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Abstract— In recent years performance prediction for commu-
nication systems utilizing iteratively decodable codes has been of
considerable interest. There have been significant breakthroughs
as far as the analysis of LDPC code ensembles is concerned
but the more practical problem of predicting the FER/BER of
a particular code has proved to be much more difficult. In this
work we present a technique (based on the work of Richardson
‘03) for finding lower and upper bounds on the performance of
LDPC coded BICM systems for a given code. The insight gained
from the prediction technique is used to design interleavers that
improve the error floors of these systems.

I. I NTRODUCTION

The performance of iterative coding schemes such as turbo
codes and LDPC codes is well-known to suffer from theerror
floor problem. The performance curve of such codes typically
consists of two different parts. In the low SNR region the
frame error rate (FER)/bit error rate (BER) drop very fast with
increasing SNR. This part of the curve is usually referred toas
the waterfall region. However beyond a certain SNR the slope
of the curve changes and the drop in FER/BER is no longer
as sharp. In particular the irregular LDPC codes introduced
in [1] have an error floor that is much more pronounced than
regular codes [2].

For codes that are decoded using a bounded distance de-
coder (e.g. RS codes) or a maximum likelihood decoder (e.g.
convolutional codes) it is possible to predict the performance
of the code by using the union bound on the probability of
error. This bound is reasonably tight at high SNR. However
for iteratively decoded codes no such clear characterization
of decision boundaries exists and consequently performance
prediction is much harder. It is of great interest to understand
the behavior of iterative decoding and characterize its failure
mechanisms especially in the error floor region. In the con-
text of data storage applications this problem is of utmost
importance because the frame or sector error rate of interest
is typically below10−10.Thus it becomes very important to
have a tool for predicting the FER in the high SNR region.

While there is extensive literature on the asymptotic analysis
of ensembles of codes ([1] [3] [4] among others) that consider
performance bounds in the limit of large block length, the
more practical issue of performance analysis for a given
code has been much harder. The only channel where the
decoding failure has a clear characterization is the binary
erasure channel (BEC). As noted by [5] the iterative decoding
algorithm hits a fixed point if and only if the set of variable

nodes erased by the channel forms a graphical structure called
a stopping set. Thus the problem of estimating the FER of
the code becomes the problem of finding the stopping set
spectrum of the code. For all other channels the problem of
FER prediction is much harder. In [6] Richardson presented a
numerical technique for the prediction of the error floor of an
LDPC code with BPSK modulation over the AWGN channel.
Other approaches that we are aware of include [7] [8] and [9].

In this paper we extend Richardson’s method of error floor
prediction to obtain lower and upper bounds on the frame
error rate of LDPC coded bit interleaved coded modulation
(BICM) [10]. Furthermore we exploit the insight gained from
the prediction technique to design efficient interleavers be-
tween the code and the constellation mapping to further reduce
the error floors.

Error floor prediction for systems using M-ary modulation
and iterative codes is important in storage systems that store
data in multiple levels e.g. M-ary optical storage [11] .
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Fig. 1. System Block Diagram

The organization of the paper is as follows. Section II de-
scribes our technique for performing the error floor prediction
for a LDPC coded BICM system. Results that demonstrate
the accuracy of the technique are also included. Section III
explains the design of the interleaver based on the prediction
technique that is found to have improved error floors and
Section IV concludes the paper.

II. ERRORFLOOR PREDICTION TECHNIQUE

In this section we shall outline our strategy for estimating
the error floor for LDPC coded BICM. The system under
consideration is shown is Fig. 1. We consider only Gray
mapping since this mapping has been found to have the best
performance at medium block lengths [12]. Of course other



strategies such as different symbol mappings with turbo equal-
ization and/or multilevel coding may also be of interest. Work
is currently under progress to perform error floor prediction
for such systems as well.

We would like to begin by pointing out the differences be-
tween the prediction problem for the case of BPSK modulation
and other higher order modulations. There are two main issues
that make the problem more complicated.

1) When we use constellations such asM -PAM the perfor-
mance of the code in general depends on the transmitted
codeword. Thus, we cannot work under the all-zeros
codeword assumption.

2) In the BPSK case there is a unique direction and a noise
threshold value that causes a bit error at a particular po-
sition if the noise pushes the transmitted symbol in that
direction. When we have higher-order modulations this
does not remain true. A bit error on a particular position
can be due to different noise directions and different
noise thresholds. For example suppose that constellation
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Fig. 2. Normalized 8-PAM constellation

point 010 is transmitted from the power normalized 8-
PAM constellation shown in Fig. 2. If the noise affecting
the transmission lies in the region[−3/

√
21,−1/

√
21)

then the hard decision corresponding to the received
value would cause a LSB error, whereas if the noise
acts in the opposite direction (i.e.,lies in the region
(1/

√
21, 3/

√
21]) the hard decision would correspond to

a MSB error. Now fix the noise direction to be negative.
If the noise lies in the region[−5/

√
21,−3/

√
21) then

the hard decision would result in both an intermediate bit
position and a LSB error, whereas if it lies in the region
(−∞,−5/

√
21) it would cause only an intermediate

bit position error. Of course, for Gray-labeled constella-
tions, the average probability that the noise results in a
LSB error is the highest.

We shall use the terminology of trapping sets introduced in
[6] in this paper. Suppose the code hasN variable nodes. Let
the maximum number of iterations of iterative decoding be
denoted byL. Following [6] the iterative decoder is defined
as a sequence of mapsDl(y) : Y → {0, 1}N , l = 1, 2, ..., L.
Here, l denotes the iteration number. Theith decoded bit in
the code shall be denoted byDl(y)[i]. For a given inputy,
the failure setT (y) is the set of bits that are not eventually
correct. If T (y) 6= φ, thenT (y) is called a trapping set. We
also define a type of trapping set which we callstable trapping
set [13].

Definition 1: Stable Trapping Set.A trapping setT (y) is
said to be a stable trapping set ifT (y) 6= φ and DL(y)[i] =
DL−1(y)[i] = .. = DL−η(y)[i] for all i ∈ [0, ..., N − 1] i.e.
the hard decision based on the decoding is the same for the

last η iterations.
In practice we setL = 50 and η = 5. We have observed

experimentally that stable trapping sets are the most dominant
failure mechanism in the error floor region. There are also
other errors that are not stable. However with increasing SNR
we have observed that the fraction of stable errors keeps
increasing and eventually almost all the errors correspond
to stable errors. Since the error floor prediction technique
proceeds by finding the error rate contribution of each trapping
set, concentrating only on stable trapping sets reduces thecom-
plexity of the procedure without sacrificing much accuracy.
We call a stable trapping set dominant if its contribution to
the error floor is large. Our strategy for error floor prediction
shall have two stages.

• Stage 1: In the first stage we attempt to find as many
trapping sets as possible. This can be performed by
techniques recently presented in the literature, e.g., [8].
(Alternatively, for codes with relatively high error floors,
we can simply perform long simulations and collect
stable trapping sets.) Experimentally we have observed
that the dominant trapping sets for the AWGN channel
with BPSK modulation also tend to be the dominant
trapping sets for LDPC coded BICM with higher order
modulations. However the relative contribution of a given
trapping set to the error floor in the two cases tends to
be different.

• Stage 2:Suppose that a candidate list of trapping sets has
been found. The next step is to evaluate the contribution
towards the frame error rate of each trapping set. This is
explained in detail in the next section.

A. Error Probability evaluation for a given trapping set

For a fixed interleaver each variable node in the code
is associated with a particular bit level in the constellation
such as the most-significant bit (MSB) or the least-significant
bit (LSB) or some intermediate position. For each variable
node positionv, let pos(v) denote the bit level at which it
participates. Our convention shall be to let 0 represent theLSB,
log2 M − 1 represent the MSB and the intermediate numbers
represent the intermediate bit levels of the constellation. Let
the functionS : {0, 1, ..., N−1} → {0, 1, ..., [N/ log2 M ]−1}
be the mapping that maps a variable node to its corresponding
constellation point position. For a given transmission we
let Γ(i), i = 0, 1, ..., [N/ log2 M ] − 1 denote the particular
constellation point that was transmitted at locationi. Of course
Γ(i) depends on the transmitted sequence but we do not make
the dependence explicit to keep the notation simple.

Let us denote a given trapping set byT and the subset of
decoder inputs that cause the decoder to fail onT by ξT .
Our objective is to get an estimate ofP (ξT ). This probability
depends on

a) the channel characteristics,
b) the modulation, and
c) the constellation labeling.
We shall present a technique to determine a lower bound on

P (ξT ) for the case of a M-PAM, Gray labeled constellation



TABLE I

CLASSIFICATION OF CONSTELLATION POINTS

Bit Level Bad Good
0 0,1,2,3,4,5,6,7 ·

1 1,3,5,7 0,2,4,6
2 2,6 0,1,3,4,5,7

when the noise is AWGN. Each individual element ofT
shall be represented byxT

i , i = 1, 2, ..., |T |. Thus T =
{xT

1 , xT
2 , ..., xT

|T |}. We can also identify the bit level position
at which eachxT

i participates in aspos(xT
i ).

The first observation we make is that in the high SNR
region it is highly probable that the noise is low enough so
that the received value lies within the decision boundaries
of the neighboring points. e.g. for the normalized 8-PAM
constellation the noise is with very high probability in the
interval [−3/

√
21,+3/

√
21]. Next, for a given labeling the

different bit levels for a given constellation point see different
quality of channels. For example consider the MSB (bit level
2) of point 001 in the Gray mapped 8-PAM constellation
shown in Fig. 2. Under the assumption that errors are nearest
neighbor this MSB will never be in error. However note that
a LSB (bit level - 0) error occurs when the received value is
closer to000 and a bit level - 1 error occurs when the received
value is closer to011.

Analyzing each constellation point in this fashion we can
classify each point asgood or bad for a given bit-levelk
(wherek = 0, 1, 2 in this case) according to whether a bit-
level k error happens when the received point is closer to a
neighboring point. This is shown in Table I.

We proceed by fixing a worst case representative for
the transmitted constellation pointS(xT

i ) for eachxT
i , i =

1, 2, ..., |T | in the transmitted sequence e.g. supposexT
i par-

ticipates as a MSB. Then in the simulations for determining the
error rate contribution ofT we shall always setΓ(S(xT

i )) =
010 or Γ(S(xT

i )) = 110. This is intuitively the right choice
because these constellation points have the maximum proba-
bility of causing a MSB error in the simulations. Therefore
the error floor should have a significant contribution from
transmitted codewords where the worst case representative
occurs. Note that though we can use either010 or 110, once
decided we shall fix the representative to use forΓ(S(xT

i ))
for a particular simulation. So, givenT we first determine
{pos(xT

1 ), pos(xT
2 )..., pos(xT

|T |)} and then fix their represen-
tatives to be used for the corresponding constellation point
positions{S(xT

1 ), S(xT
2 ), ..., S(xT

|T |)} as well. Note that we
assume here that the trapping set size in bits is the same as its
size in PAM symbols, i.e. for all dominant trapping sets the gap
between the coordinates satisfies|xT

i − xT
j | ≥ log2 M, i 6= j,

for all i, j ∈ {1, ..., |T |}. This is, in fact, a mild assumption as
it is not difficult to construct codes that satisfy this constraint.
Moreover, most of the well-known codes (e.g., the MacKay
(1008,504) code [14]) have this property. In the simulation,
the remaining transmitted constellation points were chosen at

random and the decoding was performed in the appropriate
coset of the transmitted sequence. This was done to avoid the
complexity of performing encoding for each transmission.

Consider the noise vector of dimension|T | that acts on
the corresponding constellation points. Note that once the
representatives have been fixed for each constellation point we
can find a|T |-dimensional vector that indicates the direction
in which the noise should act so that the probability of error
on T is maximum. Our strategy shall be to condition on the
value of this noise vector in a carefully chosen direction. For
example suppose the trapping set is such that its worst case
representatives are[010 011 101 010] and we want the noise
to cause errors in bit levels2, 1, 0 and2 respectively. Then the
normalized direction of the noise should be[+1 − 1 + 1 +
1]/

√
4.

Suppose the noise vector onT is denoted by
(n1, n2, ..., n|T |). As above, based on the bit levels that
we want the errors to be at, an orthonormal direction vector
can be identified that we denote asd̄ = (d1, d2, ..., d|T |). We
can also find|T |−1 orthonormal vectors̄b2, b̄3, ..., b̄|T | so that
along with d̄ they complete the|T |-dimensional orthonormal
basis. Then

(n1, n2, ..., n|T |) = γd̄ +

|T |
∑

i=2

δib̄i (1)

As in [6] we condition on the value ofγ since we expect
the component of the noise along the directiond̄ to be largely
responsible for decoder failure. LetAT = {Γ(S(xT

1 )) =
r′1,Γ(S(xT

2 )) = r′2, ...,Γ(S(xT
|T |)) = r′|T |} denote the event

that the worst case representatives have been chosen for the
each of the bits inT . Then we have

P (ξT |AT ) = Eγ [P (ξT |AT , γ)]

=

∫ ∞

−∞
P (ξT |AT , γ = x) × 1√

2πσ2
e−

x
2

2σ2 dx

(2)

whereσ2 is the variance of the AWGN noise.
The factorP (ξT |AT , γ = x) is determined by simulation

whereas the multiplicative factor 1√
2πσ2

e−
x
2

2σ2 is available
analytically. In the simulation we count only those failures
that occur onT . While getting an estimate of this integral, one
usually also finds more trapping sets that can be added to the
list. We refer the reader to [6] for a more detailed explanation
of this part of the work.

The previous process enables us to obtain an accurate
estimate ofP (ξT |AT ). However we are actually interested
in

P (ξT ) =
∑

{r1,...,r|T |}∈ΩT

P (ξT |Γ(S(xT
1 )) = r1, ...,Γ(S(xT

|T |)) = r|T |)

× P (Γ(S(xT
1 )) = r1, ...,Γ(S(xT

|T |)) = r|T |)
(3)

where ΩT = {{r1, r2, ...rT } : Γ(S(xT
1 )) =

r1, ...,Γ(S(xT
|T |)) = r|T |} is the set that contains all



TABLE II

DOMINANT TRAPPING SETS AND THEIR ERROR RATE CONTRIBUTIONS FOR

THE MACKAY (1008,504)CODE

Trapping Set σ2 = 0.0447 σ2 = 0.0398

70 286 430 516 853 937 1.67e-06 8.09e-07
98 329 418 594 696 884 1.32e-07 6.95e-08

61 199 220 321 435 510 904 971 1.03e-06 4.48e-07
198 222 239 262 294 643 686 792 897 976 2.98e-07 1.01e-07
76 235 239 274 288 332 468 964 979 985 3.7e-08 1.38e-08

possible constellation point choices for the locations
S(xT

1 ), S(xT
2 ), ..., S(xT

|T |). Note that typically|ΩT | = M |T |.
As explained previously the different constellation points

can be grouped intogood and bad categories as shown in
Table I for 8-PAM. This categorization enables us to partition
the setΩT into a total of2|T | disjoint subsetsBi, i = 1, ..., 2|T |

such that∪iBi = ΩT . Let Rj
i denote a member ofBi. We

observe that in the high SNR region, based on our assumption
of nearest neighbor errors, the error rate contribution

P (ξT |Rj
i ) ≈ pi ∀Rj

i ∈ Bi (4)

i.e. we expect all members of a particularBi to have approx-
imately the same error rate contribution.

Suppose we let the worst case subset be denoted byB1. As
explained earlier by choosing a representativeAT ∈ B1 we
can determine its error rate contribution. Then we have

P (ξT ) ≥ P (ξT |AT ) × |B1|
|ΩT |

(5)

To improve our lower bound we can also choose subsets
other than the worst case subset and find the error rate
contribution of a representative from those subsets. This should
yield a tighter lower bound. For example instead of choosing
all representatives to be bad such as inB1 we can choose one
representative to be good and the remaining to be bad. We
expect the error rate contribution of such a subset to be lower
than B1. The tightness of the lower bound will depend in
general on the number of different subsets for which the error
rate contribution is computed. Thus there is a tradeoff between
the tightness of the bound and the complexity of computing
it.

1) An Example: We shall now demonstrate the entire
process by means of an example. Consider the MacKay
(1008, 504) code available at [14] driving a Gray mapped
8-PAM constellation sketched in Fig. 2 with no interleaver
between the code and the constellation mapper. Table II
contains a list of dominant stable trapping sets and their error
rate contributions based on the worst case representativesfor
two SNR points.

Consider the trapping setT = {70 286 430 516 853 937}.
The functionS defined above is such that{x : x = S(t), t ∈
T} = {23 95 143 172 284 312} and {y : y = pos(t), t ∈
T} = {1 1 1 0 1 1}. From Table I we can pick the set of
representatives as{011 011 011 101 011 011}. Based on the
representatives chosen we can choose the directiond̄ as[−1 −
1 −1 +1 −1 −1]/

√
6. Then proceeding as explained above

we can estimateP (ξT |AT ). Now observe that corresponding
to the6 transmitted constellation points for this trapping set,
there are a total of86 possibilities. It is also clear that based
on the classification in Table I that there are45 × 8 transmit
patterns that are equivalent to the one that we performed the
simulation with under the nearest neighbor error assumption.
Therefore we have

P (ξT ) ≥ 45 × 8

86
P (ξT |A) (6)

In fact intuitively we do not expect this lower bound to be too
weak since most of the terms that contribute strongly to the
overall failure rate have been captured.

B. Overall Error Probability

The procedure explained in the previous section shall be
applied to each trapping set in the list. The number of
dominant trapping sets is typically not very large and thus
the complexity remains manageable.

1) Lower Bound: Let the trapping sets be denoted
T1, T2, ..., Tk and AT1

, AT2
, ..., ATk

denote the correspond-
ing worst case representatives andBT1

1 ⊆ ΩT1
, BT2

1 ⊆
ΩT2

, ...BTk

1 ⊆ ΩTk
be the worst case subsets. Then the lower

bound on the frame error rate in the error floor region is given
by

FER ≥
k

∑

i=1

P (ξTi
|ATi

) · |B
Ti

1 |
|ΩTi

| (7)

As explained before this lower bound can be improved if for
eachTi we also choose representatives that are not worst case.

2) Upper Bound: In the discussion so far we have been
concentrating on obtaining lower bounds on the FER contri-
bution of a given trapping setT by ignoring the contribution of
subsets ofΩT that are not expected to contribute significantly
to the FER. However our strategy can be used to provide
meaningful upper bounds on the error rate contribution of
T as well. To see this suppose thatΩT = ∪iBi. Let B1

be the worst case subset andAT1
be the corresponding

worst case representative. Suppose we haveβ second worst
subsets where one representative is chosen to be good and
all the others are chosen to be bad. Let these be denoted by
B2, ..., Bβ+1 and letA2

T , ..., Aβ+1
T be the corresponding worst

case representatives. Suppose we have computedP (ξT |AT )
andP (ξT |A2

T ), ..., P (ξT |Aβ+1
T ) and

q = max
j=2,...,β+1

P (ξT |Aj
T ) (8)

Now if we assume that the error rate contribution of all
subsets inΩT − ∪β+1

i=1 Bi is at mostq, then we have

P (ξT ) ≤ P (ξT |AT )
|B1|
|ΩT |

+

β+1
∑

j=2

P (ξT |Aj
T )

|Bj |
|ΩT |

+ q

(

1 −
β+1
∑

k=1

|Bk|
|ΩT |

)

(9)

Once again this upper bound can be made tighter based on
the number of different subsets for which we find the error
rate contribution.
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Fig. 3. Simulated and predicted lower and upper bound performance results
for the R = 1/2 Mackay(1008, 504) code driving an 8-PAM constellation.

C. Results

1) A Regular Code Example:We simulated the perfor-
mance of the Mackay(1008, 504) code with an 8-PAM
constellation. The log-likelihood ratios were computed for
each bit based on the received point and the decoding was
performed by using the sum-product algorithm. The x-axis is
labeled by the variance of the white Gaussian noise that was
added to each transmitted point. To avoid the complexity of
encoding each transmission, we performed the simulation by
generating transmitted codewords at random and decoding in
the appropriate coset. The results are plotted in Fig. 3.

The red curve marked “Simulated FER” is the simulated
frame error rate of the code. This includes all errors. The blue
curve is the error rate of stable trapping sets (see definition
1). We observe that the simulated FER is hitting an asymptote
that is determined by the simulated stable FER i.e. as the SNR
keeps increasing the fraction of stable errors keeps growing.
The two black curves show the lower bound on the error floor
based on the procedure we outlined in the previous section.
We collected a list of stable trapping sets and computed the
contribution of the error rate of each trapping set at the marked
SNR points. The dotted black curve is the prediction based
only on the worst case representatives for each trapping set.
The solid black curve also computes the contribution of a
trapping set when one representative is good and all others
are bad. The green curve is an upper bound computed by the
procedure outlined in the previous subsection. It can be seen
that both the lower and the upper bounds track the simulated
stable error rate of the system fairly closely.

2) An Irregular Code Example:As another way to demon-
strate the validity of the proposed approach, we simulated an
irregular rate-1/2 quasi-cyclic code with block lengthN =
1008 driving an 8-PAM constellation. The code was con-
structed using the degree distribution from [1] with maximum
column weight6. The size of circulants was set toSC = 12.
Among the dominant trapping sets of this code are the three

TABLE III

THREE TRAPPING SET CLASSES AND THEIR ERROR RATE CONTRIBUTIONS

FOR THE IRREGULAR(1008,504)CODE AT σ2 = 0.0502

lower
Class Trapping Set (Class representative) bound simulated

ClassTI 204 273 286 482 515 520 554 597 745 759 2.4e-6 3.5e-6
pos(t) 0 0 1 2 2 1 2 0 1 0

ClassTII 205 274 287 483 504 521 555 598 746 760 1.2e-6 1.7e-6
pos(t) 1 1 2 0 0 2 0 1 2 1

ClassTIII 206 275 276 484 505 522 556 599 747 761 6.0e-7 8.1e-7
pos(t) 2 2 0 1 1 0 1 2 0 2

sets listed in Table III. These trapping sets are circular shifts
of each other. (AllSC circular shifts of a trapping set would
have the same error rate contribution for the case of the BPSK
modulation, but this is not true for higher order modulations.)
Given that the symbol size dividesSC , we can group trapping
sets into three classes where each class containsSC/3 = 4
trapping sets. Representatives of these classes are given in
Table III. For example, for all sets in classTI: 3 variable nodes
participate as MSB bits, 3 as intermediate bits and 4 as LSB
bits. Thereby, the members of a given class have the same
error rate contribution. Noting that the termP (ξT |AT ) is the
same for all sets in Table III, the ratios between the error rate
contributions in the lower bound in (5) areBTI/BTII/BTIII =
(23 × 43 × 84)/(23 × 44 × 83)/(24 × 43 × 83) = 4/2/1.
Comparing these expected ratios to the ratios between the
actual error rates (computed using Monte-Carlo simulations
and counting the number of stable errors on given trapping
sets), we see that they are almost exactly the same. Hence,
this also validates the assumptions leading to the bound in (5).

III. I NTERLEAVER DESIGN

The results of the previous section suggest that the bounds
that we have presented earlier are non-trivial lower and upper
bounds on the error floor for LDPC coded BICM. This
naturally leads us to the question of whether the analysis can
suggest a design strategy for codes with low error floors. One
technique would be to avoid as many trapping sets as possible
in the code. We shall not deal with this issue in this paper. Our
design is motivated by the observation that in the case when we
use higher order modulations different bit-levels have different
reliabilities and we should be able to exploit this by changing
the mapping between the constellation mapping and the code
bits i.e. by designing the interleaver.

Note that every term in the bound in (7) depends on two
quantities.

1) The termP (ξTi
|ATi

) which is the probability of failing
on a given trapping setTi assuming that the worst case
constellation symbols were transmitted. This term is
dependent upon the structure of the parity check matrix
of the LDPC code and the specific iterative decoding
algorithm used in the system.
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Fig. 4. Performance improvement gained by a proper design of theinterleaver
between the LDPC code and the constellation mapping.

2) The weighting factor associated with eachP (ξTi
|ATi

)
term that depends on the bit levels in which a particular
trapping set participates. This term depends upon the
interleaver under use. For example ifTi has all its bits
coming from LSB’s then its weighting factor shall be
1. However by changing the interleaver so that the bits
in the trapping set are mapped to MSB’s we can reduce
the weighting factor substantially. This should reduce the
contribution of this particular trapping set to the overall
frame error rate.

We have then following algorithm to design the interleaver
1) Find the dominant trapping sets in the error floor region.

Let these be denotedT1, T2, ..., Tk.
2) Change the interleaver mapping such that all variable

nodes in∪k
i=1Ti are mapped to MSB’s in some constel-

lation point.
We have not observed any new trapping sets when a dif-

ferent interleaver is used. However a change in the interleaver
could make certain trapping sets whose contribution to the
FER in the original interleaver was low to become more
dominant. Therefore a prediction of the improved error floor
based on simply changing the weighting factors in (7) would
be inaccurate. Experimentally we have observed that it is
good to target only the most dominant trapping sets, thus not
significantly changing the original interleaver.

A. Simulation Results

In this section we present the results obtained by the
design of the interleaver between the LDPC code and the
constellation mapper as explained in the previous section.
All the curves are based on simulation i.e. we did not use
the prediction technique presented earlier to generate anyof
these curves. The curves in red in Figure 4 correspond to
the Mackay (1008,504) code driving a 8-PAM constellation
with no interleaver between the code and the mapper. The
curves in blue correspond to the best interleaver obtained by

remapping the bits associated with the five most dominant
trapping sets that we identified for the code. At a noise
varianceσ2 = 0.0447 we observe that the stable error rate
curve for the interleaved code is about an order of magnitude
below the stable error rate curve for the non-interleaved code.
Based on our previous observations and discussions this also
implies that the error floor asymptote for the interleaved code
shall be much lower than the non-interleaved code i.e. with
increasing SNR the gap between the two curves shall keep
increasing. However at lower SNR’s where stable errors are
not the dominant mechanism the net improvement in the FER
is not much. The interleaver design strategy that we propose
can therefore be used to obtain performance gain in the error
floor after performance optimization for other metrics suchas
a steep waterfall.

IV. CONCLUSION

The problem of error floor prediction for BICM systems
using LDPC codes was addressed. We extended the technique
introduced by Richardson [6] to compute lower and upper
bounds on the performance of these systems when a Gray-
mapped constellation is used. An interleaver design strategy
based on the prediction technique was developed that improves
the error floors of these systems. Future work would involve
developing prediction techniques for systems utilizing differ-
ent labeling with and without turbo-equalization.
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