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Abstract—We consider the network communication scenario
in which a number of sources si each holding independent
information Xi wish to communicate the sum

∑
Xi to a set

of terminals tj . In this work we consider directed acyclic graphs
with unit capacity edges and independent sources of unit-entropy.
The case in which there are only two sources or only two
terminals was considered by the work of Ramamoorthy [ISIT
2008] where it was shown that communication is possible if and
only if each source terminal pair si/tj is connected by at least
a single path.

In this work we study the communication problem in general,
and show that even for the case of three sources and three
terminals, a single path connecting source/terminal pairsdoes
not suffice to communicate

∑
Xi. We then present an efficient

encoding scheme which enables the communication of
∑

Xi

for the three sources, three terminals case, given that each
source terminal pair is connected by two edge disjoint paths.
Our encoding scheme includes a structural decomposition ofthe
network at hand which may be found useful for other network
coding problems as well.

I. I NTRODUCTION

Network coding is a new paradigm in networking where
nodes in a network have the ability to process information
before forwarding it. This is unlike routing where nodes
in a network primarily operate in a replicate and forward
manner. The problem of multicast has been studied intensively
under the paradigm of network coding. The seminal work of
Ahlswede et al. [1] showed that under network coding the
multicast capacity is the minimum of the maximum flows from
the source to each individual terminal node. The work of Li
et al. [6] showed that linear network codes were sufficient
to achieve the multicast capacity. The algebraic approach to
network coding proposed by Koetter and Médard [3] provided
simpler proofs of these results.

In recent years there has also been a lot of interest in the
development and usage of distributed source coding schemes
due to their applications in emerging areas such as sensor
networks. Classical distributed source coding results such as
the famous Slepian-Wolf theorem [10] usually assume a direct
link between the sources and the terminals. However in appli-
cations such as sensor networks, typically the sources would
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communicate with the terminal over a network. Thus, con-
sidering the distributed compression jointly with the network
information transfer is important. Network coding for corre-
lated sources was first examined by Ho et al. [2]. The work
of Ramamoorthy et al. [9] showed that in general separating
distributed source coding and network coding is suboptimal.A
practical approach to transmitting correlated sources over a
network was considered by Wu et al. [11]. Reference [11]
also introduced the problem ofNetwork Arithmeticthat comes
up in the design of practical systems that combine distributed
source coding and network coding.

In the network arithmetic problem, there are source nodes
each of which is observing independent sources. In addition
there is a set of terminal nodes that are only interested in
the sum of these sources over a finite field, i.e., unlike the
multicast scenario where the terminals are actually interested
in recovering all the sources, in this case the terminals are
only interested in the sum of the sources.

The rate region of the network arithmetic problem was
characterized recently by Ramamoorthy in [8] for the case
of directed acyclic networks (DAGs) with unit capacity edges
and independent, unit entropy sources in which the network
has at most two sources or two terminals. Basically, it was
shown that as long as there exists at least one path from each
source to each terminal, there exists an assignment of coding
vectors to each edge in the network such that the terminals
can recover the sum of the sources.

In this work we continue the study of the network arithmetic
problem for networks with more than two sources and two
terminals. Primarily, we show that the characterization of[8]
no longer holds when the number of sources and terminals is
greater than two. We note that a similar result was obtained
recently in an independent manner by [7]. We then turn to
obtain encoding schemes for the three sources - three terminals
case (3s/3t). We show that as long as each source is connected
by two edge disjoint paths to each terminal, the network
arithmetic problem is solvable. Namely, we present efficient
linear encoding schemes that allow communication in this
case. Our main result can be summarized as follows.

Theorem 1:Let G = (V, E) be a directed acyclic network
with unit capacity edges and three sourcess1, s2, s3 containing
independent unit-entropy sourcesX1, X2, X3 and three termi-



nals t1, t2, t3. If there exist two edge disjoint paths between
each source/terminal pair, then there exists a linear network
coding scheme in which the sumX1 + X2 + X3 is obtained
at each terminaltj . Moreover, such a network code can be
found efficiently.

This paper is organized as follows. Section II presents the
network coding model that we shall be assuming. In Section III
we present our counter example to the characterization of [8]
containing 3 sources and 3 terminals. In Sections IV and V we
present our main result: the proof of Theorem 1. In Section VI
we outline our conclusions. Due to space limitations, many of
our claims and all of Section V (our main technical section)
appear without proof. The interested reader may find a full
version of the paper in [4].

II. N ETWORK CODING MODEL

In our model, we represent the network as a directed graph
G = (V, E). The network contains a set of source nodes
S ⊂ V that are observing independent, discrete unit-entropy
sources and a set of terminalsT ⊂ V . Our network coding
model is basically the one presented in [3]. We assume that
each edge in the network has unit capacity and can transmit
one symbol from a finite field of sizeq per unit time (we are
free to chooseq large enough). If a given edge has a higher
capacity, it can be treated as multiple unit capacity edges.
A directed edgee between nodesvi and vj is represented
as (vi → vj). Thus head(e) = vj and tail(e) = vi. A
path between two nodesvi and vj is a sequence of edges
{e1, e2, . . . , ek} such thattail(e1) = vi, head(ek) = vj and
head(ei) = tail(ei+1), i = 1, . . . , k − 1.

Our counter-example in Section III considers arbitrary
network codes. However, our constructive algorithm for the
proof of Theorem 1 shall use linear network codes. In linear
network coding, the signal on an edge(vi → vj), is a linear
combination of the signals on the incoming edges onvi and the
source signal atvi (if vi ∈ S). In this paper we assume that the
source (terminal) nodes do not have any incoming (outgoing)
edges from (to) other nodes. If this is not the case one can
always introduce an artificial source (terminal) connectedto
the original source (terminal) node by an edge of sufficiently
large capacity that has no incoming (outgoing) edges. We shall
only be concerned with networks that are directed acyclic and
can therefore be treated as delay-free networks [3]. LetYei

(such thattail(ei) = vk andhead(ei) = vl) denote the signal
on theith edge inE and letXj denote thejth source. Then,
we have

Yei
=

∑

{ej |head(ej)=vk}

fj,iYej
if vk ∈ V \S, and

Yei
=

∑

{j|Xj observed atvk}

aj,iXj if vk ∈ S,

where the coefficientsaj,i and fj,i are from the operational
field. Note that since the graph is directed acyclic, it is
possible to expressYei

for an edgeei in terms of the
sourcesXj ’s. Suppose that there aren sourcesX1, . . . , Xn.
If Yei

=
∑n

k=1 βei,kXk then we say that the global coding

vector of edgeei is βei
= [βei,1 · · · βei,n]. We shall also

occasionally use the term coding vector instead of global
coding vector in this paper. We say that a nodevi (or edgeei)
is downstream of another nodevj (or edgeej) if there exists
a path fromvj (or ej) to vi (or ei).

Fig. 1. Example of a network with three sources and three terminals, such
that there exists at least one path between each source and each terminal.
However all the terminals cannot compute

∑
3

i=1
Xi.

III. E XAMPLE OF THREE SOURCES AND THREE

TERMINALS WITH INDEPENDENT UNIT-ENTROPY SOURCES

We now present our counter example to the characterization
of [8] containing 3 sources and 3 terminals. Namely, we
present a3s/3t network with at least one path connecting
each source terminal pair, in which the sum of sources cannot
(under any network code) be transmitted to all three terminals.

Consider the network in Figure 1, with three source nodes
and three terminal nodes such that the source nodes observe
independent unit entropy sourcesX1, X2 and X3. All edges
are unit capacity. As shown in Figure 1, the incoming edges
into terminalt3 contain the valuesf1(X1, X2) andf ′

1(X2, X3)
wheref1 andf ′

1 are some functions of the sources.
Suppose thatX3 = 0. This implies thatt1 should be able to

recoverX1 + X2 (that has entropy 1) from justf1(X1, X2).
Moreover note that each edge is unit capacity. Therefore the
entropy off1(X1, X2) also has to be 1. i.e. there exists a one-
to-one mapping between the set of values thatf1(X1, X2)
takes and the values ofX1 + X2. In a similar manner we
can conclude that there exists a one-to-one mapping between
the set of values thatf ′

1(X2, X3) takes and the values of
X2 + X3. At terminal t3, there needs to exist some function
h(f1(X1, X2), f

′
1(X2, X3)) =

∑3
i=1 Xi. By the previous

observations, this also implies the existence of a function
h′(X1 +X2, X2 +X3) that equals

∑3
i=1 Xi. We now demon-

strate that this is a contradiction. LetX1 = a, X2 = 0, X3 = c
andX ′

1 = a−b, X ′
2 = b, X ′

3 = c−b. In both cases the inputs to
the functionh′(·, ·) are the same. However

∑3
i=1 Xi = a + c,

while
∑3

i=1 X ′
i = a− b+ c, that are in general different (over

any field). Therefore such a functionh′(·, ·) cannot exist1.

1These arguments extend naturally even if we consider encoding over time.



IV. PROOF OFTHEOREM 1

We start by giving an overview of our proof. Roughly
speaking, our proof for determining the desired network code
has three steps. In the first step, we turn our graphG into
a graphĜ = (V̂ , Ê) in which each internal nodev ∈ V̂
is of total degree at most three. We refer to such graphs
as structured graphs. Our efficient reduction follows that
appearing in [5], and has the following properties: (a)Ĝ
is acyclic. (b) For every source (terminal) inG there is a
corresponding source (terminal) in̂G. (c) For any two edge
disjoint pathsP1 and P2 connecting a source terminal pair
in G, there exist two (internally)vertex disjoint paths inĜ
connecting the corresponding source terminal pair. (d) Any
feasible network coding solution in̂G can be efficiently turned
into a feasible network coding solution inG.

It is not hard to verify that proving Theorem 1 on structured
graphs implies a proof for general graphsG as well. Indeed,
given a networkG satisfying the requirements of Theorem 1,
construct the corresponding network̂G. By the properties
above,Ĝ also satisfies the requirements of Theorem 1. As-
suming that Theorem 1 is proven for structured graphsĜ,
we conclude the existence of a feasible network code inĜ.
Finally, this network code can be converted (by property (d)
above) into a feasible network code forG as desired.

Due to space limitations, we omit the details of the mapping
betweenG and Ĝ and the proof of properties (a)-(d) (details
can be found in [4]). We note that our reduction and proof are
strongly based on that appearing in [5]. For notational reasons,
from this point on in the discussion we will assume that our
input graphG is structured — which is now clear to be w.l.o.g.

In the second step of our proof, we give edges and vertices
in the graphG certain labels depending on the combinatorial
structure ofG. This step can be viewed as a decomposition of
the graphG (both the vertex set and the edge set) into certain
classsets which may be of interest beyond the context of this
work. These classes will later play a major role in our analysis.
The decomposition ofG is given in detail in Section IV-A.

In the third and final step of our proof, using the labeling
above we evoke on a lengthy case analysis for the proof of
Theorem 1. Namely, based on the terminology set in Sec-
tion IV-A, we identify several scenarios, and prove Theorem1
assuming that they hold. As the different scenarios we consider
will cover all possible ones, we conclude our proof. A detailed
case analysis is given in Sections IV-B and V.

All in all, as will be evident from the sections yet to come,
our proof is constructive, and each of its steps can be done
efficiently. This will result in the efficient construction of the
desired network code forG. We now proceed to formalize the
steps of our proof.

A. The decomposition

In this section we present our structural decomposition of
G = (V, E). We assume throughout thatG is directed and
acyclic, that it has three sourcess1, s2, s3, three terminals
t1, t2, t3 and that any internal vertex inV (namely, any vertex
which is neither a source or a sink) has total degree at most

three. Moreover, we assume thatG satisfies the connectivity
requirements specified in Theorem 1.

We start by labeling the vertices ofG. A vertex v ∈ V
is labeled by a pair(cs, ct) specifying how many sources
(terminals) it isconnectedto. Specifically,cs(v) equals the
number of sourcessi for which there exists a path connecting
si andv in G. Similarly, ct(v) equals the number of terminals
tj for which there exists a path connectingv and tj in G.
For example, any source is labeled by the pair(1, 3), and any
terminal by the pair(3, 1). An internal vertexv labeled(·, 1)
is connected to a single terminal only. This implies that any
information leavingv will reach at most a single terminal.
Such verticesv play an important role in the definitions to
come. This concludes the labeling ofV .

An edge e = (u, v) for which v is labeled (·, 1) will
be referred to as aterminal edge. Namely, any information
flowing one is constrained to reach at most a single terminal.
If this terminal is tj then we will say thate is a tj-edge.
Clearly, the set oft1-edges is disjoint from the set oft2-edges
(and similarly for any pair of terminals). An edge which is
not a terminal edge will be referred to as aremainingedge or
an r-edge for short.

We now prove some structural properties of the edge sets
we have defined. First of all, there exists an ordering of edges
in E in which anyr-edge comes before any terminal edge,
and in addition there is no path from a terminal edge to an
r-edge. This is obtained by an appropriate topological order
in G. Moreover, for any terminaltj , the set oftj-edges form a
connected subgraph ofG rooted attj . To see this note that by
definition eachtj-edgee is connected totj and all the edges
on a path betweene and tj are tj-edges. Finally, the head
of an r-edge is either of type(·, 2) or (·, 3) (as otherwise it
would be a terminal edge).

For each terminaltj we now define a set of vertices referred
to as the leaf setLj of tj . This definition shall play an
important role in our discussions.

Definition 1: Leaf set of a terminal. Let P =
(v1, v2, . . . , vℓ) be a path fromsi to tj (here si = v1

and tj = vℓ). Consider the intersection ofP with the set
of tj-edges, This intersection consists of a subpathP ′,
(vP , . . . , vℓ = tj) of P for which the label ofvP is either
(·, 2) or (·, 3), and the label of any other vertex inP ′ is (·, 1).
We refer tovP as the leaf oftj corresponding to pathP , and
the set of all leaves oftj as the leaf setLj .

We remark that (a) the leaf set oftj is the set of nodes
of in-degree 0 in the subgraph consisting oftj-edges and
(b) a source node can be a leaf node for a given terminal.
Furthermore, we have the following claim about leaf nodes.

Claim 1: A leaf node which is not a source node has in-
degree = 1 and out-degree = 2.

Proof: Assume otherwise, i.e. that the leafℓ has out-
degree = 1 and suppose that the outgoing edge is denoted
(ℓ, v). Note that this implies thatct(v) = ct(ℓ) ≥ 2, sinceℓ
has only one outgoing edge. This is a contradiction sinceℓ
is a leaf node and has to be connected to at least one node
of type (·, 1). Therefore out-degree(ℓ) = 2 and since it is an



internal node, it has in-degree = 1.
B. Case analysis

We now present a classification of networks based on the
node labeling procedure presented above. For each class of
networks we shall argue that each terminal can compute the
sum of the sources(X1 + X2 + X3). Our proof shall be
constructive, i.e. it can be interpreted as an algorithm for
finding the network code that allows each terminal to recover
(X1 + X2 + X3).

1) Case 0:There exists a node of type(3, 3) in G. Suppose
nodev is of type(3, 3). This implies that there existpath(si−
v), for i = 1, . . . , 3 andpath(v − tj), for j = 1, . . . , 3. Here,
and in what follows, we denote bypath(u − v) a path from
u to v. Consider the subgraph induced by these paths and
color each edge on∪3

i=1path(si − v) red and each edge on
∪3

j=1path(v − tj) blue. We claim that asG is acyclic, at the
end of this procedure each edge gets only one color. To see
this suppose that a red edge is also colored blue. This implies
that it lies on a path from a source tov and a path fromv
to a terminal, i.e. its existence implies a directed cycle inthe
graph. Now, we can find an inverted tree that is a subset of the
red edges directed intov and similarly a tree rooted atv with
t1, t2 and t3 as leaves using the blue edges. Finally, we can
compute(X1 +X2 +X3) at v over the red tree and multicast
it to t1, t2 and t3 over the blue subgraph. More specifically,
one may use an encoding scheme in which internal nodes of
the red tree receivingY1 andY2 send on their outgoing edge
the sumY1 + Y2.

2) Case 1: There exists a node of type(2, 3) in G. Note
that it is sufficient to consider the case when there does not
exist a node of type(3, 3) in G. We shall show that this case
is equivalent to a two sources, three terminals problem.

Without loss of generality we suppose that there exists a
(2, 3) node v that is connected tos2 and s3. We color the
edges onpath(s2 − v) andpath(s3 − v) blue. Next, consider
the set of paths∪3

i=1path(s1 − ti). We claim that these paths
do not have any intersection with the blue subgraph. This is
because the existence of such an intersection would imply that
there exists a path betweens1 andv which in turn implies that
v would be a(3, 3) node. We can now compute(X2+X3) atv
by finding a tree consisting of blue edges that are directed into
v. Suppose that the blue edges are removed fromG to obtain
a graphG′. SinceG is directed acyclic, we have that there
still exists a path fromv to each terminal after the removal.
Now, note that (a)G′ is a graph such that there exists at least
one path froms1 to each terminal and at least one path fromv
to each terminal, and (b)v can be considered as a source that
contains(X2 + X3). Now, G′ satisfies the condition given in
[8] (which addresses the two sources version of the problem
at hand), therefore we are done.

3) Case 2: There exists a node of type(3, 2) in G. As
before it suffices to consider the case when there do not exist
any (3, 3) or (2, 3) nodes in the graph. Suppose that there
exists a(3, 2) nodev and without loss of generality assume
that it is connected tot1 andt2. We consider the subgraphG′

induced by the union of the following sets of paths

1) ∪3
i=1path(si − v),

2) ∪2
i=1path(v − ti), and

3) ∪3
i=1path(si − t3).

Note that as argued previously, a subset of edges of
∪3

i=1path(si−v) can be found so that they form a tree directed
into v. For the purposes of this proof, we will assume that this
has already been done i.e. the graph∪3

i=1path(si−v) is a tree
directed intov.

The basic idea of the proof is to show that the paths from
the sources to terminalt3 i.e.∪3

i=1path(si − t3) are such that
their overlap with the other paths is very limited. Thus, the
entire graph can be decomposed into two parts, one over which
the sum is transmitted tot1 and t2 and another over which
the sum is transmitted tot3. Towards this end, we have the
following two claims.

Claim 2: The path,path(s1 − t3) cannot have an intersec-
tion with eitherpath(s2 − v) or path(s3 − v).

Proof: Suppose that such an intersection occurred at a
nodev′. Then, it is easy to see thatv′ is connected to at least
two sources and to all three terminals and therefore is a node
of type (2, 3), which is a contradiction.

In an analogous manner we can see that (a)path(s2 − t3)
cannot have an intersection with eitherpath(s1 − v) or
path(s3−v), and (b)path(s3−t3) cannot have an intersection
with eitherpath(s1 − v) or path(s2 − v).

Claim 3: The paths,path(s1 − t3), path(s2 − t3) and
path(s3−t3) cannot have an intersection with eitherpath(v−
t1) or path(v − t2).

Proof: To see this we note that if such an intersection
happened, thenv would also be connected tot3 which would
imply that v is a (3, 3) node. This is a contradiction.

Let vi be the node closest tov that belongs to bothpath(si−
v) andpath(si− t3) (notice thatvi may equalsi but it cannot
equalv). Consider the following coding solution onG′. On
the pathspath(si − vi) sendXi. On the pathspath(vi − v)
send information that will allowv to obtainX1 + X2 + X3.
This can be easily done, as these (latter) paths form a tree
into v. Namely, one may use an encoding scheme in which
internal nodes receivingY1 andY2 send on their outgoing edge
the sumY1 + Y2. By the claims above (and the fact thatG′

is acyclic) it holds that the information flowing on edgese in
the pathspath(vi− t3) has not been specified by the encoding
defined above. Thus, one may send information on the paths
path(vi− t3) that will allow t3 to obtainX1 +X2 +X3. Here
we assume the pathspath(vi − t3) form a tree intot3, if this
is not the case we may find a subset of edges in these paths
with this property. Once more, by the claims above (and the
fact thatG′ is acyclic) it holds that the information flowing
on edgese in the pathspath(v− t1) andpath(v− t2) has not
been specified (by the encodings above). On these edges we
may transmit the sumX1 + X2 + X3 present atv.

4) Case 3:There do not exist(3, 3), (2, 3) and(3, 2) nodes
in G. Note that thus far we have not utilized the fact that
there exist two edge-disjoint paths from each source to each
terminal inG. In previous cases, the problem structure that has
emerged due to the node labeling, allowed us to communicate



(X1 + X2 + X3) by using just one path between eachsi − tj
pair. However, for the case at hand we will indeed need to use
the fact that there exist two paths between eachsi−tj pair. As
we will see, this significantly complicates the analysis. This
case is the main technical contribution of our work. However,
due to space limitations we are only able to give an outline of
our proof. The detailed proof can be found in the full version
of the paper [4].

V. A NALYSIS OF CASE 3: OUTLINE

The basic idea of the proof is as follows. We first label
each edge in the graph as atj-edge or anr-edge. Next we
perform agreedy encodingvector assignment at everyr-edge,
i.e. the outgoing edge contain the sum of “largest support” that
one can possibly obtain from the input edges. For example,
in our greedy encoding, if the input edges containX1 and
X2, then the outgoing edge will carryX1 + X2, and if they
carry X1 and X1 + X2, the outgoing edge will still carry
X1 + X2. We then examine the state of the leaves of each
terminal to see whether each terminal can recover

∑3
i=1 Xi

using the information available on its leaves. If this is the
case then we are done, otherwise, we perform a procedure that
consists of a sequence of careful modifications to the current
encoding vector assignments on the edges so each terminal
becomes satisfied, i.e., it can recover

∑3
i=1 Xi from its leaves.

We first characterize the information available at the leaves
of satisfied terminals at the end of our greedy encoding.

Claim 4: A terminal can recover
∑3

i=1 Xi under the fol-
lowing conditions. i) At least one of the leaves of the terminal
is of type (1, 2) or (1, 3). ii) There exist three leaves of type
(2, 2) such that one is connected tos1 ands2, one tos2 and
s3 and one tos1 ands3.

We are left to consider the case in which the conditions
of Claim 4 do not hold. Namely, the case in which a given
terminal has only leaves of type(2, 2), and does not have
leaves containing all three combinationsX1+X2, X2+X3 and
X3+X1. This may only hold if a given terminal has four(2, 2)
leaves such that (w.l.o.g.) two of them containX1 + X2 and
two containX2 +X3. In this case it is clear (see discussion in
Section III) that there is no way that

∑3
i=1 Xi can be computed

using the information available at the leaves. We shall now
outline a sequence of modifications that will eventually result
in the terminal being able to compute

∑3
i=1 Xi.

We say that a terminal is unsatisfied if it does not satisfy
the conditions of Claim 4. It may be the case that a single
terminal, two terminals or all three terminal are unsatisfied
after the initial greedy encoding. We suggest twomodification
procedures that modify the initial greedy encoding in orderto
satisfy the unsatisfied terminals. The two modification proce-
dures are designed to fit an involved case analysis.Due to space
limitations, we will not be able to present the modification
procedures. As before details can be found in [4].

In a nutshell, Modification 1 is designed to be used when we
want to satisfy an unsatisfied terminal, sayt1, togetherwith
an additional unsatisfied terminal, sayt2, without changing
information reachingt3. For Modification 1 to succeed we

need certain connectivity requirements betweent1 and t2.
Modification 2 is designed to be used in the case when we
want to satisfy an unsatisfied terminal, sayt1, while preserving
the satisfiability of botht2 and t3. Hence, if after our initial
greedy encoding all three terminals are unsatisfied we may
apply Modification 1 to satisfyt1 andt2 and then Modification
2 to satisfyt3. If only two terminals are unsatisfied we may
use either Modification 1 alone or use Modification 2 twice
depending upon the connectivity of the unsatisfied terminals.
Finally, if only a single terminal is unsatisfied we may use
Modification 2 alone.

Roughly speaking, Modification 1 and 2 follow a subtle
and elaborate case analysis in which, based on the case at
hand, certain local changes in the initial greedy encoding are
performed. These changes and their effect on the remaining
network are then analysed.

VI. CONCLUSION

In this work we have addressed the network arithmetic
problem in the scenario in which the network has three sources
and three terminals. We have shown that the characterization
obtained in [8] no longer holds for the case in which there are
more than two sources and two terminals. For the3s/3t case
we show that the network arithmetic problem is efficiently
solvable if each source terminal pair is connected by at least
two edge disjoint paths.

Several questions remain open. Primarily, is the 2-
connectivity condition (betweensi/tj pairs) necessary or can
other combinatorial connectivity requirements characterize the
capacity of the network arithmetic problem for the3s/3t case.
Secondly, as our proof involves a tedious case analysis it would
be very interesting to see a simpler more accessible proof for
the 2-connectivity case. Finally, the case of more sources and
terminals is completely left open in this work.
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