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Error Analysis for ML Sequence Detection in ISI Channels
With Gauss Markov Noise

Naveen Kumar, Aditya Ramamoorthy, and Murti V. Salapaka

Abstract—We consider error probability analysis for a class of ISI chan-
nels with data-dependent Gauss–Markov noise and propose an efficiently
computable BER upper bound that is tight in the high SNR regime.

Index Terms—Inter-symbol-interference channels, flowgraph tech-
niques, error-state diagram, performance analysis.

I. INTRODUCTION

Inter-Symbol-Interference (ISI) channels with data-dependent noise
are used for read channel modeling in many different domains. For
instance, it is well-recognized that in magnetic recording, the statistics
of percolation and nonlinear effects between transitions across adjacent
magnetic domains [1], [2] result in noise that exhibits data-dependent
time-correlation and significant ISI. More recently, it has been shown
that nanotechnology based probe storage systems can be modeled in a
similar manner [3]. Significant research work has addressed the design
of high-performance, low-complexity detectors for such models, and
has translated into gains in practical systems.
In a celebrated paper [4], Forney demonstrated a maximum likeli-

hood sequence detection (MLSD) algorithm for the case of finite ISI
channels with memoryless noise. Following this, the probability of
error was analyzed using flowgraph techniques [5]–[7]. The work of
Kavcic and Moura [8] considered finite ISI channels with data-de-
pendent finite memory noise modeled by a Gauss-Markov process,
and developed a ML sequence detection algorithm for them. However,
estimating the probability of error for this algorithm turns out to be
significantly more complicated. In [8] (Section V in [8]), certain ap-
proaches for computing estimates of the detector performance were
presented (see also [9], [10]). However, these techniques are not based
on flowgraph techniques. In particular, they require an enumeration of
all the dominant error events of the detector, i.e., error events of rele-
vant lengths. This step typically requires long simulations at the (high)
signal-to-noise ratios of interest. Following the enumeration, an esti-
mate can be obtained by first determining the probability of each error
event and then computing a union bound over the placement of the error
events at various locations in all possible transmitted blocks. The accu-
racy of this technique is contingent upon including all the relevant error
events; in particular, there is no guarantee that it is an upper bound. It
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is important to note that an analytical technique for estimating detector
performance is of great value, especially in the high SNR regime, where
gathering the error events can be quite time-consuming.
There are two properties of ISI channels with memoryless AWGN

that facilitate the application of flowgraph techniques for performance
evaluation that we now discuss. Let and be the true and esti-
mated state sequences respectively. Let denote the probability
that the detector prefers to (henceforth the pair-wise error proba-
bility (PEP)). Firstly, can be upper-bounded by

where is a function of current state and pre-
vious decoded states and actual states

. Secondly, it can be seen that the PEP is symmetric, i.e.,
. These properties allow the application of error

state diagrams for finding an asymptotically tight upper bound on the
BER for such channels [7].
In contrast, for the ISI channel with data-dependent Gauss-Markov

noise (considered in [8]), neither of these properties hold. The signal
dependent and time-correlated noise makes the PEP asymmetric. Fur-
ther the PEP does not factorize in a suitable manner as required for the
application of flowgraph techniques. This makes the estimation of BER
for such channels, quite challenging.
Main Contributions: In this correspondence, we consider a subset of

the class of channels considered in [8], that continue to exhibit data-de-
pendent noise. For these channels we useGallager bounding techniques
[11] to determine a PEP upper bound that can be expressed as a product
of functions depending on current and previous states in the (incor-
rect) decoded sequence and the (correct) transmitted sequence. Based
on this, we present an analytical technique for determining an upper
bound on the BER using an error state diagram. Simulations results
show that our proposed bound is tight in the high SNR regime.
Our work is a journal version of our conference article [12]. Specif-

ically, in this work we demonstrate that an error state diagram can be
constructed for an efficient computation of the transfer function for
error-bound [7]. In the channels under consideration, there are two
sources of memory: the inter-symbol-interference of length and the
noise memory of length (we define these formally in the later discus-
sion). In our conference article [12], we used the product state diagram
for the bound computation which involves working with a matrix of
order where . The key complexity in bound com-
putation comes from the inversion of a matrix of order

which appears in the expression of the transfer function. The
product state method is not desirable for bound computation for large
values of . In contrast, the reduced error state diagram has much
fewer states. Let each state in the error state diagram take values from
the set ; thus, there are number of states. The obser-
vation on the bound of PEP being symmetric can significantly reduce
the number of states. In the symmetric PEP case, pairs
of states, which are equivalent, can be merged into a single equivalent
state. This leads to a reduced error state diagram with
number of states. It is much easier to find the transfer function from
the reduced error state diagram. For instance, even when ,
the product-state diagram has 256 states compared to 41 states in the
error-state diagram (we refer the reader to [7] for further information
on the reduced state diagram). The present manuscript presents an error
state diagram based bounding technique, includes all the proofs and a
comprehensive set of simulation results that show the effectiveness of
the method.
The paper is organized as follows. Section II introduces the channel

model and describes the corresponding Viterbi decoding algorithm.
Section III presents an upper bound on the detector BER. Section IV
demonstrates simulation results that confirm the analytical bounds.

1053-587X/$31.00 © 2013 IEEE
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Fig. 1. Channel model with Gauss-Markov noise.

Section V summarizes the main findings of this paper and outlines
future work.

II. CHANNEL MODEL AND VITERBI DETECTOR

In the discussion below, the notation denotes the column vector
given by where and the notation

denotes a conditional pdf. The precise pdf under consideration
will be evident from the context of the discussion.

A. Channel Model

Let denote the th source bit that is equally likely to be 0 or 1.
The channel output shown in Fig. 1 with intersymbol interference (ISI)
of length is given by,

(1)

where is the noiseless channel output dependent only on the
latest transmitted bits. The noise is modeled as a signal depen-
dent Gauss-Markov noise process with memory length . Specifically,

(2)

where the vector represents coefficients of an autoregressive filter,
is a signal dependent parameter and is a zero mean unit

variance Gaussian random variable (random variables are i.i.d.).
Note that in the most general model (considered in [8]), even the au-
toregressive filter would depend on the data sequence . However, in
this work, we only work with models where is fixed. We will revisit
this point in Section III. The channel output can be rewritten as,

(3)

From the above analysis it can be concluded that (owing to space lim-
itations we refer the reader to [8]),

(4)

B. Viterbi Detector

The maximum likelihood estimate of the bit sequence denoted is
given by (see [8]),

(5)

We define a state (there will be a total of
number of states). With this definition,

. Moreover, it is Gaussian distributed

(6)

where is the mean vector and is the covariance ma-
trix. Here we assume the state is known and the initial realizations
of the observed output are also given.
With our state definition, we can reformulate the detection problem

as the following MLSD problem [8].

(7)

where is the estimated state sequence, is the upper
principal minor of and collects the first elements
of . It is assumed that the first state is known. With the metric
given above, Viterbi decoding can be applied to get the ML state se-
quence [13] and the corresponding bit sequence.
The matrix is of dimension . For higher

values of , the complexity of detector increases as the decodingmetric
involves the inversion of the matrix . However, the matrix
inversion lemma can be used here to obtain [8]

(8)

where
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As shown in [8] using (8), we can simplify the detector as follows.

(9)

As noted in [8] the above expression does not involve any matrix inver-
sion; this reduces the complexity of the detector. Another observation
is that the Viterbi decoding metric involves passing through a
filter which is the inverse of the autoregressive filter of noise
process shown in Fig. 1. Thus, the metric first uncorrelates the noise
with an FIR filter and then applies the Euclidean metric to the output
of the filter.

III. UPPER BOUND ON BER

It is evident from the discussion in Section II that for our channel
model, the PEP is asymmetric. In particular, it does not factorize as a
product of appropriate functions as required by flowgraph techniques.
We now demonstrate that the Gallager upper bounding technique [11],
coupled with a suitable change of variables can allow us to address this
issue.
Denote an error event of length as such that and

are valid state sequences and
for and for other values of where
and are the estimated and correct state respectively. Using this, an
upper bound on the BER can be found as follows [5],

(10)

where is the number of erroneous bits along the sequences
and and is the set of all error events of length . The number
of erroneous bits is given by [5]

(11)

where , if and is a dummy variable.
Using this the upper bound above can be expressed as

(12)

where
if is valid state sequence, ( is the number of states).

The upper bound on the PEP can be simplified using Gallager’s tech-
nique [11] as shown below.
Let , i.e., the set

of where the detector prefers the incorrect sequence as compared
to the correct sequence. Note that using previous arguments, we also

have that

. Now,

(13)

where for .
The above integral can be simplified as shown in (14) at the bottom

of the page, where

. The Jacobian matrix for the change of
variables has determinant equal to 1, since the corresponding matrix
of partial derivatives has ones on the diagonal and is lower triangular.
Note that the change of variables decouples the original expression,
so that it can be expressed as the product of independent integrals.
Now we can simplify the PEP as follows.

(15)

(16)

(14)
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TABLE I
CHANNEL MODEL PARAMETERS

where the simplification of the integral in (15) and
are given in the Appendix.

Remark: It is important to note that the factorization of the PEP
given by (16) for our channel model is possible because the autore-
gressive filter is not dependent on the input bit sequence. Let

and

These terms appear in the argument of the exponential in (14). If is
data independent, the change of variables in (14) allows us to inter-
change the order of integral and product. In contrast if is data depen-
dent the change of variables will not work simultaneously for both
and , i.e., in general we will be unable to express (14) as a product
of appropriate terms.
Probability of bit error can now be further simplified as [5],

(17)

(Using (16))

(18)

where is number of states and
. For

computing , we can exploit the symmetry property of the
function . It should be noted that the upper

bounds on and are given by the same quantity
. This property facilitates the use of error

state diagram for computing . The construction of error state
diagram can directly provide the analytical expression for the upper
bound on BER [7].

A. Upper Bound for Data Dependent Channel Model

Strictly speaking, our approach does not apply for channels where
is data-dependent. However, in our simulations, we have observed

that our technique continues to closely track the simulation BER, in
the high SNR regime as long as the amount of variation in
is small. In such a scenario, we can make the assumption on in
(15) that

where is obtained by taking average over all

Fig. 2. BER with different SNR for the channel model with Type I parameters
and a) 8 states in decoding and b) 16 states in decoding.

Fig. 3. BER with different SNR for the channel model with Type II parameters
and a) 8 states in decoding and b) 16 states in decoding.

. While we cannot claim that this will result in an upper bound, in
practice, as shown in the simulation results in Section IV, we still get
a valid upper bound on the error rate obtained via simulation.

IV. SIMULATION RESULTS

We used BPSK signaling and a linear signal model, such that
where the value of can be varied to

change the SNR. The SNR is defined as the signal power in
divided by total noise variance. The specifications of the channel
parameters are given in Table I. The simulations were performed by
using trellis termination. It can be observed that in Figs. 2 and 3, the
analytic bound follows the simulation BER in all cases. Precise values
of the simulation BER and the proposed upper bound at certain high
SNR points are given in Table II.
We note that even though the analytical bounds are tight in high SNR

regime, the bounds do not match exactly with the simulation BER. This
can be explained by considering the term
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TABLE II
BER VALUES FOR DIFFERENT CHANNEL MODEL PARAMETERS

in (16). Our usage of the Gallager bound makes the term in (16) the
same for and . While this allows an efficient com-
putation of the bound, it will in general be loose depending upon the
difference between and . In practice, however, it can
be observed that the bound is quite tight and therefore useful.
It can be also be observed in simulation results that the KM (Kavcic

and Maura) bound proposed in [8] gives a better bound compared to
our bound. The KM bound computation involves the computation of
pairwise error probability for each error event. Thus, it takes into ac-
count the asymmetric nature of PEP and provides a better bound. But
we would like to clarify that the approach of KM is essentially a simu-
lation-based heuristic and it is much more time-consuming for the class
of channels that we consider in this work. Determining each error event
in the KM bound requires extensive simulation. Moreover, computing
the final bound requires summing over a set of error events that can be
rather large. Thus, a subset of the error event set is considered in actu-
ally computing the bound. This simplification makes it a lower bound
on the upper bound. Thus, one cannot claim that this is an upper bound.
In contrast, our bound is easy to compute and considers all error events
in the bound computation using the flowgraph techniques.
We also considered a channel with data dependent . The

parameters are given by

and . For the
upper bound computation, we used the average value of given by,

(cf. discussion in Section III-A). Once again in
Fig. 4, it can be observed that the analytic bound follows the simulation
bound. The KM bound works for the general channel model with data
dependent and takes into account the asymmetric PEP in the
bound computation. Thus, it gives a better bound than our proposed
bound.

V. CONCLUSIONS AND FUTURE WORK

We considered the problem of deriving an analytical upper bound for
ML sequence detection in ISI channels with signal dependent Gauss-
Markov noise. In these channels the pairwise error probability (PEP) is
not symmetric. Moreover, it is hard to express the PEP as a product of
appropriate terms that allow the application of flowgraph techniques.
In this work, we considered a subset of these channels, and demon-
strated an appropriate upper bound on the PEP. Using this upper bound

Fig. 4. BERwith different SNR for the channel model with 8 states in decoding
and data dependent .

along with an error state diagram based approach, we found analytical
BER upper bounds that are tight in the high SNR regime. These bounds
have been verified by our simulation results. It would be of interest to
determine corresponding analytical lower bounds on the BER and to
examine whether our techniques can be extended to address the gen-
eral channel model.

APPENDIX

The integral in the (15) can be expressed in the following form,

where

and . Using the
above equality, we can easily simplify the RHS of (15) and the term

as shown in the equation at the bottom of the
page.
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