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Maximum-Likelihood Sequence Detector for
Dynamic Mode High Density Probe Storage

Naveen Kumar, Pranav Agarwal, Aditya Ramamoorthy and Murti V. Salapaka

Abstract—There is an increasing need for high density data
storage devices driven by the increased demand of consumer
electronics. In this work, we consider a data storage system that
operates by encoding information as topographic profiles on a
polymer medium. A cantilever probe with a sharp tip (few nm
radius) is used to create and sense the presence of topographic
profiles, resulting in a density of few Tb per in.2. The prevalent
mode of using the cantilever probe is the static mode that is
harsh on the probe and the media. In this article, the high
quality factor dynamic mode operation, that is less harsh on
the media and the probe, is analyzed. The read operation is
modeled as a communication channel which incorporates system
memory due to inter-symbol interference and the cantilever
state. We demonstrate an appropriate level of abstraction of this
complex nanoscale system that obviates the need for an involved
physical model. Next, a solution to the maximum likelihood
sequence detection problem based on the Viterbi algorithm is
devised. Experimental and simulation results demonstrate that
the performance of this detector is several orders of magnitude
better than the performance of other existing schemes.

I. INTRODUCTION

Present day high density storage devices are primarily based
on magnetic, optical and solid state technologies. Advanced
signal processing and detection techniques have played an im-
portant role in the design of all data storage systems [24], [13],
[4], [14], [15], [1], [10]. Indeed techniques such as partial-
response max-likelihood [4], [21], [24] were responsible for
significantly improving magnetic disk technology.

In this work, we consider a promising high density storage
methodology which utilizes a sharp tip at the end of a micro
cantilever probe to create, remove and read indentations (see
[22]). The presence/absence of an indentation represents a
bit of information. The main advantage of this method is
the significantly higher areal densities compared to conven-
tional technologies that are possible. Recently, experimentally
achieved tip radii near 5 nm on a micro-cantilever were used
to create areal densities close to 1 Tb/in2 [22].

A particular realization of a probe based storage device
that uses an array of cantilevers, along with the static mode
operation is provided in [8]. However, there are fundamental
drawbacks of this technique. In the static mode operation,
the cantilever is in contact with media throughout the read
operation which results in large vertical and lateral forces
on the media and the tip. Moreover, significant information
content is present in the low frequency region of the cantilever

Naveen Kumar and Aditya Ramamoorthy are with Dept. of Electrical
and Computer Engg. at Iowa State University, Ames IA 50011 (email:
{nk3, adityar}@iastate.edu). Pranav Agarwal and Murti V. Salapaka are with
the Dept. of Electrical and Computer Engg. at University of Minnesota,
Minneapolis, MN 55455 (email: {agar0108, murtis}@umn.edu). This research
was supported by NSF grant ECCS-0802019.

deflection and it can be shown experimentally that the system
gain at low frequency is very small. Therefore, in order to
overcome the measurement noise at the output, the interaction
force between the tip and the medium has to be large. This
degrades the medium and the probe over time, resulting in
reduced device lifetime.

The problem of tip and media wear can be partly addressed
by using the dynamic mode operation; particularly when a
cantilever with a high quality factor is employed. In the
dynamic mode operation, the cantilever is forced sinusoidally
using a dither piezo. The oscillating cantilever gently taps
the medium and thus the lateral forces are reduced which
decreases the media wear [25]. Using cantilever probes that
have high quality factors leads to high resolution, since the
effect of a topographic change on the medium on the oscillat-
ing cantilever lasts much longer (approximately Q cantilever
oscillation cycles, where each cycle is 1/f0 seconds long and
Q and f0 is the quality factor and the resonant frequency of
the cantilever respectively). Moreover, the SNR improves as√

Q [23]. However, this also results in severe inter-symbol-
interference, unless the topographic changes are spaced far
apart. Spacing the changes far apart is undesirable from the
storage viewpoint as it implies lower areal density. Another
issue is that the cantilever exhibits complicated nonlinear dy-
namics. For example, if there is a sequence of hard hits on the
media, then the next hit results in a milder response, i.e., the
cantilever itself has inherent memory, that cannot be modeled
as ISI. Conventional dynamic mode methods described in [17],
that utilize high-Q cantilevers are not suitable for data storage
applications. This is primarily because they are unable to deal
with ISI and the nonlinear channel characteristics. The current
techniques can be considered analogous to peak detection
techniques in magnetic storage [14].

In this work we demonstrate that these issues can be ad-
dressed by modeling the dynamic mode operation as a commu-
nication system and developing high performance detectors for
it. Note that corresponding activities have been undertaken in
the past for technologies such as magnetic and optical storage
[13], e.g., in magnetic storage, PRML techniques, resulted
in tremendous improvements. In our work, the main issues
are, (a) developing a model for the cantilever dynamics that
predicts essential experimental features and remains tractable
for data storage purposes, and (b) designing high-performance
detectors for this model, that allow the usage of high quality
cantilevers, without sacrificing areal density. As discussed in
the sequel, several concepts such as Markovian modeling of
the cantilever dynamics and Viterbi detection in the presence
of noise with memory [1], play a key role in our approach.



Main Contributions: In this article, a dynamic mode read
operation is researched where the probe is oscillated and
the media information is modulated on the cantilever probe’s
oscillations. It is demonstrated that an appropriate level of
abstraction is possible that obviates the need for an involved
physical model. The read operation is modeled as a commu-
nication channel which incorporates the system memory due
to inter-symbol interference and the cantilever state that can
be identified using training data. Using the identified model, a
solution to the maximum likelihood sequence detection prob-
lem based on the Viterbi algorithm is devised. Experimental
and simulation results which corroborate the analysis of the
detector, demonstrate that the performance of this detector is
several orders of magnitude better than the performance of
other existing schemes and confirm performance gains that can
render the dynamic mode operation feasible for high density
data storage purposes.

Our work will motivate research for fabrication of pro-
totypes that are massively parallel and employ high quality
cantilevers (such as those used with the static mode [22]
and intermittent contact dynamic mode but with low-Q [5]).
In current prototypes, the cantilever detection is integrated
into the cantilever structure and the cantilevers are actuated
electrostatically. Even though the experimental setup reported
in this article uses a particular scheme for measuring the can-
tilever detection and for actuating the cantilever, the paradigm
developed for data detection is largely applicable in principle
to other modes of detection and actuation of the cantilever.
The analysis criteria primarily assume that high quality factor
cantilevers are employed and that a dynamic mode operation
is pursued.

The article is organized as follows. In Section II, back-
ground and related work of the probe based data storage
system is presented. Section III deals with the problem of de-
signing and analyzing the data storage unit as a communication
system and finding efficient detectors for the channel model.
Section IV and Section V report results from simulation and
experiment respectively. Section VI provides the main findings
of this article and future work.

II. BACKGROUND AND RELATED WORK.
Probe based high density data storage devices employ a

cantilever beam that is supported at one end and has a sharp
tip at another end as a means to determine the topography of
the media on which information is stored. The information
on the media is encoded in terms of topographic profiles.
A raised topographic profile is considered a high bit and a
lowered topographic profile is considered a low bit. There are
various means of measuring the cantilever deflection. In the
standard atomic force microscope setup, which has formed
the basis of probe based data storage, the cantilever deflection
is measured by a beam-bounce method where a laser is
incident on the back of the cantilever surface and the laser
is reflected from the cantilever surface into a split photodiode.
The photodiode collects the incident laser energy and provides
a measure of the cantilever deflection (see Figure 1(a)). The
advantage of the beam-bounce method is the high resolution
(low measurement noise) and high bandwidth (in the 2-3 MHz)

(a) (b)

(c)
Fig. 1. (a) Shows the main components of a probe based storage device.
The main probe is a cantilever with a tip at one end that interacts with the
media. The support end can be forced using a dither piezo. The deflection
of the tip-end is measured by a laser-mirror-photodiode arrangement. The
controller employs the deflection measurement to keep the probe engaged with
the media. (b) Shows a block diagram representation of the cantilever system
G being forced by white noise (η), tip-media force h and the dither forcing
g. The output of the block G, the deflection p is corrupted by measurement
noise υ that results in the measurement y. Tip media force h = φ(p). (c)
Shows the typical tip-media interaction forces of weak long range attractive
forces and strong repulsive short range forces.

range. The disadvantage is that it cannot be easily integrated
into an operation where multiple cantilevers operate in parallel.
There are attractive measurement mechanisms that integrate
the cantilever motion sensing onto the cantilever itself. These
include piezo-resistive sensing [3] and thermal sensing [7].
For the dynamic mode operation there are various schemes to
actuate the cantilever that include electrostatic [5], mechanical
by means of a dither piezo that actuates the support of the
cantilever base, magnetic [9] and piezoelectric [6]. In this
article, it is assumed that the cantilever is actuated by a
dither piezo and the sensing mechanism employed is the beam
bounce method (see Figure 1(a)).

A. Models of cantilever probe, the measurement process and
the tip-media interaction

A first mode approximation of the cantilever is given by the
spring mass damper dynamics described by

p̈ +
ω0

Q
ṗ + ω2

0p = f(t), y = p + υ, (1)

where p̈ = d2p
dt2 , p, f, y and υ denote the deflection of the

tip, the force on the cantilever, the measured deflection and
the measurement noise respectively whereas the parameters
ω0 and Q are the first modal frequency (resonant frequency)
and the quality factor of the cantilever respectively. The input-
output transfer function with input f and output p is given as
G = 1

s2+
ω0
Q s+ω2

0
. The cantilever model described above can

be identified precisely (see [18]).
The interaction force, h, between the tip and the media

depends on the deflection p of the cantilever tip. Such a
dependence is well characterized by the Lennard-Jones like
force that is typically characterized by weak long-range at-
tractive forces and strong short range repulsive forces (see
Figure 1(c)). Thus, the probe based data storage system can
be viewed as an interconnection of a linear cantilever system
G with the nonlinear tip-media interaction forces in feedback
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(see Figure 1(b) and note that p = G(h+η+g) with h = φ(p)
[19]).

B. Cantilever-Observer Model
A state space representation of the filter G can be obtained

as ẋ = Ax+Bf, y = Cx+υ where x = [p ṗ]T and f = η+g
(assuming no media forces h) and A, B and C are given by,

A =
[

0 1
−ω2

0 −ω0/Q

]
, B =

[
0
1

]
, C =

[
1 0

]

Based on the model of the cantilever, an observer to monitor
the state of the cantilever can be implemented [11] (see
Figure 2). The observer dynamics and the associated state
estimation error dynamics is given by,

Observer︷ ︸︸ ︷
˙̂x = Ax̂ + Bg + L(y − ŷ); x̂(0) = x̂0,

ŷ = Cx̂,
State Estimation Error Dynamics︷ ︸︸ ︷

˙̃x = Ax + B(g + η)−Ax̂−Bg − L(y − ŷ),
= (A− LC)x̃ + Bη − Lυ,

x̃(0) = x(0)− x̂(0),

where L is the gain of the observer, x̂ is the estimate of the
state x and g is the external known dither forcing applied to
the cantilever. The error in the estimate is given by x̃ = x− x̂,
whereas the error in the estimate of the output y is given by,
e = y − ŷ = Cx̃ + υ. The error between the observed state
and the actual state of the cantilever, when no noise terms or
media forces are present (η = υ = h = 0) is only due to
the mismatch in the initial conditions of the observer and the
cantilever-tip. Note that the cantilever tip interacts with the
media only for a small portion of an oscillation. It is shown
in [17] that such a tip-media interaction can be modeled well
as an impact force (in other words as an impulsive force) on
the cantilever that translates into an initial condition reset of
the cantilever state. The error process is white if the Kalman
gain is used for L [11]. For cantilever deflection sensors with
low enough and realizable levels of measurement noise, the
effective length of the impulse response of the system with
media force as input and the error signal e as the output can be
made as short as four periods of the cantilevers first resonant
frequency.

As described in [17], the discretized model of the cantilever
dynamics is given by

xk+1 = Fxk + G(gk + ηk) + δθ,k+1ν ,

yk = Hxk + vk, k ≥ 0 , (2)

where the matrices F , G, and H are obtained from matrices
A, B and C using the zero order hold discretization at a
desired sampling frequency and δi,j denotes the dirac delta
function. θ denotes the time instant when the impact between
the cantilever tip and the media occurs and ν signifies the
value of the impact. The impact results in an instantaneous
change or jump in the state by ν at time instant θ. When a
Kalman observer is used, the profile in the error signal due to
the media can be pre-calculated as,

ek = yk − ŷk = Γk;θ ν + nk , (3)

where {Γk;θ ν} is a known dynamic state profile with
an unknown arrival time θ defined by Γk;θ = H(F −
LKH)k−θ, for k ≥ θ. LK is the Kalman observer gain, nk is
a zero mean white noise sequence which is the measurement
residual had the impact not occurred and θ is assumed to be
equal to 0 for simplicity. The statistics of n are given by,
E{njn

T
k } = V δjk where V = HPx̃HT + R and Px̃ is

the steady state error covariance obtained from the Kalman
filter that depends on P and R which are the variances of the
thermal noise and measurement noise respectively.

Fig. 2. An observer architecture for the system in Figure 1(b)

III. CHANNEL MODEL AND DETECTORS

A. Reformulation of state space representation

It is to be noted that although we have modeled the
cantilever system as a spring-mass-damper model (second
order system with no zeros and two stable poles)(see (1)), the
experimentally identified channel transfer function that is more
accurate in practice has right half plane zeros that are attributed
to delays present in the electronics. Given this scenario, the
state space representation used in [17] leads to a discrete
channel with two inputs as seen in (3) because the structure
of B is no longer in the form of [0 1]T . However, source
information enters the channel as a single input as the tip-
medium interaction force. The problem can be reformulated
as one of a channel being driven by a single input by choosing
an appropriate state space representation. For the state space
model of the cantilever, it is known that the pair (A, B) is
controllable which implies there exists a transformation which
will convert the state space into a controllable canonical form
such that B = [0 1]T . This kind of structure of B will force
the discretized model (2) to be such that one component of
ν is equal to 0. With B chosen as above, the entire system
can be visualized as a channel that has a single source. In
this article, the single source model is used as it simplifies the
detector structure and analysis substantially.

B. Channel Model

The cantilever based data storage system can be modeled
as a communication channel as shown in Figure 3. The
components of this model are explained below in detail.
Shaping Filter (b(t)): The model takes as input the bit
sequence ā = (a0, a1 . . . aN−1) where ak, k = 1, . . . , N − 1
is equally likely to be 0 or 1. In the probe storage context, ‘0’
refers to the topographic profile being low and ‘1’ refers to
the topographic profile being high. Each bit has a duration of
T seconds. This duration can be found based on the length of
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Fig. 3. Continuous time channel model of probe based data storage system

the topographic profile specifying a single bit and the speed of
the scanner. The height of the high bit is denoted by A. The
cantilever interacts with the media by gently tapping it when it
is high. When the media is low, typically no interaction takes
place. We model the effect of the medium height using a filter
with impulse response b(t) (shown in Figure 3) that takes as
input, the input bit impulse train a(t) =

∑N−1
k=0 akδ(t− kT ).

The output of the filter is given by ă(t) =
∑N−1

k=0 akb(t−kT ).
Nonlinearity Block (φ): The cantilever oscillates at frequency
f0 which means that in each cantilever cycle of duration
Tc = 1/f0, the cantilever hits the media at most once if
the media is high during a time Tc. Due to the dynamics of
the system it may not hit the media, even if it is high. The
magnitude of impact on the media is not constant and changes
according to the state of the cantilever prior to the interaction
with the media. We note that a very accurate modeling of
the cantilever trajectory will require the solution of complex
nonlinear equations corresponding to the cantilever dynamics
and knowledge of the bit profile so that each interaction is
known. In this work we model the impact values of the tip-
media interaction by means of a probabilistic Markov model
that depends on the previous bits. This obviates the need for
a detailed model. We assume that in each high bit duration
T , the cantilever hits the media q times (i.e. T = qTc) with
varying magnitudes. Therefore, for N bits, the output of the
nonlinearity block is given by, ã(t) =

∑Nq−1
k=0 νk(ā)δ(t−kTc),

where νk denotes the magnitude of the kth impact of the can-
tilever on the medium. Here, we approximate the nonlinearity
block output as a sequence of impulsive force inputs to the
cantilever. The strength of the impulsive hit at any instant is
dependent on previous impulsive hits; precisely because the
previous interactions affect the amplitude of the oscillations
that in turn affect how hard the hit is at a particular instance.
The exact dependence is very hard to model deterministically
and therefore we chose a Markov model, as given below for
the sequence of impact magnitudes for a single bit duration,

ν̄i = Ḡ(ai, ai−1, . . . , ai−m) + b̄i (4)

where Ḡ(ai, ai−1, . . . , ai−m) is a function of the current and
the last m bits and ν̄i = [νiq νiq+1 . . . ν(i+1)q−1]T . Here
m denotes the system memory and b̄i is a zero mean i.i.d.
Gaussian vector of length q. The appropriateness of the model
will be demonstrated by our experimental results.
Channel Response (Γ(t)): The Markovian modeling of the
output of the nonlinearity block as discussed above allows us
to break the feedback loop in Figure 2 (see also [17]). The
rest of the system can then be modeled by treating it as a
linear system with impulse response Γ(t). Γ(t) is the error
between the cantilever tip deflection and the tip deflection as
estimated by the observer when the cantilever tip is subjected
to an impulsive force. It can be found in closed form for a

given set of parameters of cantilever-observer system (see (3)).
Channel Noise (n(t)): The measurement noise (from the
imprecision in measuring the cantilever position) and thermal
noise (from modeling mismatches) can be modeled by a single
zero mean white Gaussian noise process (n(t)) with power
spectral density equal to V .

The continuous time innovation output e(t) becomes, e(t) =
s(t, ν̄(ā))+n(t), where s(t, ν̄(ā)) =

∑Nq−1
k=0 νk(ā)Γ(t−kTc)

and ν̄(ā) = (ν0(ā), ν1(ā) . . . νNq−1(ā)). The sequence of
impact values ν̄i is assumed to follow a Markovian model as
explained above, Γ(t) is the channel impulse response and
n(t) is a zero mean white Gaussian noise process.

C. Sufficient Statistics for Channel model

Before providing sufficient statistics we consolidate the
notation used. The source stream is N elements long (ā
denotes the sequence of source bits), with the topographic
profile and the scan speed is chosen such that the cantilever
impacts any topographic profile q times. Thus there are Nq
possible hits with ν̄(ā) denoting the sequence of strength of
the Nq impulsive hits on the cantilever. Furthermore, the set of
strengths of impulsive force inputs, which is q elements long,
during the ith topographic profile encoding the ith source sym-
bol is denoted by ν̄i. Given the probabilistic model on ν̄ and
finite bit sequence (ā), an information lossless decomposition
of e(t) by expansion over an orthonormal finite-dimensional
basis with dimension Ñ can be achieved where Ñ orthonormal
basis functions span the signal space formed by s(t, ν̄(ā)).
The components of e(t) over Ñ orthonormal basis functions
are given by, ē = s̄(ν̄(ā)) + n̄, where ē = (e0, e1 . . . eÑ ),
s̄(ν̄(ā)) = (s0, s1 . . . sÑ ), n̄ = (n0, n1 . . . nÑ ) and
n̄ ∼ N(0, V IÑ×Ñ ) where IÑ×Ñ stands for Ñ × Ñ identity
matrix [10]. The maximum likelihood estimate of the bit
sequence can be found as ˆ̄a = arg maxā∈{0,1}N f(ē|ā) where
ˆ̄a = (â0, â1 . . . âN−1) is the estimated bit sequence and f
denotes a pdf. The term f(ē|ā) can be further simplified as,

f(ē|ā) =
∫

ν̄

f(ē|ā, ν̄)f(ν̄|ā)dν̄ =
∫

ν̄

1

(2πV )
Ñ
2

× exp
−||̄e− s̄(ν̄(ā))||2

2V
f(ν̄|ā)dν̄ =

1

(2πV )
Ñ
2

exp
−||̄e||2

2V

×
∫

ν̄

exp
−(||s̄(ν̄(ā))||2 − 2ēT s̄(ν̄(ā)))

2V
f(ν̄|ā)dν̄

where ||.||2 denotes Euclidean norm, f(ē|ā, ν̄) and
f(ν̄|ā) denote the respective conditional pdf’s and
ν̄ = (ν0, ν1 . . . νNq−1). The correlation between ē
and s̄(ν̄(ā)) can be equivalently expressed as an integral
over time because of the orthogonal decomposition procedure
,i.e., ēT s̄(ν̄(ā)) =

∫∞
−∞ e(t)s(t, ν̄(ā))dt = ν̄T z̄′, where

ν̄ = (ν0, ν1 . . . νNq−1), z̄′ = (z′0, z′1 . . . z′Nq−1) and
z′k =

∫∞
−∞ e(t)Γ(t− kTc)dt for 0 ≤ k ≤ Nq− 1 is the output

of a matched filter Γ(−t) with input e(t) sampled at t = kTc.
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Fig. 4. Discretized channel model with whitened matched filter

The term f(ē|ā) can now be written as,

f(ē|ā) =
1

(2πV )
Ñ
2

exp
−||̄e||2

2V
︸ ︷︷ ︸

h(ē)

×
∫

ν̄

exp
−||s̄(ν̄(ā))||2

2V
exp

ν̄T z̄′

V
f(ν̄|ā)dν̄

︸ ︷︷ ︸
F(z̄′|ā)

So f(ē|ā) can be factorized into h(ē) (dependent only on
ē) and F(z̄′|ā) (for a given ā dependent only on z̄′). Using
the Fisher-Neyman factorization theorem [2], we can claim
that z̄′ is a vector of sufficient statistics for the detection
process i.e. f(ē|ā)

f(z̄′|ā)
= C, where C is a constant indepen-

dent of ā. So we can reformulate the detection problem as,
ˆ̄a = arg maxā∈{0,1}N f(z̄′|ā) which means that bit detection
problem depends only on the matched filter outputs (z̄′). These
matched filter outputs for 0 ≤ k ≤ Nq − 1 can be further
simplified as, z′k =

∑Nq−1
k1=0 νk1(ā)h′k−k1

+n′k, where h′k−k1
=∫∞

−∞ Γ(t−kTc)Γ(t−k1Tc)dt and n′k =
∫∞
−∞ n(t)Γ(t−kTc)dt

such that E(n′kn′k′) =
∫∞
−∞

∫∞
−∞E(n(t)n(τ))Γ(t−kTc)Γ(τ−

k′Tc)dtdτ = V Rk−k′ , where Rk−k′ =
∫∞
−∞ Γ(t− kTc)Γ(t−

k′Tc)dt. A whitening matched filter can be determined to
whiten output noise n′k [10]. We shall denote the discretized
output of whitened matched filter shown in Figure 4 as zk,
such that zk =

∑I
k1=0 νk−k1(ā)hk1 + nk, where the filter

{hk}k=0,1,...,I denotes the effect of the whitened matched filter
and the sequence {nk} represents the Gaussian noise with
variance V .

D. Viterbi Detector Design
Note that the outputs of the whitened matched filter z̄, con-

tinue to remain sufficient statistics for the detection problem.
Therefore, we can reformulate the detection strategy as,

ˆ̄a = arg max
ā∈{0,1}N

f(z̄|ā)

= arg max
ā∈{0,1}N

ΠN−1
i=0 f(z̄i|ā, z̄i−1

0 ) (5)

where z̄ = [z0 z1 . . . zNq−1]T , z̄i is the received out-
put vector corresponding to the ith input bit, i.e., z̄i =
[ziq ziq+1 . . . z(i+1)q−1]T and z̄i−1

0 = [z̄T
0 z̄T

1 . . . z̄T
i−1]

T . In our
model, the channel is characterized by finite impulse response
of length I i.e. hi = 0 for i < 0 and i > I and we assume
that I ≤ mIq i.e. the inter-symbol-interference (ISI) length
in terms of q hits is equal to mI . Let m be the system
memory (see (4)). The length of channel response is known
which means that mI is known but the value of m cannot be
found because it depends on the experimental parameters of
the system. In the experimental results section, we describe

how we find the value of m from experimental data. The
received output vector z̄i can now be written as,

z̄i =




hI . . h0 0 . . 0
0 hI . . h0 0 . 0
. . . . . . . . . . . . . .
0 . . 0 hI . . h0







νiq−I

ν1+iq−I

...
ν(i+1)q−1


 + n̄i

= Hν̄i
i−mI

+ n̄i,

where ν̄i = [νiq νiq+1 . . . ν(i+1)q−1]T , ν̄i
i−mI

=
[ν̄T

i−mI
. . . ν̄T

i ]T and n̄i = [niq n1+iq . . . n(i+1)q−1]T .
Our next task is to simplify the factorization in (5) so that

decoding can be made tractable. We construct the dependency
graph of the concerned quantities which is shown in Figure 5.
Using the Bayes ball algorithm [20], we conclude that

f(z̄i|ν̄i
i−mI

, ā, z̄i−1
0 ) = f(z̄i|ν̄i

i−mI
), (6)

f(ν̄i−mI
|ā, z̄i−1

0 ) = f(ν̄i−mI |ai−1
0 , z̄i−1

0 ), (7)

f(ν̄i−k|ν̄i−k−1
i−mI

, ā, z̄i−1
0 ) = f(ν̄i−k|ν̄i−k−1

i−mI
, ai−mI−1

0 ,

ai−1
i−m−k, z̄i−1

0 ), ∀ 1 ≤ k ≤ mI − 1 (8)

f(ν̄i|ν̄i−1
i−mI

, ā, z̄i−1
0 ) = f(ν̄i|ai

i−m) (9)

where ai−1
0 = [a0 a1 . . . ai−1]. Although the conditional pdf

f(ν̄i−k|ν̄i−k−1
i−mI

, ā, z̄i−1
0 ) and f(ν̄i−mI

|ā, z̄i−1
0 ) depend on the

entire past, we assume that these dependencies are rapidly
decreasing with increase in past time. This is observed in
simulation and experimental data as well. For making the
detection process more tractable, we make the following
assumptions on this dependence,

f(ν̄i−mI |ai−1
0 , z̄i−1

0 ) ≈ f(ν̄i−mI |ai−1
i−m−mI

, z̄i−1
i−mI

) (10)

f(ν̄i−k|ν̄i−k−1
i−mI

, ai−mI−1
0 , ai−1

i−m−k, z̄i−1
0 )

≈ f(ν̄i−k|ν̄i−k−1
i−mI

, ai−1
i−k−m, z̄i−1

i−k), ∀ 1 ≤ k ≤ mI − 1 (11)

i.e. the dependence is restricted to only the immediate neigh-
bors in the dependency graph. Using the above assumptions
and dependency graph results, f(z̄i|ā, z̄i−1

0 ) can be further
simplified as,

f(z̄i|ā, z̄i−1
0 ) =

∫
f(z̄i|ν̄i

i−mI
, ā, z̄i−1

0 )f(ν̄i
i−mI

|ā, z̄i−1
0 )dν̄i

i−mI

=
∫

f(z̄i|ν̄i
i−mI

, ā, z̄i−1
0 )f(ν̄i−mI |ā, z̄i−1

0 )

·ΠmI−1
k=1 f(ν̄i−k|ν̄i−k−1

i−mI
, ā, z̄i−1

0 )f(ν̄i|ν̄i−1
i−mI

, ā, z̄i−1
0 )dν̄i

i−mI

=
∫

f(z̄i|ν̄i
i−mI

)f(ν̄i−mI
|ai−1

0 , z̄i−1
0 )

·ΠmI−1
k=1 f(ν̄i−k|ν̄i−k−1

i−mI
, ai−mI−1

0 , ai−1
i−m−k, z̄i−1

0 )

· f(ν̄i|ai
i−m)dν̄i

i−mI
(Using (6),(7),(8),(9))

=
∫

f(z̄i|ν̄i
i−mI

)f(ν̄i−mI
|ai−1

i−m−mI
, z̄i−1

i−mI
)

·ΠmI−1
k=1 f(ν̄i−k|ν̄i−k−1

i−mI
, ai−1

i−k−m, z̄i−1
i−k)

· f(ν̄i|ai
i−m)dν̄i

i−mI
(Using (10),(11))

= f(z̄i|ai
i−m−mI

, z̄i−1
i−mI

).
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Fig. 5. Dependency graph for the model with I = mIq and m is the system
memory of the system

By defining a state Si = ai
i−m−mI+1, this can be further

expressed as f(z̄i|Si, Si−1, z̄
i−1
i−mI

). Again using Bayes ball
algorithm, we conclude that

f(z̄i
i−mI

|ν̄i
i−2mI

, ai
i−m−mI

) = f(z̄i
i−mI

|ν̄i
i−2mI

), (12)

Π2mI−1
k=1 f(ν̄i−2mI+k|ν̄i−2mI+k−1

i−2mI
, ai

i−m−mI
)

= ΠmI−1
k=1 f(ν̄i−2mI+k|ν̄i−2mI+k−1

i−2mI
, ai

i−m−mI
)

·Π2mI−1
k=mI

f(ν̄i−2mI+k|ai−2mI+k
i−2mI−m+k), (13)

f(ν̄i|ν̄i−1
i−2mI

, ai
i−m−mI

) = f(ν̄i|ai
i−m). (14)

The pdf of z̄i
i−mI

= [z̄T
i−mI

. . . z̄T
i ]T given current state

Si and previous state Si−1 is given by,

f(z̄i
i−mI

|Si, Si−1) = f(z̄i
i−mI

|ai
i−m−mI

)

=
∫

f(z̄i
i−mI

|ν̄i
i−2mI

, ai
i−m−mI

)f(ν̄i
i−2mI

|ai
i−m−mI

)dν̄i
i−2mI

=
∫

f(z̄i
i−mI

|ν̄i
i−2mI

, ai
i−m−mI

)f(ν̄i−2mI |ai
i−m−mI

)

·Π2mI−1
k=1 f(ν̄i−2mI+k|ν̄i−2mI+k−1

i−2mI
, ai

i−m−mI
)

· f(ν̄i|ν̄i−1
i−2mI

, ai
i−m−mI

)dν̄i
i−2mI

=
∫

f(z̄i
i−mI

|ν̄i
i−2mI

)f(ν̄i−2mI |ai
i−m−mI

)ΠmI−1
k=1

· f(ν̄i−2mI+k|ν̄i−2mI+k−1
i−2mI

, ai
i−m−mI

)Π2mI−1
k=mI

f(ν̄i−2mI+k|
ai−2mI+k

i−2mI−m+k)f(ν̄i|ai
i−m)dν̄i

i−2mI
(Using (12),(13),(14))

where the last step is obtained using results
from dependency graph and all the terms in
the last step except f(ν̄i−2mI |ai

i−m−mI
) and

ΠmI−1
k=1 f(ν̄i−2mI+k|ν̄i−2mI+k−1

i−2mI
, ai

i−m−mI
) are Gaussian

distributed. This implies that the pdf of z̄i
i−mI

given
(Si, Si−1) is not exactly Gaussian distributed. If the
number of states in the detector is increased it can be
modeled as a Gaussian which means that the term like
f(ν̄i−2mI

|ai
i−m−mI

) can be made Gaussian distributed
by increasing the number of states, but this increases the
complexity. In order to keep the decoding tractable we
make the assumption that f(z̄i

i−mI
|Si, Si−1) is Gaussian i.e.

f(z̄i
i−mI

|Si, Si−1) ∼ N(Ȳ(Si, Si−1), C(Si, Si−1)), where
Ȳ(Si, Si−1) is the mean and C(Si, Si−1) is the covariance.
With our state definition, we can reformulate the detection

problem as a maximum likelihood state sequence detection
problem [1],

ˆ̄S = arg max
all S̄

f(z̄|S̄) = arg max
all S̄

ΠN−1
i=0 f(z̄i|S̄, z̄0 . . . z̄i−1)

= arg max
all S̄

ΠN−1
i=0 f(z̄i|Si, Si−1, z̄

i−1
i−mI

)

= arg max
all S̄

ΠN−1
i=0

f(z̄i
i−mI

|Si, Si−1)

f(z̄i−1
i−mI

|Si, Si−1)

= arg min
all S̄

N−1∑

i=0

log
|C(Si, Si−1)|
|c(Si, Si−1)| + (z̄i

i−mI
− Ȳ(Si, Si−1))T

· C(Si, Si−1)
−1(z̄i

i−mI
− Ȳ(Si, Si−1))− (z̄i−1

i−mI

− ȳ(Si, Si−1))T c(Si, Si−1)
−1(z̄i−1

i−mI
− ȳ(Si, Si−1))

where ˆ̄S is estimated state sequence, c(Si, Si−1) is the upper
mIq × mIq principal minor of C(Si, Si−1) and ȳ(Si, Si−1)
collects the first mIq elements of Ȳ(Si, Si−1). It is assumed
that the first state is known. With metric given above, Viterbi
decoding can be applied to get the maximum likelihood state
sequence and the corresponding bit sequence.

E. LMP, GLRT and Bayes Detector
In [17], the hit detection algorithm is proposed which

ignores the modeling of channel memory and works well only
when the hits are sufficiently apart. In [12], various detectors
for hit detection like locally most powerful (LMP), generalized
likelihood ratio test (GLRT) and Bayes detector are presented.
These detectors also ignore the system memory and perform
detection of single hits. Subsequently a majority type rule is
used for bit detection. The continuous time innovation (e(t)) is
sampled at very high sampling rate 1/Ts such that Ts << Tc.
As the channel response (Γ(t)) is finite length, the sampled
channel response is assumed to have the finite length equal to
M . The sampled channel response is given by,

Γ0 = [Γ(t)|t=0 Γ(t)|t=Ts . . . Γ(t)|t=(M−1)Ts
]T

Determining when the cantilever is “hitting” the media and
when it is not, is formulated as a binary hypothesis testing
problem with the following hypotheses,

H0 : ē = n̄, H1 : ē = Γ0ν + n̄

where the sampled innovation vector ē = [e1 e2 . . . eM ]T ,
n̄ = [n1 n2 . . . nM ]T , Γ0 is the sampled channel response,
ν signifies the value of the impact on media and V IM×M

denotes the covariance matrix of n̄ where IM×M stands for
M × M identity matrix. In case of locally most powerful
(LMP) test given in [16], the likelihood ratio is given by [12],

llmp(M) =
∂

∂ν
(log

f(ē|H1)
f(ē|H0)

)|ν=0 = ēT V −1Γ0.

where llmp denotes likelihood ratio for LMP. In our model,
there are q number of hits in one bit duration. Let lk,lmp be
the likelihood ratio corresponding to kth hit. The decision rule
for the detection of one bit in this case is defined as,

Max

(
l1,lmp(M) , l2,lmp(M) . . . lq,lmp(M)

)
≶0

1 τ1 (15)
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Fig. 6. Comparison of various detectors for simulation data. The Bayes curve
is not visible in the graph as it coincides with the LMP curve.

where τ1 is LMP threshold. The likelihood ratio in the case
of GLRT is [12],

lglrt(M) = log
f(ē|H1, ν = ν̃)

f(ē|H0)
= l2lmp,

where ν̃ is maximum likelihood (ML) estimate of ν i.e.
ν̃ = arg maxν f(ē|H1), llmp and lglrt are likelihood ratios
for LMP and GLRT case respectively. The decision rule for
the bit detection in this case is defined in a similar manner
given in (15).

Simulations from a Simulink model of the system can be
run for a large number of hits in order to gather statistics on
the discretized output of nonlinearity block which models the
tip-media force. We modeled the statistics for ν by a Gaussian
pdf with the appropriate mean and variance. With known mean
and variance of ν the likelihood ratio for Bayes test is [12],

lbayes(M) = log
f(ē|H1)
f(ē|H0)

= ēT V −1µ′ +
1
2
ēT V ′ē− ēT V ′µ′,

where µ′ = Γ0α and V ′ = Γ0Γ
T
0

( V 2

λ2 +V ΓT
0 Γ0)

and ν ∼ N(α, λ2).

The decision rule in this case is also defined in a similar
manner given in (15). Note that ν is a measure of the
tip-medium interaction force and as such it is difficult to
experimentally verify the value of this force accurately which
means the Bayes test cannot be applied for the bit detection
on actual experimental data.

IV. SIMULATION RESULTS

We performed simulations with the following parameters.
The first resonant frequency of the cantilever f0 = 63.15 KHz,
quality factor Q =206, the value of forcing amplitude equal
to 24 nm, tip-media separation is 28 nm, the number of hits
in high bit duration is equal to 13 i.e. q = 13, discretized
thermal and measurement noise variance are 0.1 and 0.001
respectively. A Kalman observer was designed and the length
of the channel impulse response (I) was approximately 24
which means that mI is equal to 2. We set the value of the
system memory, m = 1. Using a higher value of m results
in a more complex detector. We used a topographic profile

Fig. 7. Mean vector for 2 state transitions for 300 µs bit width from
experimental data where ‘1100’ and ‘1101’ represents transition from state
‘110’ to state ‘100’ and ‘101’ respectively

where high and low regions denote bits ‘1’ and ‘0’ respectively
and the bit sequence is generated randomly. The simulation
was performed with the above parameters using the Simulink
model that mimics the experimental station that provides a
qualitative as well as a quantitative match to the experimental
data. Tip-media interaction was varied by changing the height
of media corresponding to bit ‘1’. We define the system SNR
as the nominal tip-media interaction (nm) divided by total
noise variance.

In Figure 6, we compare the results of four different
detectors. The LMP, GLRT and Bayes detector perform hit
detection, as against bit detection. In these detectors, the
system memory is not taken into account. It is clear that the
minimum probability of error for all detectors decreases as the
tip-media interaction increases which makes SNR higher. The
intuition behind this result is that hits become harder on media
if tip-media interaction is increased which makes detection
easier. The Viterbi detector gives best performance among all
detectors because it incorporates the Markovian property of ν
in the metric used for detection. At an SNR of 10.4 dB the
Viterbi detector has a BER of 3 × 10−6 as against the LMP
detector that has 7× 10−3.

V. EXPERIMENTAL RESULTS

In experiments, a cantilever with resonant frequency f0 =
71.78 KHz and quality factor Q = 67.55 is oscillated near
its resonant frequency. A freshly cleaved mica sheet is placed
on top of a high bandwidth piezo. This piezo can position the
media (mica sheet) in z-direction with respect to cantilever
tip. A random sequence of bits is generated through an FPGA
board and applied to the z-piezo. High level is equivalent to 1
V and represents bit ‘1’ and low level is 0 V and represents bit
‘0’ thus creating a pseudo media profile of 6 nm height. The bit
width can be changed using FPGA controller from 60−350 µs.
The tip is engaged with the media at a single point and its
instantaneous amplitude in response to its interaction with z
piezo is monitored. The controller gain is kept sufficiently low
such that the operation is effectively in open loop. The gain is
sufficient to cancel piezo drift and maintain a certain level of
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tip-media interaction. An observer is implemented in another
FPGA board which is based on the cantilever’s free air model
and takes dither and deflection signals as its input and provides
innovation signal at the output. The innovation signal is used
to detect bits by comparing various bit detection algorithms.
The experiments were performed on Multimode AFM, from
Veeco Instruments. Considering a bit width of 40 nm and scan
time of 60 µs gives a tip velocity equal to 2/3× 10−3 m/sec.
The total scan size of the media is 100 micron which means
the cantilever will take 0.15 seconds to complete one full scan.
Read scan speed for this operation is 6.66 Hz. The read scan
speed for different bit widths can be found in a similar manner.

The cantilever model is identified using the frequency sweep
method wherein excitation frequency ω of g(t) = A0 sin ωt of
dither piezo is varied from 0− 100 KHz and p(t) is recorded.
Magnitude and phase information about G(iω) is obtained
by evaluating the ratios between steady state amplitude and
phase of output vs input excitation respectively. A second order
transfer function is obtained that best fits the experimentally
identified magnitude and phase responses of the cantilever. A,
B and C matrices are obtained from the state space realization
of the identified second order transfer function. F , G and H
can be further found using the zero order hold discretization
at a desired sampling frequency. The discretized state space
of the cantilever model is used to find the discretized channel
impulse response Γk;θ (see (3)).

For 300 µs bit width, there are around 21 hits in high bit
duration and Viterbi decoding is applied on the innovation
signal obtained from experiment. For experimental model, I
is approximately 24 which means mI is equal to 2. It is
hard to estimate the system memory (m) from experimental
parameters. Fortunately, there is a way around for this. As
shown in the derivation of the detector, by making appropriate
approximations, the final detector only requires the mean and
the covariance of each branch in the trellis. These can be found
by using training data and assuming various values of m. We
have varied m from 0 to 2 and found the corresponding BER
using these values of m. The total number of states in the
Viterbi detector is 2m+mI . We have observed that for m > 1,
the improvement in BER is quite marginal as compared to the
increased complexity of Viterbi decoding. Accordingly we are
using m = 1 for which the BER from Viterbi decoding is equal
to 1×10−5 whereas the BER from LMP test is 0.26. The BER
in the case of Viterbi decoding is significantly smaller when
compared to the BER for usual thresholding detectors. If the
bit width is decreased to 60 µs which means there are around
4 hits in the high bit duration, the BER for Viterbi decoding is
7.56× 10−2 whereas the BER for LMP is 0.49 which means
that LMP is doing almost no bit detection. As the bit width
is decreased, there is more ISI between adjacent bits which
increases the BER. The BER for different bit widths from all
the detectors is shown in Figure 8. It can be clearly seen that
Viterbi decoding gives remarkable results on experimental data
as compared to the LMP detector. The Viterbi detector exploits
the cantilever dynamics by modeling the mean and covariance
matrix for different state transitions. We have plotted the mean
vectors for 2 state transitions with 300 µs bit width in Figure
7. There are around 21 hits in one bit duration. The Viterbi

Fig. 8. BER for Viterbi, LMP and GLRT for different bit widths varying from
60 µs to 300 µs for experimental data. There is a very marginal difference
between LMP and GLRT curve which is not visible in the graph but LMP
does perform better than GLRT.

decoding contains 8 states and 16 possible state transitions.
In Figure 7, there is a clear distinction in mean vectors for
different transitions which makes the Viterbi detector quite
robust. Thresholding detectors like LMP and GLRT perform
very badly on experimental data. For a bit sequence like
‘000011111’, the cantilever gets enough time to go into steady
state in the beginning and hits quite hard on media when bit
‘1’ appears after a long sequence of ‘0’ bits. The likelihood
ratio for LMP and GLRT rises significantly for such high bits
which can be easily detected through thresholding. However, a
sequence of continuous ‘1’ bits keeps the cantilever in steady
state with the cantilever hitting the media mildly which means
the likelihood ratio remains small for these bits. Thus it is very
likely that long sequence of ‘1’ bits will not get detected by
threshold detectors.

VI. CONCLUSIONS AND FUTURE WORK

We presented the dynamic mode operation of a cantilever
probe with a high quality factor and demonstrated its appli-
cability to a high-density probe storage system. The system
is modeled as a communication system by modeling the
cantilever interaction with media. The bit detection problem
is solved by posing it as a maximum likelihood sequence
detection followed by Viterbi decoding. The main require-
ments for the proposed algorithm are (a) the availability
of training sequences which can provide the statistics for
different state transitions, (b) differences between the tip-
media interaction magnitude between ‘0’ and ‘1’ bit and (c) an
accurate characterization of the linear model of the cantilever
in free air. Simulation and experimental results show that the
Viterbi detector outperforms LMP, GLRT and Bayes detector
and gives remarkably low BER. The work reported in this
article demonstrates that competitive metrics can be achieved
and enables probe based high density data storage, where
high quality factor probes can be used in the dynamic mode
operation. Thus, it alleviates the issues of media and tip wear
in probe based high density data storage.

An efficient error control coding system is a must for any
data storage system since the sector error rate specifications
are on the order of 10−10 for systems in daily use such as hard
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drives. In future work, we are expecting to achieve this BER by
using appropriate coding techniques. Using run-length-limited
(RLL) codes in our system is likely to improve performance
and we shall examine this issue in future work. We are also
working on a BCJR version of the algorithm to minimize the
BER of the system even further. In experimental data, a small
amount of jitter is inevitably present which is well handled by
our algorithm. At high densities, the jitter will be significantly
higher and we will need to apply more advanced modeling
and detection techniques. These are part of ongoing and future
work.
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