X} = b, X5 = c¢—0b. In both cases the inputs to

where the coefficienta;; and f;; are from the operational the fUﬂCthﬂh’( ) are the same. Howevér:>_| X; = a+c,
field. Note that since the graph is directed acyclic, it iwhile Y27 | X! =a—b+c, that are in general different (over
possible to expres®,, for an edgee; in terms of the any field). Therefore such a functidi(-, -) cannot exist. m
sourcesX’s. Suppose that there aresourcesXy, ..., X,.

If Yo, = > _, Be, kX then we say that the global coding !These arguments extend naturally even if we consider engamlier time.



IV. PROOF OFTHEOREM1 three. Moreover, we assume th@tsatisfies the connectivity

We start by giving an overview of our proof. Roughly€duirements specified in Theorem 1.
speaking, our proof for determining the desired networkecod We start by labeling the vertices @f. A vertexv € V
has three steps. In the first step, we turn our grapinto 1S labeled by a pair(c,, ;) specifying how many sources
a graphG = (V, E) in which each internal node € V/ (terminals) it |sconnectedp. Spemﬂcglly,cs(v) equals thg
is of total degree at most three. We refer to such grapRymber of sources; for which there exists a path connecting
as structured graphs. Our efficient reduction follows thatsi @hdv in G. Similarly, ¢;(v) equals the number of terminals
appearing in [5], and has the following properties: (&) s for which there exists a path connecumga_nd t; in G.
is acyclic. (b) For every source (terminal) ifi there is a FOr example, any source is labeled by the gair3), and any
corresponding source (terminal) @. (c) For any two edge terminal by the pai(3,1). An internal vertex» labeled(, 1)
disjoint pathsP; and P, connecting a source terminal pair'S connected to a single terminal only. This implies that any
in G, there exist two (internallyyertex disjoint paths inG ~ information leavingv will reach at most a single terminal.
connecting the corresponding source terminal pair. (d) Arghch verticess play an important role in the definitions to
feasible network coding solution if can be efficiently turned cOme. This concludes the labeling Bt _
into a feasible network coding solution @. An edgee = (u,v) for which v is labeled (-, 1) wil

It is not hard to verify that proving Theorem 1 on structureB€ réferred to as germinal edge. Namely, any information
graphs implies a proof for general grapfisas well. Indeed, fIOW|.ng oneis cqnstramed to regch at most a single terminal.
given a networkG satisfying the requirements of Theorem 1lf this terminal isz; then we will say that is a ¢;-edge.
construct the corresponding netwotk By the properties Clearly, the set of;-edges is disjoint from the set of-edges
above, G also satisfies the requirements of Theorem 1. A§and similarly for any pair of terminals). An edge which is
suming that Theorem 1 is proven for structured graghs Not a terminal edge will be referred to aseamainingedge or
we conclude the existence of a feasible network codérjn an7-edge for short. _

Finally, this network code can be converted (by property (d) WWe now prove some structural properties of the edge sets
above) into a feasible network code f6ras desired. we have defined. First of all, there exists an ordering of edge

Due to space limitations, we omit the details of the mappirl§ £ in which anyr-edge comes before any terminal edge,
betweenG and G and the proof of properties (a)-(d) (detailsand in addition there is no path from a terminal edge to an
can be found in [4]). We note that our reduction and proof afe€dge. This is obtained by an appropriate topological order
strongly based on that appearing in [5]. For notationaloeas N G- Moreover, for any terminal;, the set oft;-edges form a
from this point on in the discussion we will assume that oonnected subgraph ¢f rooted att;. To see this note that by
input graphG' is structured — which is now clear to be w.l.0.gdefinition eachy;-edgee is connected td; and all the edges

In the second step of our proof, we give edges and vertic®3 & path betweem and ¢; are t;-edges. Finally, the head
in the graphG' certain labels depending on the combinatori@f an r-edge is either of typ¢-,2) or (-,3) (as otherwise it
structure ofG. This step can be viewed as a decomposition ¥fould be a terminal edge). .
the graphG (both the vertex set and the edge set) into certain For each terminal; we now define a set of vertices referred
classsets which may be of interest beyond the context of th{@ as the leaf setl; of ¢;. This definition shall play an
work. These classes will later play a major role in our arialysimportant role in our discussions.

The decomposition of¥ is given in detail in Section IV-A. Definition 1: Leaf set of a terminal.Let P =

In the third and final step of our proof, using the labelingv1;v2;---,ve) be a path froms; to ¢; (here s; = v,
above we evoke on a lengthy case analysis for the proof&td ¢; = v¢). Consider the intersection aP with the set
Theorem 1. Namely, based on the terminology set in Sef ;-edges, This intersection consists of a subpdth
tion IV-A, we identify several scenarios, and prove Theotem(vr; -, ve = t;) of P for which the label ofup is either
assuming that they hold. As the different scenarios we densi (> 2) r (-,3), and the label of any other vertex i is (-, 1).
will cover all possible ones, we conclude our proof. A deil Ve refer tovp as the leaf of; corresponding to pat#¥, and
case analysis is given in Sections IV-B and V. the set of all leaves of; as the leaf seL;.

Al in all, as will be evident from the sections yet to come, We remark that (a) the leaf set ¢f is the set of nodes
our proof is constructive, and each of its steps can be dodein-degree 0 in the subgraph consisting igfedges and
efficiently. This will result in the efficient constructiorf the (b) @ source node can be a leaf node for a given terminal.
desired network code fa. We now proceed to formalize theFurthermore, we have the following claim about leaf nodes.

steps of our proof. Claim 1: A leaf node which is not a source node has in-
N degree = 1 and out-degree = 2.
A. The decomposition Proof: Assume otherwise, i.e. that the leafhas out-

In this section we present our structural decomposition deégree = 1 and suppose that the outgoing edge is denoted
G = (V,E). We assume throughout thét is directed and (¢,v). Note that this implies that,(v) = ¢,(¢) > 2, since/
acyclic, that it has three sources, sz, s3, three terminals has only one outgoing edge. This is a contradiction sifice
t1,to,t3 and that any internal vertex ii (namely, any vertex is a leaf node and has to be connected to at least one node
which is neither a source or a sink) has total degree at masttype (-, 1). Therefore out-degreg(= 2 and since it is an



internal node, it has in-degree = 1. u 1) U path(s; —v),
B. Case analysis 2) U path(v —t;), and

We now present a classification of networks based on thed) Uiipath(s; —t3).
node labeling procedure presented above. For each clas§Ngte that as argued previously, a subset of edges of
networks we shall argue that each terminal can compute tHg., path(s;—v) can be found so that they form a tree directed
sum of the source$X; + X, + X3). Our proof shall be intov. For the purposes of this proof, we will assume that this
constructive, i.e. it can be interpreted as an algorithm fées already been done i.e. the gragh, path(s;—v) is a tree
finding the network code that allows each terminal to recovéirected intov.

(X1 + X2 + X3). The basic idea of the proof is to show that the paths from

1) Case 0:There exists a node of tyf8, 3) in G. Suppose the sources to termina} i.e. U3_, path(s; — t3) are such that
nodew is of type(3, 3). This implies that there exigtuth(s; — their overlap with the other paths is very limited. Thus, the
v), fori =1,...,3 andpath(v —t;), for j =1,...,3. Here, entire graph can be decomposed into two parts, one over which
and in what follows, we denote byath(u — v) a path from the sum is transmitted to; and¢; and another over which
u to v. Consider the subgraph induced by these paths aftieé sum is transmitted t6;. Towards this end, we have the
color each edge ow?_;path(s; — v) red and each edge onfollowing two claims.

U?_, path(v — t;) blue. We claim that a&/ is acyclic, at the ~ Claim 2: The pathpath(s, —t3) cannot have an intersec-
end of this procedure each edge gets only one color. To g with eitherpath(ss — v) or path(ss — v).

this suppose that a red edge is also colored blue. This implie  Proof: Suppose that such an intersection occurred at a
that it lies on a path from a source toand a path fromy nodev’. Then, it is easy to see that is connected to at least
to a terminal, i.e. its existence implies a directed cycl¢him two sources and to all three terminals and therefore is a node
graph. Now, we can find an inverted tree that is a subset of thtype (2, 3), which is a contradiction. [ |

red edges directed into and similarly a tree rooted at with In an analogous manner we can see thaip(ah(sz — t3)
t1,t andts as leaves using the blue edges. Finally, we c@annot have an intersection with eithputh(s; — v) or
compute(X; + X, + X3) atv over the red tree and multicastpath(ss—v), and (b)path(s3—t3) cannot have an intersection

it to ¢1,%, andts over the blue subgraph. More specificallywith eitherpath (s, — v) or path(sz —v).

one may use an encoding scheme in which internal nodes oflaim 3: The paths,path(s; — t3),path(sz — t3) and

the red tree receiving; andY, send on their outgoing edgepath(ss; —t3) cannot have an intersection with eitherth (v —

the sumY; + Ys. t1) or path(v — ts).

2) Case 1:There exists a node of typ@,3) in G. Note Proof: To see this we note that if such an intersection
that it is sufficient to consider the case when there does r@ppened, then would also be connected tg which would
exist a node of typé3,3) in G. We shall show that this caseimply thatv is a (3, 3) node. This is a contradiction. ®
is equivalent to a two sources, three terminals problem. Letw; be the node closest tothat belongs to bothath(s; —

Without loss of generality we suppose that there existsva andpath(s; —t3) (notice thaty; may equals; but it cannot
(2,3) nodew that is connected ta; and s3. We color the equalv). Consider the following coding solution o&’. On
edges ompath(sy —v) andpath(ss —v) blue. Next, consider the pathspath(s; — v;) sendX;. On the path®ath(v, — v)
the set of paths)?_; path(s; —t;). We claim that these pathssend information that will allow to obtain X; + X, 4+ X3.
do not have any intersection with the blue subgraph. This This can be easily done, as these (latter) paths form a tree
because the existence of such an intersection would imply tinto v. Namely, one may use an encoding scheme in which
there exists a path betweepandv which in turn implies that internal nodes receiving; andY> send on their outgoing edge
v would be a(3, 3) node. We can now computé&l>+ X3) atv  the sumY; + Y5. By the claims above (and the fact th@t
by finding a tree consisting of blue edges that are directd iris acyclic) it holds that the information flowing on edge
v. Suppose that the blue edges are removed ftoto obtain the pathath(v; —t3) has not been specified by the encoding
a graphG’. SinceG is directed acyclic, we have that theredefined above. Thus, one may send information on the paths
still exists a path fromvy to each terminal after the removal.path(v; —t3) that will allow ¢3 to obtainX; + X, + X3. Here
Now, note that (a)&’ is a graph such that there exists at leaste assume the path&th(v; —t3) form a tree intots, if this
one path froms; to each terminal and at least one path fram is not the case we may find a subset of edges in these paths
to each terminal, and (k) can be considered as a source thatith this property. Once more, by the claims above (and the
contains(X» + X3). Now, G’ satisfies the condition given in fact thatG’ is acyclic) it holds that the information flowing
[8] (which addresses the two sources version of the problemn edges: in the pathath(v —t1) andpath(v —t2) has not
at hand), therefore we are done. been specified (by the encodings above). On these edges we

3) Case 2: There exists a node of typ€,2) in G. As may transmit the sunX; + X> + X3 present ab.
before it suffices to consider the case when there do not exisé) Case 3:There do not exis{3, 3), (2,3) and(3, 2) nodes
any (3,3) or (2,3) nodes in the graph. Suppose that theri@ G. Note that thus far we have not utilized the fact that
exists a(3,2) nodev and without loss of generality assumehere exist two edge-disjoint paths from each source to each
that it is connected to; andt,. We consider the subgraghi terminal inG. In previous cases, the problem structure that has
induced by the union of the following sets of paths emerged due to the node labeling, allowed us to communicate



(X1 + X2 + X3) by using just one path between eagh-¢; need certain connectivity requirements betwegnand ¢,.

pair. However, for the case at hand we will indeed need to uskdification 2 is designed to be used in the case when we

the fact that there exist two paths between egeht; pair. As  want to satisfy an unsatisfied terminal, saywhile preserving

we will see, this significantly complicates the analysisisThthe satisfiability of bothy, andts. Hence, if after our initial

case is the main technical contribution of our work. Howevegreedy encoding all three terminals are unsatisfied we may

due to space limitations we are only able to give an outline apply Modification 1 to satisfy; andt, and then Modification

our proof. The detailed proof can be found in the full versiof to satisfyts. If only two terminals are unsatisfied we may

of the paper [4]. use either Modification 1 alone or use Modification 2 twice

depending upon the connectivity of the unsatisfied terrsinal

Finally, if only a single terminal is unsatisfied we may use
The basic idea of the proof is as follows. We first labaliodification 2 alone.

each edge in the graph astpedge or anc-edge. Next we  Roughly speaking, Modification 1 and 2 follow a subtle

perform agreedy encodingector assignment at everyedge, and elaborate case analysis in which, based on the case at

i.e. the outgoing edge contain the sum of “largest suppbét t hand, certain local changes in the initial greedy encodieg a

one can possibly obtain from the input edges. For exampfssrformed. These changes and their effect on the remaining

in our greedy encoding, if the input edges contain and network are then analysed.

X5, then the outgoing edge will carr(; + X5, and if they VI. CONCLUSION

carry X; and X; + X», the outgoing edge will still carry

X, + X,. We then examine the state of the leaves of eachln this work we have addressed the network arithmetic

te;minaIQ:[o see whether each terminal can recoE%’r x, Problemin the scenario in which the network has three ssurce
L1 A4 . . .

using the information available on its leaves. If this is thgnd three terminals. We have shown that the charactenatio

case then we are done, otherwise, we perform a procedure %t?ined in [8] no longer holds for the. case in which there are
consists of a sequence of careful modifications to the ctrrdfior€ than two sources and two terminals. For 38£3¢ case

encoding vector assignments on the edges so each termi IShOW_ that the network a_mthme_nc_ problem is efficiently
becomes satisfied. i.e.. it can recoEf | X, from its leaves. solvable if each source terminal pair is connected by at leas
We first characterize the information available at the Ieavéwg edgeldlsmm';_paths. . Primarilv. is the 2
of satisfied terminals at the end of our greedy encoding. evera’ questions remain open. Frimanly, 15 he -
Claim 4: A terminal can recove[3 X, under the fol- connectivity condition (betwees; /t; pairs) necessary or can
: o i . e . el
lowing conditions. i) At least one of the leaves of the terahin (c);hjciorg?;ﬂit?]g?vlvg?l? gﬁ(t:rtmteyti::eqfc;rbel;nrﬁ?ésr char?)t casg
is of type (1,2) or (1, 3). ii) There exist three leaves of type pacity . pre the o
(2,2) such that one is connected 4o and s, one tos, and Secondly, as our proof involves a tedious case analysistitdvo
s ’and one tos: ands 5 2 be very interesting to see a simpler more accessible praoof fo
3 1 3- .. .
We are left to consider the case in which the conditio tge 2-connectivity case. Finally, the case of more souroes a

of Claim 4 do not hold. Namely, the case in which a givenermlnals is completely left open in this work.
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