
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 2, FEBRUARY 2009 365

Transactions Papers

The Design of Efficiently-Encodable
Rate-Compatible LDPC Codes

Jaehong Kim, Aditya Ramamoorthy, Member, IEEE, and Steven W. McLaughlin, Fellow, IEEE

Abstract—We present a new class of irregular low-density
parity-check (LDPC) codes for moderate block lengths (up to
a few thousand bits) that are well-suited for rate-compatible
puncturing. The proposed codes show good performance un-
der puncturing over a wide range of rates and are suitable
for usage in incremental redundancy hybrid-automatic repeat
request (ARQ) systems. In addition, these codes are linear-time
encodable with simple shift-register circuits. For a block length of
1200 bits the codes outperform optimized irregular LDPC codes
and extended irregular repeat-accumulate (eIRA) codes for all
puncturing rates 0.6∼0.9 (base code performance is almost the
same) and are particularly good at high puncturing rates where
good puncturing performance has been previously difficult to
achieve.

Index Terms—Efficient encoding, low-density parity-check
(LDPC) code, puncturing, rate-compatible code.

I. INTRODUCTION

LOW-density parity-check (LDPC) codes are considered
good candidates for next-generation forward error control

in high throughput wireless and recording applications. Their
excellent performance and parallelizable decoder make them
appropriate for technologies such as DVB-S2, IEEE 802.16e,
and IEEE 802.11n. While semiconductor technology has pro-
gressed to an extent where the implementation of LDPC codes
has become possible, many issues still remain. First and fore-
most, there is a need to reduce complexity without sacrificing
performance. Second, for applications such as wireless LAN,
the system throughput depends upon the channel conditions
and hence the code needs to have the ability to operate at
different rates. Third, while the LDPC decoder can operate
in linear time, it may be hard to perform low-complexity
encoding of these codes. While the encoding time of irregular
LDPC codes can be reduced substantially using the techniques
presented in [1] at long block lengths, their techniques may
be hard to apply at short block lengths. The other option is
to resort to quasi-cyclic (QC) LDPC constructions that can be

Paper approved by A. H. Banihashemi, the Editor for Coding and Commu-
nication Theory of the IEEE Communications Society. Manuscript received
April 17, 2006; revised January 16, 2008.

J. Kim is with Samsung Electronics Co., Ltd., Yongin-Si, Korea (e-mail:
onil@samsung.com).

A. Ramamoorthy is with the Department of Electrical & Computer Engi-
neering, Iowa State University, Ames, IA, USA (e-mail: adityar@iastate.edu).

S. W. McLaughlin is with the department of Electrical & Computer En-
gineering, Georgia Institute of Technology, Atlanta, GA, USA (e-mail:
swm@ece.gatech.edu).

Digital Object Identifier 10.1109/TCOMM.2009.02.060233

encoded by shift registers [2]. However such constructions are
typically algebraic in nature and usually result in codes with
regular degree distributions.

An important problem is the design of LDPC codes that
can be easily encoded and have good puncturing performance
across a wide range of rates. In this work, we introduce a
new class of LDPC codes called Efficiently-Encodable Rate-
Compatible (E2RC) codes that have a linear-time encoder and
have good performance under puncturing for a wide variety of
rates. Section II overviews prior work in irregular LDPC codes
and rate-compatible puncturing. In Section III, we present the
E2RC construction algorithm. The shift-register based encoder
structure for the E2RC codes is explained in Section IV.
Section V compares the puncturing performance of the E2RC
codes with that of other irregular LDPC codes and Section VI
outlines the conclusions.

II. BACKGROUND AND RELATED WORK

LDPC codes can be defined by a sparse binary parity-
check matrix of size M × N , where M and N are the
number of parity symbols and codeword symbols respectively.
The parity-check matrix can equivalently be considered as a
bipartite graph (called the Tanner graph of the code [3]), where
columns and rows in the parity-check matrix correspond to
variable nodes and check nodes on the graph, respectively.
The distribution of variable (check) nodes in the graph can
be represented as a polynomial λ(x) =

∑
i λix

i−1 (ρ(x) =∑
i ρix

i−1), where λi(ρi) is the fraction of edges incident to
variable (check) nodes of degree i.

In this paper, we work with systematic LDPC codes. Thus,
assuming that the parity-check matrix is full-rank, we have K
columns corresponding to information bits and M columns
corresponding to parity bits, where K +M = N . Henceforth,
we shall refer to the submatrix of the parity-check matrix
corresponding to the K information bits, the systematic part
and the submatrix corresponding to the parity bits, the non-
systematic part. We shall denote the parity-check matrix by
H , the systematic part by H1 and the nonsystematic part by
H2. Thus, H = [H1|H2].

A. Extended Irregular Repeat Accumulate Codes

A promising class of LDPC codes called irregular repeat
accumulate (IRA) codes was introduced by Jin et al. in [4].
These codes have several desirable properties. First, IRA codes

0090-6778/09$25.00 c© 2009 IEEE

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

366 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 2, FEBRUARY 2009

can be encoded in linear time like turbo codes. Second, their
performance is superior to turbo codes of comparable com-
plexity and as good as best known irregular LDPC codes [4].
The columns corresponding to the bivalent (degree-2) nodes
in the parity check matrix of IRA codes have the bi-diagonal
structure shown in equation (1) below.

H2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1

1 1
. . .

1 1
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

The class of extended IRA (eIRA) codes was introduced
by Yang et al. in [5]. The eIRA codes achieve good perfor-
mance by assigning bivalent nodes to nonsystematic bits and
ensuring that they do not form a cycle amongst themselves.
Furthermore, they avoid cycles of length four and make the
systematic bits correspond to variable nodes of degree higher
than two. They ensure efficient encoding by forming the parity
in the bi-diagonal structure like IRA codes as shown in (1).
For more details we refer the reader to [5].

It is interesting to see whether there exist other ways of plac-
ing the bivalent nodes such that cycles involving exclusively
bivalent nodes are avoided. We present an example of such a
placement (see (2)) in the case when M = 8. Observe that the
column degree of each node is two except the last column and
that there does not exist any cycle in this matrix. We shall see
later that this construction can be generalized and the resulting
matrices can be used to construct LDPC codes that can be
efficiently encoded and have good puncturing performance
over a wide range of rates.

H2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

B. Rate-Compatible Puncturing

In wireless channels where the channel conditions vary
with time, using systematic codes and puncturing the par-
ity bits is an efficient strategy for rate-adaptability, since
the system requires only one encoder-decoder pair. Rate-
compatible punctured codes (RCPC) were introduced by
Hagenauer [6] as an efficient channel coding scheme for
incremental redundancy (IR) hybrid-automatic repeat request
(ARQ) schemes. In an RCPC family, the parity bits of a
higher-rate code are a subset of the parity bits of the lower-
rate code. If the receiver cannot decode the code based on the
current received bits, it requests the transmitter for additional
parity bits until it decodes correctly. Thus, the subset property
that the parity bits of codes of different rate satisfy is useful.

Rate-compatible puncturing of LDPC codes was considered
by Ha et al. [7]. They derived the density evolution equations
for the design of good puncturing degree distributions under

1-SR node

2-SR node1-SR node

3-SR node

 : Unpunctured variable nodes

 : Punctured variable nodes

 : Check nodes

Fig. 1. k-SR node in a graph.

the Gaussian approximation. Ha et al. also proposed an ef-
ficient puncturing algorithm for a given mother code in [8],
[9]. For finite length (up to several thousand symbols) LDPC
codes, Yazdani et al. constructed rate-compatible LDPC codes
using puncturing and extending [10].

The algorithm of [8], [9] takes as input a particular mother
code Tanner graph and a set of target rates. It then performs
a search to identify the set of codeword symbols that should
be punctured to achieve those target rates. Since our code
construction technique is inspired by it, we present a brief
description of the algorithm below.

Suppose that the Tanner graph of the mother code is denoted
by G = (V ∪C, E), where V denotes the set of variable nodes,
C denotes the set of check nodes and E denotes the set of
edges. Let S ⊆ V be a subset of the variable nodes. Then, the
set of check node neighbors of S shall be denoted by N (S).
Similar notation shall be used to denote the set of variable
node neighbors of a subset of the check nodes. The set of
unpunctured nodes is denoted by V0 and the set of punctured
variable nodes is denoted by V \V0 (using standard set-theory
notation).

Definition 1 [1-step recoverable node]: A punctured vari-
able node p∈V \V0 is called a 1-step recoverable (1-SR) node
if there exists c ∈ N ({p}) such that N ({c})\{p} ⊆ V0.

1-SR nodes are so named because in the absence of any
channel errors these nodes can be decoded in one step of
iterative decoding. This definition can be generalized to k-SR
nodes (see Fig. 1). Let V1 be the set of 1-SR nodes among
the punctured variable nodes. Similarly, let Vk be the set of
k-SR nodes, which are defined as follows:

Definition 2 [k-step recoverable node]: A punctured vari-
able node p∈V \V0 is called k-step recoverable (k-SR) node
if there exists c ∈N ({p}) such that N ({c})\{p} ⊆ ∪k−1

i=0 Vi

and that there exists q ∈ N ({c})\{p}, where q ∈ Vk−1.
From the above two definitions, note that V = ∪∞

i=0Vi

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

KIM et al.: THE DESIGN OF EFFICIENTLY-ENCODABLE RATE-COMPATIBLE LDPC CODES 367

Systematic part 1-SR
matrix

2-SR
matrix

d-SR
matrix

. . .H = M

N

(d)

L

l

(a) Nv(2) < M − 1

Systematic partH =

0
0
.
.
.
.
.
.
.
.
.
.
.
0
1

1-SR
matrix

2-SR
matrix

d-SR
matrix

. . .

(d)

N

M

(b) Nv(2) = M − 1

Fig. 2. Construction of the parity-check matrix of the proposed codes.

(V∞ represents the set of nodes that cannot be recovered by
erasure decoding). Under these conditions, note that the k-SR
node will be recovered after exactly k iterations of iterative
decoding assuming that the channel does not cause any errors.
So a large number of low-SR nodes are intuitively likely to
reduce the overall number of iterations, which results in good
puncturing performance. The general idea of the puncturing
algorithm in [8], [9] is to find a good ensemble of sets Vk’s
maximizing |Vk| for small k > 0. The puncturing algorithm in
[8], [9] works well for any given mother code. However, the
maximum puncturing rate is often limited when this algorithm
is applied, so that high puncturing rates are difficult to achieve.
This is because it is difficult to find enough number of low-
SR nodes from a randomly constructed matrix. In addition,
[8], [9] do not address the problem of mother code design for
puncturing, i.e., they do not present a technique for the design
of a mother code in which the parity check matrix has a large
number of variable nodes that are k-SR with low values of k.
This is the focus of this paper.

III. A NEW CLASS OF IRREGULAR LDPC CODES

In this work, we are interested in designing rate-compatible
punctured codes that exhibit good performance across a wide
range of coding rates. To ensure good performance over the
different coding rates we attempt to design the mother code
matrix to have a large number of k-SR nodes with low values
of k. From a practical perspective the requirement of low-
complexity encoding is also important. Like punctured RA,
IRA, and eIRA codes, these codes are designed to recover
all the punctured bits when the channel is error-free even
when they achieve the maximum puncturing rate by running
sufficient iterations of iterative decoding. Thus, encoding of
these codes is also relatively simple.

A. Code Construction Algorithm

Before describing our design algorithm, we define a k-SR
matrix. Let vi denote the i-th column of the parity-check

matrix H , where 0 ≤ i < N . We shall use it interchangeably
to denote the variable node corresponding to the i-th column
in the Tanner graph of H .

Definition 3: The matrix P=(vs)s∈S is called a k-SR matrix,
if vs ∈ Vk for all s ∈ S, where S ⊆ {0, 1, · · ·, N − 1}.

In the proposed E2RC codes, we construct the parity-check
matrix by placing several k-SR matrices as shown in Fig. 2.
We assign all the bivalent nodes to the nonsystematic part.
Nodes having degree higher than two are elements of the 0-SR
matrix which consists of message nodes and parity nodes that
shall not be punctured. Consider the submatrix of 0-SR matrix
formed by the high degree nodes in the nonsystematic part. We
denote such submatrix of 0-SR matrix as L, and the number
of columns in L as l as depicted in Fig. 2(a).

Definition 4: The depth d is the number of different types of
k-SR matrices that have degree-2 columns in a parity-check
matrix.

Definition 5: The function γ(k) is the number of columns
in the k-SR matrix in a parity-check matrix, i.e., γ(k) = |Vk|,
where k > 0.

From Definition 5, note that the size of the k-SR ma-
trix is M × γ(k). Let Nv(i) represent the number of vari-
able nodes of degree i. Fig. 2(a) shows the case when
Nv(2)<M − 1, and we shall elaborate on the design of such
codes in subsection III-B. Other than that, we assume that
Nv(2) = M − 1 throughout the paper. When Nv(2) > M −1
we cannot guarantee the cycle-free property among the biva-
lent nodes, which is an important design rule that will be
explained later. When Nv(2) = M − 1, there will be no
0-SR nodes in the nonsystematic part, i.e., l=0. In this case,
we insert a univalent (degree-1) node in the last column of
nonsystematic part, and assign all the variable nodes of the
nonsystematic part to bivalent nodes except the last univalent
node as shown in Fig. 2(b).

Example 1: For M = 8 and Nv(2) = 7, we can construct
the nonsystematic part H2 as in (2). In (2), the first four
columns form the 1-SR matrix, the next two columns form
the 2-SR matrix, and the next one column forms the 3-SR
matrix. Thus, depth d=3, γ(1)=4, γ(2)=2, and γ(3)=1.
We can also regard the last degree-1 column as 4-SR matrix.
However, our convention in this paper is to only consider
degree-2 columns to calculate the depth d. From now on,
we refer to the last degree-1 column in H2 as (d + 1)-SR
matrix since the connections with other k-SR matrices makes
it (d + 1)-SR node. �

Let Sk =
∑k

j=1 γ(j). Thus, Sk represents the sum of the
number of columns in the submatrix formed by the placing
the 1-SR, 2-SR,· · ·, and k-SR matrices next to each other.
We set S0 to 0. We shall represent the position of the ones
in a column belonging to a k-SR matrix by the powers of
a polynomial in D. According to our construction, the j-th
column of k-SR matrix can be represented by the following
polynomial

hk,j = Dj+Sk−1(1 + Dγ(k)),
where 1 ≤ k ≤ d, 0 ≤ j ≤ γ(k) − 1 and

hd+1 = DM−1.

In the sequence, Di represents the position of nonzero

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

368 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 2, FEBRUARY 2009

element in a column, i.e., i-th element of the column is
nonzero, where 0 ≤ i ≤ M − 1. For Example 1, we note that
the depth can be obtained by setting d= log2 M = log2 8=3
and γ(k) = M/2k for 1 ≤ k ≤ d, γ(d + 1) = 1. In general,
M need not be a power of two. We present the algorithm for
constructing H2 for general M below.

E2RC Code Construction Algorithm

STEP 1 [finding optimal degree distribution]: Find an opti-
mal degree distribution for the desired code rate with
the constraint that Nv(2) < M .

STEP 2 [parameter setting]: For a given design parameter,
M (number of parity symbols), obtain the depth
d and γ(k). The computation of d and γ(k) is
explained below. The size of the k-SR matrix is set
to be M × γ(k).

STEP 3 [generating k-SR matrix]: The j-th column of the
k-SR matrix has the following sequence:

hk,j =

{
Dj+Sk−1(1 + Dγ(k)) for 1 ≤ k ≤ d

DM−1 for k = d + 1,

where 0 ≤ j ≤ γ(k) − 1.
STEP 4 [constructing matrix T]: Construct the matrix T as

follows:

T = [1-SR matrix|2-SR matrix|· · ·|d-SR matrix].

STEP 5 [forming matrix H2]: Add a univalent node to T
and form H2 = [T |(d + 1)-SR matrix].

STEP 6 [constructing edges] Construct the matrix H1 by
matching the degree distribution obtained in STEP 1
as closely as possible.

STEP 7 [constructing matrix H] Assign H1 as the system-
atic part and H2 as the nonsystematic part:

H = [H1|H2].

In STEP 1, we first find an optimal degree distribution
for the desired mother code rate, say RL, using the density
evolution [11]. When we determine the degree distribution,
the number of bivalent nodes, Nv(2), is an important factor.
The E2RC codes are designed so that all the bivalent nodes
in the nonsystematic part can be punctured. This will give
us the highest achievable puncturing rate, say RH . Then, RH

= K/(N − Nv(2)). Thus, the E2RC codes can provide an
ensemble of rate-compatible codes of rate RL∼RH . When
Nv(2) = M − 1 all the parity bits have degree two and can
be punctured so that RH = 1.0. In STEP 2, we set the design
parameters. We try to obtain a large number of low-SR nodes
while constraining the increase in the row degree. In fact, we
design the function γ(k) such that it assigns approximately
half of the parities as 1-SR nodes, and approximately the half
of the remaining parities as 2-SR nodes, and so on. The depth
d is given as d = �log2 M�, and γ(k) as

γ(k) =
⌊
M − 1

2

k−1∑
i=0

γ(i)
⌋
,

for 1 ≤ k ≤ d, γ(d + 1) = 1, and γ(0) � M, (3)

where �·� and 	·
 are the ceiling function and the floor
function, respectively. We observe that the function γ(k) is
such that the following facts hold true.

Fact 1: The function γ(k) is such that Sd =
∑d

i=1 γ(i) =
M −1, where d = �log2 M�. Furthermore, γ(k) ≥ 1 for 1 ≤
k ≤ d.

Proof: See Appendix. �
From the generation sequence in STEP 3, we can notice

that the k-SR matrix is composed of only bivalent variable
nodes except for the last (d + 1)-SR matrix. Note that every
column in k-SR matrix has degree two. In particular, when
Nv(2)=M−1, all the columns of the nonsystematic part have
degree two except the last column which has degree one.

After generating the k-SR matrices, we put them together to
form the matrix T in STEP 4. Then in STEP 5, we construct
the nonsystematic part H2 = [T |(d+1)-SR matrix] by adding
a degree-1 column at the end of H2. Example 2 shows an
example of the construction of a H2 matrix using the proposed
algorithm.

Example 2: For M = 7 and Nv(2) = 6, the depth d = 3,
and γ(1) = 3, γ(2) = 2, and γ(3) = 1.

H2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 1 0 1 0
0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�
In STEP 6, the matrix H1 is constructed by trying to match

the degree distribution obtained from STEP 1. Note that the
degree distribution of the nonsystematic part is already fixed
by the construction algorithm. This may cause some check
nodes to have degrees higher than those specified by the
optimal degree distribution. In this case we try to match the
optimal degree distribution as closely as possible. Since we
have some high degree check nodes, we compensate it to
match the average right degree by enlarging the number of
lower degree check nodes or placing some lower degree check
nodes. Finally, H1 and H2 are combined to make the whole
parity-check matrix in STEP 7.

We now present some properties of the codes that are
constructed using the previous algorithm. In the subsequent
statements and discussion, unless otherwise specified, H2 shall
represent the nonsystematic part of a parity-check matrix
and shall be assumed to have been generated by the E2RC
construction algorithm.

Lemma 1: In the matrix H2, any column in a k-SR matrix
is connected to at least one row of degree-k. Furthermore, this
row has exactly one connection to a column from each l-SR
matrix, where 1 ≤ l < k ≤ d.

Proof: See Appendix. �
From Lemma 1, it is possible to find the exact number of

rows with degree-k except the last row. We define ζ as the
row degree of the last row.

Observation 1: The row degree ζ of the last row in the
matrix H2 can be obtained as ζ =

∑d
i=1[γ(i) + Si − Sd] + 1.

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

KIM et al.: THE DESIGN OF EFFICIENTLY-ENCODABLE RATE-COMPATIBLE LDPC CODES 369

Proof: Consider the connections of the last row with each
k-SR matrix. It is easy to see that if M=2 ·γ(1), there is a
connection between the 1-SR matrix and the last row, other-
wise, there is no connection. Similarly, if M =γ(1)+2 · γ(2),
there is a connection between the 2-SR matrix and the last
row, and so on. Thus, we can get ζ as

ζ = (1 − (M − 2γ(1)))︸ ︷︷ ︸
1-SR matrix

+ (1 − (M − γ(1) − 2γ(2)))︸ ︷︷ ︸
2-SR matrix

+· · · + (1 − (M − γ(1) − γ(2) − · · · − 2γ(d)))︸ ︷︷ ︸
d-SR matrix

+ 1︸︷︷︸
(d+1)-SR matrix

=
d∑

i=1

[γ(i) + Si − (M − 1)] + 1

=
d∑

i=1

[γ(i) + Si − Sd] + 1,

since we have Sd = M − 1 from Fact 1. �
From Observation 1, we can obtain ζ =

∑3
i=1[γ(i) + Si −

6] + 1 = 3 for Example 2. Since we know ζ, we are ready to
get the right degree distributions for H2.

Observation 2: The number of degree-k rows in the matrix
H2 is γ(k) + δ(k − ζ) for 1 ≤ k ≤ d, where

δ(i) =

{
1, if i = 0,

0, otherwise.

Corollary 1: The right degree distribution (node perspective)
of the matrix H2 is as follows:

ρ(x) =
d+1∑
i=1

ρ̂ix
i−1, where ρ̂i =

γ(i) + δ(i − ζ)
M

for 1 ≤ k ≤ d and ρ̂d+1 =
δ(i − ζ)

M
.

Proof: Consider the k-SR matrix when 1 ≤ k ≤ d. From
Lemma 1, if we pick a column in the k-SR matrix, the first
element of the column is included in a row of degree k, and the
second element has row degree greater than k. The number
of columns in the k-SR matrix is γ(k) and each column is
connected to one degree-k row. Thus, the number of rows
having degree k is at least γ(k) except the last row. For a
(d+1)-SR matrix, there is only one degree-ζ row. From Fact 1,
summing the number of rows having degree-k results in γ(1)+
γ(2) + · · · + γ(d) + 1 = M . Therefore, the number of rows
of degree k except the last row is exactly γ(k). The result
follows. �

Once the optimal degree distributions for the whole code
for a desired code rate have been found, we can get the
degree distributions for the H1 matrix while fixing the degree
distributions obtained from the construction algorithm for H2.
In general, matching the optimal degree distribution for the
whole code may not be possible because of the construc-
tion algorithm. For the systematic part, namely the H1 ma-
trix, we choose variable nodes of higher degree greater than
two. Besides finding the optimal degree distributions, there
are three additional design rules for finite-length LDPC codes
proposed in [11]:

(a) Assign bivalent variable nodes to nonsystematic bits.
(b) Avoid short cycles involving only bivalent variable nodes.
(c) Avoid cycles of length four.

The proposed E2RC codes meet the design rule (a) as stated
above. For design rule (b), we show that there are no cycles
involving only bivalent variable nodes.

Lemma 2: Suppose that there exists a length-2s cycle
in a matrix which consists of only weight two columns.
Consider the submatrix formed by the subset of columns that
participates in the cycle. Then, all the participating rows in
the cycle must have degree two in that submatrix.

Proof: To have a length-2s cycle, the number of columns
participating in the cycle needs to be s and the number of
rows participating in the cycle needs to be s. Let us denote
the submatrix formed by the columns participating in the cycle
by U . Then, the number of edges in U is 2s since each of
the columns has degree two. Each row participating in the
cycle must have a degree greater than or equal to two in U
since each row has to link at least two different columns in
U . Suppose there is a row having degree strictly greater than
two in U . Then there should be a row having degree less
than two in U , since the average row weight in U is two (the
number of edges / the number of rows = 2s/s = 2). This is a
contradiction because a row that has degree less than two in
U cannot participate in a cycle with the columns in U . Thus,
every participating row must have degree two in U . �
Using Lemma 2, we prove that the proposed matrix H2 is
cycle free.

Lemma 3: The matrix H2 constructed by the E2RC con-
struction algorithm is cycle free.

Proof: Suppose that there exist s columns v1, v2, · · ·, vs in
H2 that form a cycle of length 2s. We form the M × s sub-
matrix formed by the columns. Let us denote this submatrix
by Hs. Suppose that column vi belongs to the ki-SR matrix
in H2. Let kmin =min

{i}
ki. Applying Lemma 1, we have that

vkmin has exactly one connection to each l-SR matrix, where
1 ≤ l < kmin, and no connection to m-SR matrices where
m>kmin, i.e., there is a check node connected to vkmin that
is singly-connected in the submatrix Hs. Applying Lemma 2,
we realize that a cycle cannot exist amongst the s columns.�

The matrix H2 has a high fraction of bivalent nodes. In
fact, if Nv(2) = M − 1 then (M − 1)/M fraction of the
nodes in H2 are bivalent, and there is only one univalent node.
The construction algorithm also induces a spread in the check
node distribution. This may cause the constructed codes to
have higher error floors. To reduce these effects, we can use
methods such as those presented in [12–15] when we construct
the H1 matrix. By doing so, the E2RC codes can meet the
design rule (c).

B. Low-Rate E2RC Code Design

Considering E2RC mother code design for low rate (R <
0.5) is a natural step. In this case, we should consider a design
that allows some portion of the nodes in the nonsystematic part
to have degree greater than two since it is hard to obtain a
good degree distribution that has all the parity bits of degree
two. This is the reason why we consider the case when
Nv(2) < M − 1. We will briefly explain the differences in

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

370 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 2, FEBRUARY 2009

the construction algorithm for this case compared to the case
considered earlier. Recall that we puncture only the degree two
nodes. The matrix L that has l columns shown in Fig. 2(a)
consists of those parity bits that have degree higher than two
and shall not be punctured. Since Nv(2) = M − l < M − 1,
we set the depth as the maximum d such that Sd−1 < Nv(2),
and obtain γ(k) as before for 1≤k<d. The previous settings
for γ(k)’s are designed to match Sd =Nv(2)=M − 1. In this
case, however, we set γ(d) = Nv(2) − Sd−1 so that they can
satisfy Sd = Nv(2). To generate the sequence of d-SR matrix,
we set

η =
⌊
M − 1

2

d−1∑
i=0

γ(i)
⌋
.

Then, the j-th column of k-SR matrix of STEP 3 has the
following sequence:

hk,j =

{
Dj+Sk−1 (1 + Dγ(k)) for 1 ≤ k < d,

Dj+Sk−1 (1 + Dη) for k = d

where 0 ≤ j ≤ γ(k) − 1.
We formulate T in the same way as before and set H2 =

[L|T], where variable nodes in the matrix L have degree higher
than two. Note that we do not put the univalent node in H2.
Then, we need to construct edges for the matrix L and H1 by
trying to match the target degree distribution and by avoiding
cycles of length four. Note that the submatrix formed by the
columns of Nv(2) is cycle free (the proof is very similar to
the previous proof of Lemma 3).

For the proposed codes, rate-compatibility can be easily
obtained by puncturing the bivalent nodes from left to right
in the H2 matrix. For a desired code rate Rp to be obtained
from puncturing the mother code of rate RL, the number of
puncturing symbols is p = N(1 − RL/Rp), where N is the
code length and RL ≤ Rp ≤ RH . Any desired code rate can
be achieved by first puncturing nodes from the 1-SR matrix,
then from the 2-SR matrix and so on. Thus the codes of
different rates can be applied to IR hybrid-ARQ systems.

IV. EFFICIENT ENCODER IMPLEMENTATION

In this section, we show that E2RC codes can be encoded
in linear time. We start by presenting an efficient shift register
based technique that can be applied to other similar block
codes as well. First, we will explain the case when Nv(2) =
M −1. For the parity-check matrix H = [H1|H2] of an E2RC
code obtained from the proposed construction algorithm, let a
codeword c = [m|p], where m is the systematic symbols, and
p is nonsystematic symbols. Then, we have HcT =[H1|H2] ·
[m|p]T =H1m

T +H2p
T =0. Let sT = H1m

T , then we have
H2p

T = H1m
T = sT . Since H1 is sparse s can be found

efficiently.

H2 · pT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · h1M

h21 h22 · · · h2M

h31 h32 · · · h3M

...
...

. . .
...

hM1 hM2 · · · hMM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2

p3

...

pM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2

s3

...

sM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

R1 R2 R

g g1 g0

 s3 s2 s1 p3 p2 p1

. . .

. . .

. . .

Fig. 3. An example of shift-register implementation of E2RC codes.

Let H2 = (hi,j)1≤i,j≤M , then si =
∑M

j=1 hijpj=
∑i−1

j=1 hij

pj + pi since hij = 1 for i = j and hij = 0 for i < j (since
H2 is lower triangular) in the construction of the E2RC codes.
Since all nodes in H2 are bivalent, the elements between the
two entries of the sequence are 0. This means that for 1 ≤
j ≤ γ(1),

hij =

{
1 if i = j or i = j + γ(1),
0 otherwise.

Then, we have

pi =

{
si for 1 ≤ i ≤ γ(1),
si +

∑i−1
j=1 hijpj for γ(1) + 1 ≤ i ≤ M.

The above results tell us that we can get pi for 1 ≤ i ≤ γ(1)
directly from si. By using the obtained γ(1) pi’s, we can get
pi one by one for γ(1) + 1 ≤ i ≤ M , which enables us to
implement the E2RC encoder by using γ(1) shift registers.
The following example illustrates the encoding method.

Example 3: For M = 7, we can construct H2 matrix as
follows:

H2 · pT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 1 0 1 0
0 0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2

p3

p4

p5

p6

p7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2

s3

s4

s5

s6

s7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Simplifying we get: p1 = s1, p2 = s2, p3 = s3, p1 + p4 =
s4, p2 + p5 = s5, p3 + p4 + p6 = s6, and p5 + p6 + p7 = s7.
Then, we can obtain pi’s by using pj’s, where j <i: p1 = s1,
p2 = s2, p3 = s3, p4 = p1+s4, p5 = p2+s5, p6 = p3+p4+s6,
and p7 = p5 + p6 + s7. We only need γ(1) = 3 memory
elements for the encoder in Fig. 3. The coefficients for multi-
plication in Fig. 3 can be obtained from the sliding windows
highlighted as squares in the matrix equation. For this reason,
we will refer to this encoding method as sliding window
method. The coefficient gi’s are time varying. Assuming that
the window starts from the first row at initial time t = 0, g0

will be on during t=3∼5, g1 will be on during t=5∼6, and
g2 will be on at t=6. �
From the Example 3, we can generalize the shift-register
encoder implementation of E2RC codes. The encoder can
be represented as division circuit as shown in Fig. 3. The
division circuit can be specified by a generator polynomial
g(x) = g0 + g1x + g2x

2 + · · · + gγ(1)−1x
γ(1)−1 + xγ(1). By

observing the matrix H2, we can obtain the coefficients of the
polynomial. As in Fig. 4, consider the window of size w. As
we slide the window from the first row to the last row, we can
get parity-check equations one by one. The coefficients in the

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

KIM et al.: THE DESIGN OF EFFICIENTLY-ENCODABLE RATE-COMPATIBLE LDPC CODES 371

g0 g1 … gw-1t = 0

t = 1

t = M-1

Time

Window size = w

g0 g1 … gw-1

g0 g1 … gw-1

g0 g1 … gw-1

w

.
.

.

.
.

.

Fig. 4. Nonsystematic part of a parity-check matrix for applying sliding
window encoding method.

window will change or stay between 0 and 1 for each row. If
we trace the time-varying coefficients, then we can implement
the shift-register encoder of Fig. 3.

We set the window size w as γ(1) since the largest distance
between nonzero elements in a row of H2 is γ(1). The window
size can be set differently for other codes. In the sliding
window, the first entry corresponds to g0, and the last entry
to gγ(1)−1. Let us define the time, t = 0 when the window
starts from the first row. The initial status of coefficients is
0. In the code construction, note that gi can exist only if
i = γ(1)−γ(k) for 1≤k≤d. In other words, we only have to
consider d coefficients and other than those are all zero. For a
such coefficient gi, it is on at time t = Sk, and will last until
the window reach the last row (t = Sd) if there is a connection
for k-SR matrix in the last row. Otherwise, it will be off at the
last row. Fig. 5 shows the timing diagram of coefficients. From
Observation 1, note that there is a connection for k-SR matrix
in the last row if γ(k)+Sk −Sd = 1 and no connection if the
value is 0. Then, the coefficients of the generator polynomial
g(x) can be represented as

gi =
d∑

k=1

δ(i − γ(1) + γ(k)){u(t − Sk)

−δ(γ(k) + Sk − Sd) · u(t − Sd)},
where we define the unit step function as follows:

u(t) =

{
1, t ≥ 0
0, t < 0.

For the above Example 3, when M = 7, g0 = u(t − 3) −
u(t−6), g1 = u(t−5), g1 = u(t−6). As mentioned earlier,
the proposed sliding window encoding method can be applied
to other block codes if the nonsystematic part of their parity-
check matrix has lower-triangular form as shown in Fig. 4. In
fact, the window size can be lowered if the lower-triangular
form in Fig. 4 has lower-triangular 0’s in it, which can be
attempted by column and row permutation for a given parity-
check matrix.

Another way to implement the encoder of the proposed
E2RC codes is by using a simple iterative erasure decoder.

g0

g1

g2

.

.

.

gw-1

0 M-1Time

0

0

0

0

1 2 3 . . .

1

1

0 1

.

.

.

.

.

.

t = S1

t = S2

t = Sd

Fig. 5. Timing diagram of coefficients of sliding window encoder.

Recall that all the nodes in k-SR matrix can be recovered in
k iterations of erasure decoding since they are all k-SR nodes.
For the proposed codes, even if all the parity bits are erased,
we can obtain the exact parity bits within (d + 1) iterations
using a simple erasure decoder or a general message-passing
LDPC decoder as long as the systematic bits are known exactly
(this is the case at the encoder). In a transceiver system, this
can be a big advantage in terms of complexity. We only need
to provide an LDPC decoder for both encoding and decoding,
and do not need any extra encoder.

Even though we may not be able to use the shift-register im-
plementation of sliding-window method for the encoder when
Nv(2) < M − 1, we can easily apply the efficient encoding
method proposed in [1]. Following the notation in [1], let the

parity-check matrix H be represented as H =
[
A B C
D E F

]
.

Then,

[
A
D

]
is the systematic part of the E2RC codes,

[
B
E

]
=L

is the submatrix of the nonsystematic part consisting of nodes

with degree higher than two and

[
C
F

]
= T is the submatrix

of the nonsystematic part consisting of degree two nodes. For
E2RC codes, we know the exact sequence of the matrix T .
Furthermore, the matrix C is a lower triangular with ones on
the diagonal. Thus, preprocessing is not required for putting
the matrix in the form used in [1]. This makes it easy to apply
the efficient encoding techniques in [1] to E2RC codes.

V. SIMULATIONS

In this section, we present simulation results of E2RC
codes and compare their performance with eIRA codes and
general irregular LDPC codes. For decoding simulation we use
the sum-product algorithm and set the number of maximum
iterations as 200.

First, we consider rate-1/2 mother codes with block length
of 1200. For a fair comparison we use the degree distributions

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

372 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 2, FEBRUARY 2009

Eb/No [dB]
1 2 3 4 5 6

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K=600)
eIRA codes (K=600)

Fig. 6. The puncturing BER performance comparison between E2RC
codes and eIRA codes with random puncturing. Filled circles are for E2RC
codes and unfilled circles are for eIRA codes. Rates are 0.5 (mother codes),
0.6, 0.7, 0.8, and 0.9 from left to right.

presented in [5] for rate-1/2 codes:

λ(x) = 0.30780x + 0.27287x2 + 0.41933x6

ρ(x) = 0.4x5 + 0.6x6.

However, the actual degree distributions for the E2RC codes
are slightly different to compensate for the right degree of H2.
These are given below.

λ(x) = 0.00025 + 0.30199x + 0.27073x2 + 0.42702x6

ρ(x) = 0.40685x5 + 0.55054x6 + 0.01815x7 + 0.01361x8

+0.00504x9 + 0.00278x10 + 0.00303x11.

The progressive edge growth (PEG) algorithm in [12] is
applied to design the systematic matrix H1 to improve girth
characteristics for both eIRA codes and E2RC codes. The
PEG algorithm was also used to generate the general irregular
LDPC codes. First, we consider random puncturing for the
puncturing strategy for eIRA codes and general irregular
LDPC codes. The puncturing performance comparisons be-
tween eIRA codes and E2RC codes are shown in Fig. 6.
From Fig. 6, the E2RC codes show more powerful punc-
turing performance at higher code rates. At a rate of 0.8
and BER = 10−5, E2RC codes outperform eIRA codes by
over 0.8 dB. A similar performance gap was observed in the
comparisons with general irregular LDPC codes (the curve is
omitted due to lack of space).

Next,we apply the puncturing algorithm proposed in [8], [9]
to eIRA codes and general irregular LDPC codes. As men-
tioned earlier, this puncturing algorithm has a limit on the
number of low-SR nodes that it can find. In fact, the punctur-
ing algorithm in [8], [9] assigns 300 nodes as 1-SR nodes,
and cannot find further k-SR nodes (k ≥ 2) if we try to
maximize the number of 1-SR nodes. To get a high rate
(R = 0.7, 0.8, 0.9) in eIRA codes, we puncture randomly
after the puncturing limitation of rate 0.67, which destroys
the previous tree structure of 1-SR nodes resulting in poor
performance. To increase the number of variable nodes that

Eb/No [dB]
1 2 3 4 5 6

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K=600)
eIRA codes (K=600)

Fig. 7. The puncturing BER performance comparison between E2RC codes
and eIRA codes with puncturing algorithm in [8], [9]. Filled circles are for
E2RC codes and unfilled circles are for eIRA codes. Rates are 0.5 (mother
codes), 0.6, 0.7, 0.8, and 0.9 from left to right.

can be punctured for eIRA codes, one can impose a limitation
on the number of the lower-SR nodes when the puncturing
algorithm in [8], [9] is applied, thus trading off fewer 1-
SR nodes for more number of 2-SR and 3-SR nodes. In this
case, however, the puncturing performance for lower rate is
worse than the case when 1-SR nodes are maximized. For
general irregular LDPC codes, we can find 389 1-SR nodes,
45 2-SR nodes, two 3-SR nodes, so the maximum puncturing
rate is 0.785. Above the puncturing limit, we apply random
puncturing to get higher rates. The puncturing performance
of eIRA codes and general irregular LDPC codes with the
puncturing algorithm in [8], [9] are shown in Figs. 7 and 8.
Even with the best effort intentional puncturing algorithm in
[8], [9], the E2RC codes show better puncturing performance
across the entire range of rates, especially at higher rates. For
code rate of 0.9 and BER of 10−5 the E2RC codes outperform
the eIRA codes and general irregular LDPC codes by 0.7 dB
and 1.5 dB, respectively.

For practical purposes, designing a low rate E2RC code and
providing a wide range of rates by puncturing are useful. There
are other methods to lower the rates such as extending and
shortening. However, these methods often increase hardware
complexity or the performance of lower rate code may not be
good enough. On the other hand, punctured low rate (R < 0.5)
standard irregular mother codes have bad performance at
high puncturing rates. The E2RC codes show relatively less
performance degradation when punctured as compared to other
LDPC codes. For E2RC codes, all the bivalent nodes in the
parities can be punctured. As an example, we consider a rate-
0.4 mother code of which degree distributions are optimized
in AWGN channel (edge perspective):

λ(x) = 0.29472x + 0.25667x2 + 0.44861x9

ρ(x) = x5.

Since we assign all the bivalent nodes to parities and higher
degree nodes to messages, 88.4% of the parities are bivalent
nodes and the remaining 11.6% of the parities are degree-3

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

KIM et al.: THE DESIGN OF EFFICIENTLY-ENCODABLE RATE-COMPATIBLE LDPC CODES 373

Eb/No [dB]
1 2 3 4 5 6 7

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K=600)
General irregular LDPC codes (K=600)

Fig. 8. The puncturing BER performance comparison between E2RC codes
and general irregular LDPC codes with puncturing algorithm in [8], [9]. Filled
circles are for E2RC codes and unfilled circles are for general irregular LDPC
codes. Rates are 0.5 (mother codes), 0.6, 0.7, 0.8, and 0.9 from left to right.

nodes from the above degree distributions. Thus, the structure
of E2RC codes is changed from the original one, and the
E2RC codes can achieve rate of 0.85 since all the bivalent
nodes can be punctured. For rate-0.4 mother code with N =
2000, K =800, and Nv(2)=1061, we have the depth d = 4,
and γ(1) = 600, γ(2) = 300, γ(3) = 150, γ(4) = 11. In
addition, we were able to design the E2RC code such that
the right degree was concentrated at six. We apply the PEG
algorithm to generate the remaining columns. To compare the
puncturing performance, the general irregular LDPC codes
with the same degree distributions as above are generated by
using the PEG algorithm. The best-effort puncturing algorithm
in [8], [9] is applied to the general irregular LDPC codes. The
maximum achievable rate of this general irregular LDPC code
is 0.69 with puncturing algorithm in [8], [9]. So, after the limit
we apply random puncturing. The puncturing performance
comparison between E2RC codes and general irregular LDPC
codes is depicted in Figs. 9 and 10. In Figs. 9 and 10, the
E2RC codes show good performance over a wide range of
rates 0.4∼0.85. At a BER of 10−5 in Fig. 9, the E2RC codes
outperform the general irregular LDPC codes by 1.0 dB and
2.7 dB at rate 0.8 and 0.85, respectively. The same trend can
be observed in FER performance in Fig. 10.

VI. CONCLUSION

We have proposed a new class of codes called E2RC
codes that have several desirable features. First, the codes are
efficiently encodable. We have presented a shift-register based
implementation of the encoder which has low-complexity and
demonstrated that a simple erasure decoder can be used for
the encoding of these codes. Thus, we can share a message-
passing decoder for both encoding and decoding if it is ap-
plied to transceiver systems which require an encoder/decoder
pair. Second, we have shown that the nonsystematic part of
the parity-check matrix are cycle-free, which ensures good
code characteristics. From simulations, the performance of
the E2RC codes (mother codes) is as good as that of eIRA

Eb/No [dB]
2 4 6 8

BE
R

10-6

10-5

10-4

10-3

10-2

10-1

E2RC codes (K=800)
General irregular LDPC codes (K=800)

Fig. 9. The puncturing BER performance comparison between E2RC codes
and general irregular LDPC codes with puncturing algorithm in [8], [9]. Filled
circles are for E2RC codes and unfilled circles are for general irregular LDPC
codes. Rates are 0.4 (mother codes), 0.5, 0.6, 0.7, 0.8, and 0.85 from left
to right.

Eb/No [dB]
2 4 6 8

FE
R

10-3

10-2

10-1

E2RC code (K=800)
General irregular LDPC codes (K=800)

Fig. 10. The puncturing FER performance comparison between E2RC codes
and general irregular LDPC codes with puncturing algorithm in [8], [9]. Filled
circles are for E2RC codes and unfilled circles are for general irregular LDPC
codes. Rates are 0.4 (mother codes), 0.5, 0.6, 0.7, 0.8, and 0.85 from left
to right.

codes and other irregular LDPC codes. Third, the E2RC codes
show better performance under puncturing than other irregular
LDPC codes and eIRA codes in all ranges of code rates and
are particularly good at high rates. Finally, the E2RC codes
can provide good performance over a wide range of rates even
when they are designed for rates lower than 0.5. We believe
that these characteristics of E2RC codes are valuable when
they are applied to IR hybrid-ARQ systems.

APPENDIX

Proof Fact 1: From the definition, M should be 2d−1 <M ≤
2d. By definition, M can be represented by M = 2γ(1)+R1,
where R1 is the remainder when M is divided by 2, i.e.,

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

374 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 2, FEBRUARY 2009

R1 = 0 or 1. Then, we have

M − γ(1) = γ(1) + R1 = 2γ(2) + R2,

M − γ(1) − γ(2) = γ(2) + R2 = 2γ(3) + R3,

...

M − γ(1) − γ(2) − · · · − γ(d − 1) = γ(d − 1) + Rd−1

= 2γ(d) + Rd. (a)

In the above equations, the remainders can be R1, R2, · · ·, Rd

= 0 or 1. From the equations above, we also have

M + R1 = 2(γ(1) + R1) = 2(2γ(2) + R2),
M + R1 + 2R2 = 22(γ(2) + R2) = 22(2γ(3) + R3),

...

M + R1 + 2R2 + · · · + 2d−2Rd−1

= 2d−1(γ(d − 1) + Rd−1) = 2dγ(d) + 2d−1Rd, (b)
M + R1 + 2R2 + · · · + 2d−1Rd = 2d(γ(d) + Rd). (c)

In equation (b), the LHS is strictly greater than 2d−1 from
the range of M . So, γ(d) ≥ 1 in RHS since Rd = 0 or 1.
On the other hand, γ(d) + Rd in equation (c) has to be 1
since the sum of the LHS of (c) is at most 2d+1−1. Thus, we
conclude that γ(d) = 1 and Rd = 0. Then, from (a), we have
γ(1) + γ(2) + · · · + γ(d) = M − 1.

Now, note that γ(1)≥γ(2)≥· · ·≥γ(d) and since γ(d) = 1,
therefore γ(k) ≥ 1 for 1 ≤ k ≤ d. �

Proof of Lemma 1: Note that H2 is lower-triangular with
ones on the diagonal. Therefore in the case when k = 1, since
h1,j1 =Dj1(1 + Dγ(1)) for 0 ≤ j1 ≤ γ(1)− 1, we have a set
of columns whose first entry is on the diagonal. Therefore the
first entry of these columns is connected to a row of degree-1
and the lemma holds for k = 1. Now consider k ≥ 2. The
jk-th column in the k-SR matrix has a sequence is given by

hk,jk
= Djk+Sk−1(1 + Dγ(k))

= Djk+Sk−1 + D
jk+Sk

,

where 0≤ jk ≤ γ(k) − 1. We shall demonstrate that the first
entry of hk,jk

is connected to a column in the l-SR matrix for
1≤ l < k. An immediate consequence of the lower-triangular
nature of H2 is that hk,jk

can only be connected to the second
entry of hl,jl

, the jl-th column in the l-SR matrix. Suppose
that the second entry of the jl-th column in the l-SR matrix
is connected to the first entry of the jk-th column in the k-SR
matrix. This implies jl +Sl = jk +Sk−1. Clearly, jl = jk +
Sk−1−Sl ≥ 0 since k > l and 0 ≤ jk ≤ γ(k) − 1. We shall
now show that jl = jk + Sk−1 − Sl ≤ γ(l) − 1. This means
that for a given jk, it is possible to find a unique column jl

belonging to the l-SR matrix to which it is connected. From
the proof of Fact 1, we have Si =M−γ(i)−Ri, where Ri = 0
or 1. Since Sk−1 + γ(k) = Sk and Sk ≤ Sd, we have

jl = jk + Sk−1 − Sl ≤γ(k) − 1 + Sk−1 − Sl

= Sk − Sl − 1
≤ Sd − Sl − 1

= M − γ(d) − Rd − (M − γ(l) − Rl) − 1
= γ(l) − 1 − Rl − 1
≤ γ(l) − 1.

Therefore, for a given jk, we can find a corresponding jl in
the l-SR matrix for 1≤ l<k. Note that the first entry of jk is
connected to the corresponding jl. Since the matrix is lower-
triangular, this entry cannot have any connection with a m-SR
matrix where m>k. Therefore this particular row has degree
exactly k. This concludes the proof. �

ACKNOWLEDGMENT

This work was supported by Samsung Advanced Institute
of Technology. The authors would like to thank Dr. Sunghwan
Kim for his helpful comments. They would also like to thank
the editor and reviewers for their many valuable suggestions.

REFERENCES

[1] T. Richardson and R. Urbanke, “Efficient encoding of low-density
parity-check codes," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.
638-656, Feb. 2001.

[2] S. Lin, L. Chen, J. Xu, and I. Djurdjevic, “Near Shannon limit qua-
sicyclic low-density parity-check codes," in Proc. IEEE GLOBECOM
San Francisco, CA, Dec. 2003.

[3] M. Tanner, “A recursive approach to low complexity codes," IEEE Trans.
Inform. Theory, vol. IT-27, pp. 533-547, Sept. 1981.

[4] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate
codes," in Proc. 2nd. Int. Symp. Turbo Codes Related Topics, Brest,
France, Sept. 2000, pp. 1-8.

[5] M. Yang, W. E. Ryan, and Y. Li, “Design of efficiently encodable
moderate-length high-rate irregular LDPC codes," IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 564-571, Apr. 2004.

[6] J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC
codes) and their applications," IEEE Trans. Commun., vol. 36, pp. 389-
400, Apr. 1998.

[7] J. Ha, J. Kim, and S. W. McLaughlin, “Rate-compatible puncturing of
low-density parity-check codes," IEEE Trans. Inform. Theory, vol. 50,
no. 11, pp. 2824-2836, Nov. 2004.

[8] J. Ha, J. Kim, D. Klinc, and S. W. McLaughlin, “Rate-compatible
punctured low-density parity-check codes with short block lengths,"
IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 728-738, Feb. 2006.

[9] J. Ha, J. Kim, and S. W. McLaughlin, “Puncturing for finite length
low-density parity-check codes," in Proc. IEEE ISIT, Chicago, 2004, p.
152.

[10] M. R. Yazdani and A. H. Banihashemi, “On construction of rate-
compatible low-density parity-check codes," IEEE Commun. Lett., vol.
8, no. 3, pp. 159-161, Mar. 2004.

[11] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes," IEEE Trans.
Inform. Theory, vol. 47, pp. 619-637, Feb. 2001.

[12] X. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive edge-growth
Tanner graphs," in Proc. IEEE GLOBECOM, San Antonio, TX, Nov.
2001, pp. 995-1001.

[13] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Selective avoidance
of cycles in irregular LDPC code construction," IEEE Trans. Commun.,
vol. 52, no. 8, pp. 1242-1247, 2004

[14] A. Ramamoorthy and R. D. Wesel, “Construction of short block length
irregular low-density parity-check codes," in Proc. IEEE ICC, Paris,
France, June 2004, pp. 410-414.

[15] W. Weng, A. Ramamoorthy, and R. D. Wesel, “Lowering the error floors
of high-rate LDPC codes by graph conditioning," in Proc. IEEE VTC,
Los Angeles, CA, 2004, pp. 2549-2553.

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

KIM et al.: THE DESIGN OF EFFICIENTLY-ENCODABLE RATE-COMPATIBLE LDPC CODES 375

Jaehong Kim received the B.S. and M.S. de-
grees in electronic communication engineering from
Hanyang University, Seoul, Korea, in 1995 and
1997, respectively, and the Ph.D. degree in electrical
and computer engineering from Georgia Institute of
Technology, Atlanta, Georgia, in 2006. He has been
with the Samsung Electronics Co., Ltd., since 1997,
where he was involved in the VLSI design of the
channel codec for communication systems such as
Cable Modem, WLAN, and UMTS. Since 2007, he
has been involved in research and development of

channel coding and signal processing algorithms in data storage systems.
His research interests include channel coding, digital communication systems,
signal processing, and VLSI design.

Aditya Ramamoorthy received his B.Tech. degree
in Electrical Engineering from the Indian Institute
of Technology, Delhi in 1999 and the M.S. and
Ph.D. degrees from the University of California, Los
Angeles (UCLA) in 2002 and 2005, respectively.
He was a systems engineer at Biomorphic VLSI
Inc. till 2001. From 2005 to 2006, he was with
the data storage signal processing group at Mar-
vell semiconductor. Since fall 2006, he has been
an Assistant Professor in the ECE department at
Iowa State University. He has interned at Microsoft

Research in summer 2004 and has visited the ECE department at Georgia
Tech, Atlanta in spring 2005. His research interests are in the areas of network
information theory and channel coding.

Steven W. McLaughlin received the B.S. degree
from Northwestern University in 1985, the M.S.E.
degree from Princeton University in 1986, and the
Ph.D. degree from the University of Michigan in
1992, all in electrical engineering. From 1992–1996,
he was on the Electrical Engineering faculty at
the Rochester Institute of Technology. He joined
the School of ECE at Georgia Tech in September
1996 where is now vice provost for International
Initiatives and Ken Byers Professor of ECE. In 2005,
he was president of the IEEE Information Theory

Society. He was also deputy director of Georgia Tech-Lorrain—the European
Campus of the Georgia Institute of Technology—in Metz, France from 2006–
2007.

His research interests are in the general area of communications and
information theory. His research group has on-going projects in the areas of
turbo, LDPC, and constrained codes for magnetic and optical recording; FEC
and equalization for wireless and optical networks; quantum key distribution,
wireless, and RFID security; and theory of error control coding. He has
published more than 200 papers in journals and conferences and holds 26
US patents. He has served as the research and thesis advisor to more than 50
students at the bachelors, masters, doctoral, and post-doctoral levels.

He is a fellow of the IEEE and served as an Associate Editor for coding
techniques for the IEEE TRANSACTION ON INFORMATION THEORY. He
also served as the Publications Editor for that journal from 1995–1999. He
co-edited (with Sergio Verdú) Information Theory: 50 Years of Discovery
(Wiley/IEEE Press, 1999). He has also served on the IEEE Publications
Activities Board (1998–2001) and is a former secretary of the IEEE Atlanta
Section (2000).

Authorized licensed use limited to: Iowa State University. Downloaded on February 23, 2009 at 22:20 from IEEE Xplore. Restrictions apply.

