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Abstract— In recent years performance prediction for commu- nodes erased by the channel forms a graphical structuesdcall
nication systems utilizing iteratively decodable codes has been of 3 stopping set. Thus the problem of estimating the FER of
considerable interest. .There have been significant brgakthrough dlhe code becomes the problem of finding the stopping set
as far as the analysis of LDPC code ensembles is concerne
but the more practical problem of predicting the FER/BER of spectrum ,Of_ the_ code. For all other Chgnnels the problem of
a particular code has proved to be much more difficult. In this FER prediction is much harder. In [6] Richardson presented a
work we present a technique (based on the work of Richardson numerical technique for the prediction of the error floor of a
‘03) for finding lower and upper bounds on the performance of | DPC code with BPSK modulation over the AWGN channel.
LDPC coded BICM systems for a given code. The insight gained qiher approaches that we are aware of include [7] [8] and [9].
from the prediction technique is used to design interleavers that In thi tend Richard \ thod of fl
improve the error floors of these systems. n this paper we exten Ichardson's method or error floor

prediction to obtain lower and upper bounds on the frame
l. INTRODUCTION error rate of LDPC coded bit interleaved coded modulation

The performance of iterative coding schemes such as turf®CM) [10]. Furthermore we exploit the insight gained from
codes and LDPC codes is well-known to suffer from éneor  the prediction technique to design efficient interleavees b
floor problem The performance curve of such codes typicalltjween the code and the constellation mapping to furtheradu
consists of two different parts. In the low SNR region théhe error floors.
frame error rate (FER)/bit error rate (BER) drop very fasgtwi  Error floor prediction for systems using M-ary modulation
increasing SNR. This part of the curve is usually referredso and iterative codes is important in storage systems thag sto
the waterfall region. However beyond a certain SNR the sloplata in multiple levels e.g. M-ary optical storage [11] .
of the curve changes and the drop in FER/BER is no longer

as sharp. In particular the irregular LDPC codes introduced Constellation T
in [1] have an error floor that is much more pronounced thant  LDPC Encoder —— | Mapper
regular codes [2].

n

For codes that are decoded using a bounded distance de
coder (e.g. RS codes) or a maximum likelihood decoder (e.g.
convolutional codes) it is possible to predict the perfanoea ) Constellation
of the code by using the union bound on the probability 6f-{ Lopcpecoder [ |1 Demapper
error. This bound is reasonably tight at high SNR. However
for iteratively decoded codes no such clear charactevizati
of decision boundaries exists and consequently perforeanc
prediction is much harder. It is of great interest to unaardt
the behavior of iterative decoding and characterize iteifai ~ The organization of the paper is as follows. Section Il de-
mechanisms especially in the error floor region. In the coseribes our technique for performing the error floor predict
text of data storage applications this problem is of utmo&ir a LDPC coded BICM system. Results that demonstrate
importance because the frame or sector error rate of itterége accuracy of the technique are also included. Section Il
is typically below 10~1°.Thus it becomes very important toexplains the design of the interleaver based on the predicti
have a tool for predicting the FER in the high SNR region.technique that is found to have improved error floors and

While there is extensive literature on the asymptotic amglysSection IV concludes the paper.
of ensembles of codes ([1] [3] [4] among others) that conside
performance bounds in the limit of large block length, the
more practical issue of performance analysis for a givenlin this section we shall outline our strategy for estimating
code has been much harder. The only channel where the error floor for LDPC coded BICM. The system under
decoding failure has a clear characterization is the binacgnsideration is shown is Fig. 1. We consider only Gray
erasure channel (BEC). As noted by [5] the iterative deapdimapping since this mapping has been found to have the best
algorithm hits a fixed point if and only if the set of variableperformance at medium block lengths [12]. Of course other

Fig. 1. System Block Diagram

Il. ERRORFLOOR PREDICTION TECHNIQUE



strategies such as different symbol mappings with turb@kqulast » iterations.

ization and/or multilevel coding may also be of interest.riVo  In practice we sef. = 50 andn = 5. We have observed

is currently under progress to perform error floor predittioexperimentally that stable trapping sets are the most damhin

for such systems as well. failure mechanism in the error floor region. There are also
We would like to begin by pointing out the differences beether errors that are not stable. However with increasin@® SN

tween the prediction problem for the case of BPSK modulatiame have observed that the fraction of stable errors keeps

and other higher order modulations. There are two main sssuscreasing and eventually almost all the errors correspond

that make the problem more complicated. to stable errors. Since the error floor prediction technique

1) When we use constellations suchdsPAM the perfor- Proceeds by finding the error rate contribution of each trapp
mance of the code in general depends on the transmitf&&}. concentrating only on stable trapping sets reduce=otne
codeword. Thus, we cannot work under the all-zerddexity of the procedure without sacrificing much accuracy.
codeword assumption. We call a stable trapping set dominant if its contribution to
In the BPSK case there is a unique direction and a noie error floor is large. Our strategy for error floor predinti
threshold value that causes a bit error at a particular pgall have two stages.

sition if the noise pushes the transmitted symbol in that e Stage 1:In the first stage we attempt to find as many

2)

direction. When we have higher-order modulations this
does not remain true. A bit error on a particular position
can be due to different noise directions and different
noise thresholds. For example suppose that constellation

trapping sets as possible. This can be performed by
techniques recently presented in the literature, e.g., [8]
(Alternatively, for codes with relatively high error flogrs
we can simply perform long simulations and collect

stable trapping sets.) Experimentally we have observed
that the dominant trapping sets for the AWGN channel
with BPSK modulation also tend to be the dominant

110 111 101

i i i . i i i i
=7 =5 =3 =1 1 3 5 T
vzl V21 Vel VI ‘ o Ym Um vn trapping sets for LDPC coded BICM with higher order

modulations. However the relative contribution of a given
trapping set to the error floor in the two cases tends to
be different.

« Stage 2:Suppose that a candidate list of trapping sets has
been found. The next step is to evaluate the contribution
towards the frame error rate of each trapping set. This is
explained in detail in the next section.

Fig. 2. Normalized 8-PAM constellation

point 010 is transmitted from the power normalized 8-
PAM constellation shown in Fig. 2. If the noise affecting
the transmission lies in the regidn-3/1/21, —1//21)
then the hard decision corresponding to the received
value would cause a LSB error, whereas if the noise - ) _ )
acts in the opposite direction (i.e.lies in the regioﬁ‘- Error Probability evaluation for a given trapping set
(1/+/21,3/+/21]) the hard decision would correspond to For a fixed interleaver each variable node in the code
a MSB error. Now fix the noise direction to be negativeis associated with a particular bit level in the constediati

If the noise lies in the regiof-5/1/21, —3/+/21) then such as the most-significant bit (MSB) or the least-significa
the hard decision would result in both an intermediate Biit (LSB) or some intermediate position. For each variable
position and a LSB error, whereas if it lies in the regiomode positionv, let pos(v) denote the bit level at which it
(—o0, —5/+/21) it would cause only an intermediateparticipates. Our convention shall be to let O represent 8,

bit position error. Of course, for Gray-labeled constelldog, M — 1 represent the MSB and the intermediate numbers
tions, the average probability that the noise results inrepresent the intermediate bit levels of the constellaticet

LSB error is the highest. the functionS : {0,1,..., N—1} — {0,1,...,[N/logy, M]—1}

We shall use the terminology of trapping sets introduced R the mapping that maps a variable node to its corresponding
[6] in this paper. Suppose the code hsisvariable nodes. Let constellation point position. For a given transmission we
the maximum number of iterations of iterative decoding bgt I'(i).i = 0,1,...,[N/log, M] — 1 denote the particular
denoted byL. Following [6] the iterative decoder is definedconstellation point that was transmitted at locatio®f course
as a sequence of mags'(y) : Y — {0,1}V,1 =1,2,.... L. I'(7) depends on the transmitted sequence but we do not make
Here, [ denotes the iteration number. Tké decoded bit in the dependence explicit to keep the notation simple.
the code shall be denoted ky'(y)[i]. For a given inputy, ~ Let us denote a given trapping set yand the subset of
the failure setT(y) is the set of bits that are not eventuallydecoder inputs that cause the decoder to failZomy ¢
correct. If T'(y) # ¢, thenT(y) is called a trapping set. We Our objective is to get an estimate BY¢r). This probability
also define a type of trapping set which we aa#ible trapping depends on
set[13]. a) the channel characteristics,

Definition 1: Stable Trapping Sef trapping setT'(y) is  b) the modulation, and
said to be a stable trapping set@{y) # ¢ and D*(y)[i{] =  ¢) the constellation labeling.

DE-Y(y)[i] = .. = DE="(y)[i] for all i € [0,...,N — 1] i.e. We shall present a technique to determine a lower bound on
the hard decision based on the decoding is the same for A&) for the case of a M-PAM, Gray labeled constellation



TABLE |

random and the decoding was performed in the appropriate
CLASSIFICATION OF CONSTELLATION POINTS

coset of the transmitted sequence. This was done to avoid the
complexity of performing encoding for each transmission.

Bit Level Bad Good Consider the noise vector of dimensid¢fi| that acts on
‘; 0’112';";"75'6’7 0546 the corresponding constellation points. Note that once the
2 26 013457 representatives have been fixed for each constellatiort pain

can find a|T’|-dimensional vector that indicates the direction
in which the noise should act so that the probability of error
on T is maximum. Our strategy shall be to condition on the
value of this noise vector in a carefully chosen directioor F
example suppose the trapping set is such that its worst case
representatives arf®10 011 101 010] and we want the noise

to cause errors in bit levels 1,0 and2 respectively. Then the

The first observation we make is that in the high SNRyrmalized direction of the noise should bel —1 +1 +
region it is highly probable that the noise is low enough SO/ /4.

that the received value lies within the decision boundarieSSuppose the noise vector orf’ is denoted by
of the neighboring points. e.g. for the normalized 8-PANl,, 1, .. n ;). As above, based on the bit levels that
constellation the noise is with very high probability in thgue want the errors to be at, an orthonormal direction vector
interval [-3/v21,+3/v21]. Next, for a given labeling the can be identified that we denote ds= (di, ds, ..., dj7|). We
different bit levels for a given constellation point sedfeiént can also find 7| — 1 orthonormal vectorss, bs, .., byr| SO that
quality of channels. For example consider the MSB (bit levglong with d they complete theT'|-dimensional orthonormal
2) of point 001 in the Gray mapped 8-PAM constellationyssis. Then
shown in Fig. 2. Under the assumption that errors are nearest 7|
neighbor this MSB will never be in error. However note that o 0 —nd N

. . . 11, N2, -, ) = vd+ ) 0ib; 1
a LSB (bit level - 0) error occurs when the received value is (1,2 i) =7 ; o @
closer to000 and a bit level - 1 error occurs when the received : iy .

As in [6] we condition on the value of since we expect

value is (?Ioser t@1l. ) o . . the component of the noise along the directibto be largely
Analyzing each constellation point in this fashion we CaFésponsibIe for decoder failure. Lety = {T'(S(aT)) =

classify each point agood or bad for a given bit-levelk 0(S@T)) = 7, 7F(S(I‘7}‘)) _ T\IT\} denote the event

. . . . 1
(wherek = 0,1,2 in this case) according to whether a bityat the worst case representatives have been chosen for the
level & error happens when the received point is closer t0 & .1 of the bits iff”. Then we have

neighboring point. This is shown in Table I.
o . P(ér|Ar) = E,[P(&r]|A
We proceed by fixing a worst case representative for (&rlA7) 2 [P(ErlAr, )]

when the noise is AWGN. Each individual element Bf

shall be represented by? i = 1,2,..,|T|. Thus T =
{z{, 2§, ...,2fp}. We can also identify the bit level position

at which eache! participates in agos(z7).

%

the transmitted constellation poirtt(z!) for eachx?,i = :/ P(¢r|Ar,y = z) x ! e dr
1,2,...,|T| in the transmitted sequence e.g. suppo$epar- —o0 V2ro?

ticipates as a MSB. Then in the simulations for determinieg t )
error rate contribution of” we shall always sef(S(z])) = whereo? is the variance of the AWGN noise.

010 or T'(S(x])) = 110. This is intuitively the right choice  The factor P(¢7|Ar,y = z) is determined by simulation

because these constellation points have the maximum propac. .-« the multiplicative factor-—e¢ 3-= is available

bility of causing a MSB error in the simulations. Therefor%nalytically. In the simulation we count only those failsire

the error floor should have a significant contribution fro at occur oriT’. While getting an estimate of this integral, one
transmitted codewords where the wor§t case representaﬂ\é%a”y also finds more trapping sets that can be added to the
occurs. Note that though we can use eitb&d or 110, once

. ! : list. We refer the reader to [6] for a more detailed explaorati
decided we shall fix the representative to use fo6(x7)) [6] P

; foul imulati S Vel first determi of this part of the work.
ora pTar cu arTS|mua|onT. 0. giVell We TSt determine — rpq ‘nrevious process enables us to obtain an accurate
{pos(x1), pos(x3)..., pos(z )} and then fix their represen-

. . . estimate of P(ér|Ar). However we are actually interested
tatives to be used for the corresponding constellauontpom (&rlAr) y

positions {S(a1), S(z3), ..., S(x{y)} as well. Note that we

assume here that the trapping set size in bits is the samg asfi)t(fT) -

size in PAM symbols, i.e. for all dominant trapping sets tap g Z P(&r|D(S(zT)) =r1, ey F(S(x‘TT‘)) =77])
between the coordinates satisfie$ — 2] | > logy M,i # j,  {ri,..rz}e0r

foralli,j € {1,...,[T'[}. Thisis, in fact, a mild assumption as PI(S@T)) = 71, T(S@T)) = 7))
it is not difficult to construct codes that satisfy this coast. ! o I I 3)
Moreover, most of the well-known codes (e.g., the MacKay

(1008,504) code [14]) have this property. In the simulatiowvhere Qp = {{ry,ro,..rr} :  T(S(@])) =
the remaining transmitted constellation points were chase 71, .-.,F(S(I‘TT‘)) = 7} is the set that contains all



TABLE I
DOMINANT TRAPPING SETS AND THEIR ERROR RATE CONTRIBUTIONS FO
THE MACKAY (1008,504)coDE

we can estimaté’ (7| Ar). Now observe that corresponding
to the 6 transmitted constellation points for this trapping set,
there are a total o8% possibilities. It is also clear that based
on the classification in Table | that there arex 8 transmit
Trapping Set 02 =0.0447 o2 =0.0398 patterns that are equivalent to the one that we performed the
simulation with under the nearest neighbor error assumptio

70 286 430 516 853 937 1.67e-06 8.09e-07
98 329 418 594 696 884 1.32e-07 6.95e-08 Therefore we have
61 199 220 321 435 510 904 971 1.03e-06 4.48¢-07 45 % 8
198 222 239 262 294 643 686 792 897 976 2.98e-07 1.01e-07 P(er) > X P(er|A) (6)
76 235 239 274 288 332 468 964 979 985 3.7e-08 1.38e-08 T)Z T

86
In fact intuitively we do not expect this lower bound to be too
possible constellation point choices for the locationseak since most of the terms that contribute strongly to the
S(at), S(x3), .., S(x}p). Note that typically|Qr| = MITI. overall failure rate have been captured.
As explained p.reV|0ust the different cc_)nstellatlon pellntB. Overall Error Probability
can be grouped intgood and bad categories as shown in
Table | for 8-PAM. This categorization enables us to pantiti

The procedure explained in the previous section shall be
applied to each trapping set in the list. The number of

the set) into a total of2!”! disjoint subsets3;, i = 1, ..., 27| . ) : ;
such thatU, B; — Q. Let &/ denote a member oB;. We dominant trapping sets is typically not very large and thus
L ' . g Qq complexity remains manageable.

observe that in the high SNR region, based on our assumpt} ) Lower Bound: Let the frapping sets be denoted

of nearest neighbor errors, the error rate contribution
9 ‘ ‘ T, Ts,...,T, and Ap,, Ar,, ..., Ay, denote the correspond-
P(¢r|R)) ~p; VR! € B; (4) ing worst case representatives am{' C Qg ,B? C
Qrp,,...By* C Qr, be the worst case subsets. Then the lower
bound on the frame error rate in the error floor region is given

by

i.e. we expect all members of a particul@y to have approx-
imately the same error rate contribution.

Suppose we let the worst case subset be denotds bAs k BT
explained earlier by choosing a representatite € B; we FER > ZP(é-Ti Ar,) - |B1 7)
can determine its error rate contribution. Then we have i—1 €2z, |

| B1 | (5) As explained before this lower bound can be improved if for
Q eachT; we also choose representatives that are not worst case.
T

. 2) Upper Bound:In the discussion so far we have been
To improve our lower bound we can also choose subsets : L .
: concentrating on obtaining lower bounds on the FER contri-
other than the worst case subset and find the error rate. : . . . oo
- . . ution of a given trapping sét by ignoring the contribution of
contribution of a representative from those subsets. Tiosls . C
) ) . . subsets of)r that are not expected to contribute significantly
yield a tighter lower bound. For example instead of choosi

all representatives to be bad such afBinwe can choose oneq8 the FER. However our strategy can be used to provide

. - eaningful upper bounds on the error rate contribution of
representative to be good and the remaining to be bad. €15 well. To see this suppose thay — U, B;. Let B,

expect the error rate contribution of such a subset to bel’|0V\bee the worst case subset anth. be the correspondin
than B;. The tightness of the lower bound will depend in ! P 9

general on the number of different subsets for which thererrvc\)lOrSt case representative. Suppose we hawecond worst

rate contribution is computed. Thus there is a tradeoff betw subsets where one representative is chosen to be good and
the tightness of the bound and the complexity of computi all the others are chosen to b? bad. Let these bg denoted by
it ngg, ..., Bgy1 and letAZ, ... A?f“ be the corresponding worst

1) An Example: We shall now demonstrate the entirecizzreprzzentatnlges. S:ﬁpﬂos;an\éve have compited|Ar)
process by means of an example. Consider the MacK%y (&rlA7), .. P(er|Ar") 4

(1008,504) code available at [14] driving a Gray mapped ¢=_max 1P(g;p|AZ[) (8)
8-PAM constellation sketched in Fig. 2 with no interleaver =2t

between the code and the constellation mapper. Table Now if we assume that the error rate contribution of all

P(r) > P(§r|Ar) x

contains a list of dominant stable trapping sets and their er SUbsets if2y — U B, is at mostg, then we have

rate contributions based on the worst case representdtives B B+1 1B

two SNR points. P(gr) < P(er|Ar) i + > P(¢r| A7) 165
Consider the trapping sét — {70 286 430 516 853 937}. Qr] = 2| ©

The functionS defined above is such thét : = = S(t),t € p+1 |By|

T} = {23 95 143 172 284 312} and{y : y = pos(t),t € +q<1 - Z Q—T|>

T} =4{11101 1}. From Table | we can pick the set of k=1

representatives af)11 011 011 101 011 011}. Based on the  Once again this upper bound can be made tighter based on
representatives chosen we can choose the diredtami—1 —  the number of different subsets for which we find the error
1 —1 +1 —1 —1]/+/6. Then proceeding as explained aboveate contribution.



TABLE Il
10 ! ! ! = ! THREE TRAPPING SET CLASSES AND THEIR ERROR RATE CONTRIBUTIGN
—©— Simulated FER
—6— Simulated stable FER FOR THE IRREGULAR(1008,504)cODE AT o2 =0.0502
—<— Lower Bound 1

— % — Lower Bound 2
—+&—— Upper Bound

: . . lower
103} ; ; ; : E Class Trapping Set (Class representative) bound  simulated

ClassT 204 273 286 482 515 520 554 597 745 759  2.4e-6 3.5e-6

E10_4' ] pos(t) o 01 2 2 1 2 0 1 O
ClassTir 205 274 287 483 504 521 555 598 746 760  1.2e-6 1.7e-6
5 pos(t) 1 1 2 0 0 2 0 1 2 1
10 “F E
ClassTir 206 275 276 484 505 522 556 599 747 761 6.0e-7 8.le-7
pos(t)y 2 2 0 1 1 0 1 2 0 2
10°F )
7 ; ; . . ‘ . . . L
10,065 0.06 0.055 005 0045 004 sets listed in Table Il .These trapping sets are circuldfitssh
SNR of each other. (AllS¢ circular shifts of a trapping set would

have the same error rate contribution for the case of the BPSK

Fig. 3. Simulated and predicted lower and upper bound perfacmeesults modulation, but this is not true for higher order modulagign
for the R = 1/2 Mackay (1008, 504) code driving an 8-PAM constellation. Given that the symbol size divide%-, we can group trapping
sets into three classes where each class confing = 4
trapping sets. Representatives of these classes are given i

1) A Regular Code ExampleWe simulated the perfor- Table Ill. For example, for all sets in cla$s: 3 variable nodes
mance of the Mackay(1008,504) code with an 8-PAM participate as MSB bits, 3 as intermediate bits and 4 as LSB
constellation. The log-likelihood ratios were computed fdits. Thereby, the members of a given class have the same
each bit based on the received point and the decoding veasor rate contribution. Noting that the terf(¢r|Ar) is the
performed by using the sum-product algorithm. The x-axis game for all sets in Table lll, the ratios between the errt® ra
labeled by the variance of the white Gaussian noise that wasntributions in the lower bound in (5) arg’t /BTt / BT —
added to each transmitted point. To avoid the complexity (2% x 4% x 8%)/(23 x 4% x 83)/(2* x 43 x 83%) = 4/2/1.
encoding each transmission, we performed the simulation 8pmparing these expected ratios to the ratios between the
generating transmitted codewords at random and decodingattual error rates (computed using Monte-Carlo simulation
the appropriate coset. The results are plotted in Fig. 3.  and counting the number of stable errors on given trapping

The red curve marked “Simulated FER” is the simulatesets), we see that they are almost exactly the same. Hence,
frame error rate of the code. This includes all errors. The blthis also validates the assumptions leading to the boung)in (
curve is the error rate of stable trapping sets (see definitio
1). We observe that the simulated FER is hitting an asymptote I11.  NTERLEAVER DESIGN
that is determined by the simulated stable FER i.e. as the SNR
keeps increasing the fraction of stable errors keeps ggwin The results of the previous section suggest that the bounds
The two black curves show the lower bound on the error flof#at we have presented earlier are non-trivial lower ancupp
based on the procedure we outlined in the previous secti®unds on the error floor for LDPC coded BICM. This
We collected a list of stable trapping sets and computed thgturally leads us to the question of whether the analysis ca
contribution of the error rate of each trapping set at thekesar Suggest a design strategy for codes with low error floors. One
SNR points. The dotted black curve is the prediction bas&Fhnique would be to avoid as many trapping sets as possible
only on the worst case representatives for each trapping dgithe code. We shall not deal with this issue in this paper. Ou
The solid black curve also computes the contribution of @€Sign is motivated by the observation that in the case when w
trapping set when one representative is good and all oth&8€ higher order modulations different bit-levels havéed#nt
are bad. The green curve is an upper bound computed by faabilities and we should be able to exploit this by changi
procedure outlined in the previous subsection. It can ba sdB€ mapping between the constellation mapping and the code
that both the lower and the upper bounds track the simulat@¥s i-€. by designing the interleaver.
stable error rate of the system fairly closely. Note that every term in the bound in (7) depends on two
quantities.

C. Results

2) An Irregular Code ExampleAs another way to demon-
strate the validity of the proposed approach, we simulated a 1) The termP (&,

Ar,) which is the probability of failing

irregular rate-1/2 quasi-cyclic code with block length = on a given trapping séf; assuming that the worst case

1008 driving an 8-PAM constellation. The code was con- constellation symbols were transmitted. This term is
structed using the degree distribution from [1] with maximu dependent upon the structure of the parity check matrix
column weight6. The size of circulants was set & = 12. of the LDPC code and the specific iterative decoding

Among the dominant trapping sets of this code are the three algorithm used in the system.
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between the LDPC code and the constellation mapping.

2) The weighting factor associated with eaBti¢r, |Ar,)

remapping the bits associated with the five most dominant
trapping sets that we identified for the code. At a noise
varianceo? = 0.0447 we observe that the stable error rate
curve for the interleaved code is about an order of magnitude
below the stable error rate curve for the non-interleaveteco
Based on our previous observations and discussions thas als
implies that the error floor asymptote for the interleavedeco
shall be much lower than the non-interleaved code i.e. with
increasing SNR the gap between the two curves shall keep
increasing. However at lower SNR’s where stable errors are
not the dominant mechanism the net improvement in the FER
is not much. The interleaver design strategy that we propose
can therefore be used to obtain performance gain in the error
floor after performance optimization for other metrics sash

a steep waterfall.

IV. CONCLUSION

The problem of error floor prediction for BICM systems
using LDPC codes was addressed. We extended the technique
introduced by Richardson [6] to compute lower and upper
bounds on the performance of these systems when a Gray-

term that depends on the bit levels in which a particulanapped constellation is used. An interleaver design sfyate
trapping set participates. This term depends upon thased on the prediction technique was developed that iraprov
interleaver under use. For exampleTZif has all its bits the error floors of these systems. Future work would involve

coming from LSB’s then its weighting factor shall bedeveloping prediction techniques for systems utilizintjedi
1. However by changing the interleaver so that the bitnt labeling with and without turbo-equalization.

in the trapping set are mapped to MSB’s we can reduce
the weighting factor substantially. This should reduce the
contribution of this particular trapping set to the overall[1]
frame error rate.

We have then following algorithm to design the interleaver [2]

1) Find the dominant trapping sets in the error floor region[.3]
Let these be denoteft;, Ts, ..., T}.

2) Change the interleaver mapping such that all variabl&!
nodes inU¥_, T; are mapped to MSB’s in some constel-
lation point. [5]

We have not observed any new trapping sets when a dif-

ferent interleaver is used. However a change in the intezlea

could make certain trapping sets whose contribution to thgg]
FER in the original interleaver was low to become mor
dominant. Therefore a prediction of the improved error floo
based on simply changing the weighting factors in (7) woulds]
be inaccurate. Experimentally we have observed that it is
good to target only the most dominant trapping sets, thus not
significantly changing the original interleaver. [9]

7]

A. Simulation Results (10]

In this section we present the results obtained by thle0
design of the interleaver between the LDPC code and tHé]
constellation mapper as explained in the previous section.
All the curves are based on simulation i.e. we did not usg)
the prediction technique presented earlier to generateoany
these curves. The curves in red in Figure 4 correspond
the Mackay (1008,504) code driving a 8-PAM constellation
with no interleaver between the code and the mapper. The
curves in blue correspond to the best interleaver obtairyed 4]
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