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An Achievable Region for the Double Unicast
Problem Based on a Minimum Cut Analysis

Shurui Huang, Student Member, IEEE, and Aditya Ramamoorthy, Member, IEEE

Abstract—We consider the multiple unicast problem under
network coding over directed acyclic networks when there are
two source-terminal pairs, s1−t1 and s2−t2. The capacity region
for this problem is not known; furthermore, the outer bounds on
the region have a large number of inequalities which makes them
hard to explicitly evaluate. In this work we consider a related
problem. We assume that we only know certain minimum cut
values for the network, e.g., mincut(Si, Tj), where Si ⊆ {s1, s2}
and Tj ⊆ {t1, t2} for different subsets Si and Tj . Based on these
values, we propose an achievable rate region for this problem
using linear network codes. Towards this end, we begin by
defining a multicast region where both sources are multicast
to both the terminals. Following this we enlarge the region by
appropriately encoding the information at the source nodes, such
that terminal ti is only guaranteed to decode information from
the intended source si, while decoding a linear function of the
other source. The rate region depends upon the relationship of
the different cut values in the network.

Index Terms—Network coding, multiple unicast, achievable
region.

I. INTRODUCTION

IN a multiple unicast connection over a network, there are
several source terminal pairs that want to communicate

with each other. Each terminal is only interested in receiving
messages from its corresponding source. This is in contrast to
the multicast problem where each terminal requests exactly the
same set of messages from the source nodes. The multicast
problem under network coding is very well understood. In
particular, several papers [1][2][3] discuss the capacity region
and network code construction algorithms for this problem.

However, the multiple unicast problem is not that well
understood. A significant amount of previous work has at-
tempted to find inner and outer bounds on the capacity region
for a given instance of a multiple unicast network. In [4],
an information theoretic characterization for directed acyclic
networks is provided. However, this region is not computable
as there is no upper bound on the cardinality of the random
variables involved in the characterization. The authors in [5]
propose an outer bound on the capacity region for general
networks. This bound is hard to evaluate even for small sized
networks due to the large number of inequalities involved in
the characterization. Reference [6] provides an outer bound
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on the capacity region in a two unicast session network, and
presents a network structure in which the outer bound is the
exact capacity region. An improved network sharing outer
bound was proposed in [7]; it was shown to be the tightest
bound that can be realized with edge-cut bounds. The work
of [8] proposes an achievable scheme by considering butterfly
structures along with XOR coding in the network. Similarly,
the work of [9] presents a rate region that can be supported
by XOR coding between pairs of flows. Multiple unicast has
been studied in [10], [11] for networks with link faults and
errors; however, the topologies of these networks are restricted
(though realistic in the protection context).

Several papers have focused on the case of two unicast net-
works. For instance, the work of [12] (see also [13]) presented
a necessary and sufficient condition on the network structure
for the existence of a network coding solution that supports
unit rate transmission for each si − ti connection. Reference
[14] considered directed acyclic networks and proposed an
achievable rate region for this problem based on the number
of edge disjoint paths for each si − ti connection.

More recent work has considered networks with three
unicast sessions. Work by the present authors [15], [16], [17]
considered unit rate transmission in such networks and refer-
ences [18][19][20] discuss the usage of interference alignment
in the network coding context.

In this work we propose an achievable region for the two-
unicast problem using linear network codes. We consider
directed acyclic networks with unit capacity edges and assume
that we only know certain minimum cut values for the
network, e.g., mincut(Si, Tj), where Si ⊆ {s1, s2} and Tj ⊆
{t1, t2} for different subsets Si and Tj . We classify networks
according to the relationship of the different cut values of the
network. To find the achievable region, we first find a multicast
region where both sources can be multicast to the terminals.
Subsequently, this region is extended according to the specific
class that the network belongs to. Our achievability scheme
uses random linear network coding and appropriate precoding
at the sources. Following the publication of our preliminary
conference paper [21] (and the submission of the present
manuscript), certain results have appeared in the literature that
we now ouline. The work of [22] derives an achievable rate
region by treating the two unicast problem as an instance of a
two-user linear deterministic interference channel. Reference
[22] uses the Han-Kobayashi scheme, i.e., splits the messages
into private and common parts and arrives at an achievable
region that is larger than our proposed region. The authors
in [23] also derive an achievable rate region in terms of the
cut values. For some networks, our scheme achieves a larger
region than theirs.
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This paper is organized as follows. Section II introduces the
system model under consideration. Sections III and IV contain
the precise problem formulation and the derivations of our
proposed achievable rate region according to the different cut
values. Section V compares our achievable region to existing
literature and Section VI concludes this paper.

II. SYSTEM MODEL

We consider a network represented by a directed acyclic
graph G = (V,E). There is a source set S = {s1, s2} ∈ V in
which each source observes a random process (the processes
are independent) with a discrete integer entropy, and there is
a terminal set T = {t1, t2} ∈ V in which ti needs to uniquely
recover the information transmitted from si at rate Ri. Each
edge e ∈ E has unit capacity and can transmit one symbol
from a finite field of size q. If a given edge has a higher
capacity, it can be divided into multiple parallel edges with
unit capacity. Without loss of generality (W.l.o.g.), we assume
that there is no incoming edge into source si, and no outgoing
edge from terminal ti. By Menger’s theorem, the minimum
cut between sets SN1 ⊆ S and TN2 ⊆ T is the number of
edge disjoint paths from SN1 to TN2 , and will be denoted by
kN1−N2 where N1, N2 ⊆ {1, 2}. For two unicast sessions, we
define the cut vector as the vector of the cut values k1−1,
k2−2, k1−2, k2−1, k12−1, k12−2, k1−12, k2−12 and k12−12.

The network coding model in this work is based on [2].
Assume that source si needs to transmit at rate Ri. Then
the random variable observed at si is denoted as Xi =
(Xi1, Xi2, · · · , XiRi), where each Xij is an element of the
finite field of size q denoted by GF (q). For linear network
codes, the signal on an edge (i, j) is a linear combination of
the signals on the incoming edges on i or a linear combination
of the source signals at i. Let Yen (tail(en) = k and
head(en) = l) denote the signal on edge en ∈ E. Then,
we have

Yen =
∑

{em|head(em)=k}

fm,nYem if k ∈ V \ {s1, s2}, and

Yen =

Ri∑
j=1

aij,nXij if Xi is observed at k.

The local coding vectors aij,n and fm,n are also chosen from
GF (q). We can also express Yen as Yen =

∑R1

j=1 αj,nX1j +∑R2

j=1 βj,nX2j . The global coding vector of Yen is [αn, βn] =
[α1,n, · · · , αR1,n, β1,n, · · · , βR2,n]. We are free to choose an
appropriate value of the field size q.

In this work, we present an achievable rate region given the
cut vector; namely, k1−1, k2−2, k1−2, k2−1, k12−1, k12−2,
k1−12, k2−12 and k12−12. W.l.o.g, we assume that there are
ki−ij outgoing edges from si and kij−i incoming edges
into ti. If this is not the case one can always introduce
an artificial source (terminal) node connected to the original
source (terminal) node by ki−ij (kij−i) edges. It can be seen
that the new network has the same cut vector as the original
network.
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Fig. 1. (a) An example of Ct1 and Ct2 when the multicast region shaded
is pentagonal. (b) Another example where the multicast region is rectangular.

III. ACHIEVABLE RATE REGION FOR GIVEN
k12−1, k12−2, k1−1, k2−2, k1−2, AND k2−1

We first consider the case that a subset of the
cut values in the cut vector are available, namely,
k12−1, k12−2, k1−1, k2−2, k1−2, and k2−1. Suppose for now
that only t1 is interested in recovering both the random vari-
ables X1 and X2 which are observed at s1 and s2 respectively.
Denote the rate from s1 to t1 and s2 to t1 as R11 and R12.
The rate pairs (R11, R12) are achieved via routing [24] and
the corresponding capacity region Ct1 is given by

Ct1 = {R11 ≤ k1−1, R12 ≤ k2−1, R11 +R12 ≤ k12−1}.

The capacity region Ct2 for t2 can be drawn in a similar
manner (an example is shown in Fig. 1(a)). We also find the
boundary points W1u,W1l,W2u,W2l

1 such that their coordi-
nates are W1u = (k12−1−k2−1, k2−1),W1l = (k1−1, k12−1−
k1−1),W2u = (k12−2 − k2−2, k2−2),W2l = (k1−2, k12−2 −
k1−2). A simple achievable rate region for our problem can
be arrived at by multicasting both sources X1 and X2 to both
the terminals t1 and t2.

Lemma 3.1: Rate pairs (R1, R2) belonging to the following
set B can be achieved for two unicast sessions.

B = {R1 ≤ min(k1−2, k1−1), R2 ≤ min(k2−1, k2−2),

R1 +R2 ≤ min(k12−1, k12−2)}.

Proof: We multicast both the sources to each terminal.
This can be done using the multi-source multi-sink multicast
result (Thm. 8 in [2]).

Subsequently we will refer to region B achieved by multi-
cast as the multicast region (the grey region in Fig. 1(a)). It
can be observed that if the cut values are such that

min(k1−2, k1−1) + min(k2−1, k2−2) ≤ min(k12−1, k12−2),
(1)

then the region is rectangular (Fig. 1(b)), otherwise, it is
pentagonal (Fig. 1(a)).

We now move on to precisely formulating the problem. Let
Zi denote the received vector at ti, Xi denote the transmitted
vector at si, and Hij denote the transfer function from sj
to ti. Let Mi denote the encoding matrix at si, i.e., Mi is
the transformation from Xi to the transmitted symbols on
the outgoing edges from si. In our formulation, we will let
the length of Xi to be ki−i, i.e., the maximum possible.
For transmission at rates R1 and R2, we introduce precoding

1subscripts l and u are meant to denote lower and upper.
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TABLE I
DIMENSION AND RANK OF MATRICES

matrix dimension rank

H11 k12−1 × k1−12 k1−1

H12 k12−1 × k2−12 k2−1

[H11 H12] k12−1 × (k1−12 + k2−12) k12−1

H21 k12−2 × k1−12 k1−2

H22 k12−2 × k2−12 k2−2

[H21 H22] k12−2 × (k1−12 + k2−12) k12−2

matrices Vi, i = 1, 2 of dimension Ri×ki−i, so that the overall
system of equations is as follows.

Z1 = H11M1V1X1 +H12M2V2X2,

Z2 = H21M1V1X1 +H22M2V2X2.
(2)

We say that ti can receive information at rate Ri from si
if it can decode ViXi perfectly; each entry in Vi is either
0 or 1. The row dimension of the Vi’s can be adjusted to
obtain different rate vectors. Under random linear network
coding, it can be shown that there exist local coding vectors
over a large enough field such that the ranks of the different
matrices in the first column of Table I are given by the
corresponding entries in the third column, which correspond
to the maximum possible. Furthermore, by the multi-source
multi-sink multicast result [2], when (R1, R2) ∈ B these
matrices are such that [H11M1 H12M2] is a full column rank
matrix of dimension k12−1×(R1+R2), and [H21M1 H22M2]
is a full column rank matrix of dimension k12−2× (R1+R2).
In Table I, for instance since the minimum cut between s1
and t1 is k1−1, we know that the maximum rank of H11

is k1−1. Using the formalism of [2], we can conclude that
there is a square submatrix of H11 of dimension k1−1× k1−1

whose determinant is not identically zero. Such appropriate
submatrices can be found for each of the matrices in the first
column of Table I. This in turn implies that their product is
not identically zero and therefore using the Schwartz-Zippel
lemma [25], we can conclude that there exists an assignment of
local coding vectors over a sufficiently large finite field so that
the rank of all the matrices is simultaneously the maximum
possible. While, the Schwartz-Zippel lemma requires random
choice of the local coding vectors, the probability of success in
the algorithm can be made arbitrarily close to one if the field
size is chosen large enough, or through repeated trials, hence
it runs in random polynomial time. For the rest of the paper,
we assume that such a choice of local coding vectors has
been made. Our arguments will revolve around appropriately
modifying source encoding matrices M1 and M2.

Note that in general the multicast region has a pentagonal
shape (see Fig. 1(a)). Two points on this pentagon (denoted as
Q1 and Q2) are of specific interest. At point Q1, we denote
the achievable rate pair by (R∗

1, R
∗
2) where

R∗
1 = min(k1−2, k1−1), and

R∗
2 = min(min(k2−1, k2−2),min(k12−1, k12−2)−R∗

1).

If the region is pentagonal, then R∗
1 = min(k1−2, k1−1) and

R∗
2 = min(k12−1, k12−2) − R∗

1. Likewise at point Q2, we

denote the achievable rate pair by (R∗∗
1 , R∗∗

2 ) where

R∗∗
1 = min(min(k1−2, k1−1),min(k12−1, k12−2)−R∗∗

2 ), and
R∗∗

2 = min(k2−1, k2−2).

If the region is pentagonal, then R∗∗
1 = min(k12−1, k12−2)−

R∗∗
2 and R∗∗

2 = min(k2−1, k2−2). If the region is rectangular,
then Q1 = Q2, and R∗

1 = R∗∗
1 = min(k1−2, k1−1) and

R∗
2 = R∗∗

2 = min(k2−1, k2−2). In Fig. 1(a), these boundary
points are Q1 = W2l and Q2 = W ∗, and the multicast region
is pentagonal. Another example is shown in Fig. 1(b) where
Q1 = Q2 and the multicast region is rectangular.

In what follows, we will present our arguments towards
increasing the value of R1 and R2 to achieve points that
are near Q1 but do not belong to B. In this paper we refer
to k1−2 + k2−1 as a measure of the interference in the
network and in the subsequent discussion present achievable
regions based on its value. We emphasize though that this
is nomenclature used for ease of presentation. Indeed a high
value of k1−2 does not necessarily imply that there is a lot
of interference at t2, since the network code itself dictates the
amount of interference seen by t2. The following lemma will
be used extensively.

Lemma 3.2: Consider a system of equations Z = H1X1 +
H2X2, where X1 is a vector of length l1 and X2 is a vector
of length l2 and Z ∈ span([H1 H2])

2. The matrix H1 has
dimension zt × l1, and rank l1 − σ, where 0 ≤ σ ≤ l1.
The matrix H2 is full rank and has dimension zt × l2
where zt ≥ (l1 + l2 − σ). Furthermore, the column spans
of H1 and H2 intersect only in the all-zeros vectors, i.e.,
span(H1) ∩ span(H2) = {0}. Then, there exists a unique
solution for X2.

Proof: As Z ∈ span([H1 H2]), there exist X1 and X2

such that Z = H1X1+H2X2. Now assume that there exist X ′
1

and X ′
2 (different from X1 and X2) such that Z = H1X

′
1 +

H2X
′
2. This implies

H1(X1 −X ′
1) = H2(X2 −X ′

2). (3)

Since span(H1)∩ span(H2) = {0}, both sides of eq. (3) are
zero. Furthermore, since H2 is a full rank matrix, X2 = X ′

2,
i.e., the solution for X2 is unique.

We next define the achievable rate region which will be
used in the rest of the paper.

Definition 3.3: A rate point (R1, R2) is said to lie in the
achievable rate region RA if there exist full column rank
source encoding matrices M1 and M2 where rank(M1) = R1

and rank(M2) = R2 such that

rank(H11M1) = rank(M1), rank(H22M2) = rank(M2),

span(Hi1M1) ∩ span(Hi2M2) = {0} for i = 1, 2.
(4)

The condition above will be referred in the remainder of the
paper as the achievable condition. It can be observed that the
multicast region B is a subset of RA.

2Throughout the paper, span(A) refers to the column span of A.
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A. Low Interference Case - k1−2+k2−1 ≤ min(k12−1, k12−2)

Note that it always holds that k2−1 + k1−1 ≥ k12−1 and
k1−2 + k2−2 ≥ k12−2. Together with the low interference
condition, this implies that k1−1 ≥ k1−2 and k2−2 ≥ k2−1.
It follows that the multicast region is a rectangle since eq.
(1) is satisfied and R∗

1 = k1−2, R
∗
2 = k2−1. Furthermore,

Q1 = Q2 = W ∗ as shown in the example in Fig. 1(b).
Our solution strategy is to first consider the encoding

matrices M1 and M2 at the point Q1, and to introduce a new
encoding matrix at s1, denoted M ′

1 (with R∗
1 + δ columns)

such that span(H11M
′
1)∩span(H12) = {0}. As shown below,

this will allow t1 to decode from s1 at rate R∗
1 + δ and t2 to

decode from s2 at rate R∗
2. After the modification, each ti is

guaranteed to decode at the appropriate rate from si. A similar
argument applies for R∗

2 to arrive at the achievable rate region.
At the point Q1, as both terminals can decode both sources,
it holds that

rank(Hi1M1) = k1−2, rank(Hi2M2) = k2−1, and
span(Hi1M1) ∩ span(Hi2M2) = {0} for i = 1, 2.

Before stating the main result, we present the following
lemma.

Lemma 3.4: Rate Increase Lemma. Consider a rate point
(R1, R2) ∈ RA with corresponding matrices M1 and
M2 such that (1) rank([H11 H12M2]) = r >
rank([H11M1 H12M2]) = R1+∆, where rank(H12M2) =
∆ ≤ R2 and (2) rank([H21M1]) = rank(H21). There exist
matrices M ′

1 and M ′
2 such that t1 can decode at rate r − ∆

and t2 can decode at rate R2.
Proof: We first prove that if M1 and M2 satisfy Con-

dition (1), then there exist a series of full rank matrices
M̄

(n)
1 = [M̃

(n)
1 M1] of dimension k1−12 × (n + R1) such

that rank([H11M̄
(n)
1 H12M2]) = R1 + ∆ + n, 0 ≤ n ≤

(r−R1 −∆). We prove this part by induction. When n = 0,
M̄

(0)
1 = M1, rank([H11M̄

(0)
1 H12M2]) = R1 +∆.

Assume that when n = l ≤ r − 1 − R1 − ∆, M̄ (n)
1 can

be found such that rank([H11M̄
(l)
1 H12M2]) = R1 +∆+ l.

When n = l + 1 ≤ r − R1 − ∆, if there does not exist
an M̄

(l+1)
1 , all the columns in [H11 H12M2] are linear

combinations of [H11M̄
(l)
1 H12M2], which contradicts the

fact that rank([H11 H12M2]) = r > r − 1 ≥ l + R1 + ∆.
Hence, there must exist a series of full rank matrices M̄

(n)
1

such that rank([H11M̄
(n)
1 H12M2]) = R1+∆+n is satisfied

when 0 ≤ n ≤ r −R1 −∆.
Next, we prove that t1 can decode at rate r−∆ and t2 can

decode at rate R2 using M ′
1 = M̄

(r−R1−∆)
1 and M ′

2 = M2.
Decoding at t1: Since M ′

1 is a full rank matrix of dimension
k1−12 × (r −∆), it also satisfies (i) rank(H11M

′
1) = r −∆

and (ii) span(H11M
′
1)∩span(H12M2) = {0} because of the

following argument. We have

r = rank([H11M
′
1 H12M2])

≤ rank([H11M
′
1]) + rank([H12M2])

≤ rank(M ′
1) + rank(H12M2) = r −∆+∆ = r.

Then all the inequalities become equalities and (i) and (ii) are
satisfied. Then by Lemma 3.2 and the above conditions, t1
can decode at rate r −∆.

Decoding at t2: From Condition (2), we have
span(H21M1) = span(H21) (see Lemma A.1 in the
Appendix). Furthermore, since span(M1) ⊆ span(M ′

1), we
have span(H21M1) ⊆ span(H21M

′
1) ⊆ span(H21). This

implies that span(H21M1) = span(H21M
′
1) = span(H21).

Furthermore, since span(H21M1) ∩ span(H22M2) = {0},
we also have span(H21M

′
1) ∩ span(H22M2) = {0}. Then

by Lemma 3.2 and the fact that H22M2 is full rank, t2 can
decode at rate R2.

Lemma 3.5: If k1−2 + k2−1 ≤ min(k12−1, k12−2), the rate
pair in the following region can be achieved.

R1 ≤ k12−1 − k2−1, R2 ≤ k12−2 − k1−2.

Proof: In this case, (R∗
1, R

∗
2) = (k1−2, k2−1) is the

boundary point Q1 = Q2. Let M1 and M2 denote the source
encoding matrices at Q1.

First, note that rank(H12M2) = rank(H12) = k2−1,
which implies that span(H12) = span(H12M2). Therefore

rank([H11 H12]) = rank([H11 H12 H12M2]

= rank([H11 H12M2])

This implies that rank([H11 H12M2]) = k12−1 ≥ k1−2 +
k2−1 = rank([H11M1 H12M2]) since by assumption k1−2+
k2−1 ≤ min(k12−1, k12−2). Moreover, rank(H21M1) =
rank(H21) = k1−2. Therefore by the Rate Increase Lemma,
we can achieve rate point (R1 = k12−1 − k2−1, R2 = k2−1).
Using a similar argument, we can further increase R2 such
that rate pair (k12−1 − k2−1, k12−2 − k1−2) can be achieved.
This region is the hatched gray region in Fig. 2.

This implies that the point W ′ = (k12−1 − k2−1, k12−2 −
k1−2) is achievable. Also note that since we applied the
Rate Increase Lemma, we have rank([H11M

′
1 H12M2]) =

rank([H11 H12M2]). Next, we consider the scenario in which
rates can be traded off between the two unicast sessions.

Lemma 3.6: Rate Exchange Lemma – 1-1 tradeoff. Con-
sider a rate point (R1, R2) ∈ RA with corresponding matrices
M1 and M2.

(a) If M1 and M2 satisfy (1) rank([H11M1 H12M2]) =
rank([H11 H12M2]) = r, where R1 + R2 ≥ r, and (2)
rank(H21M1) = rank(H21), there exist M ′

1 and M ′
2

such that t1 can decode at rate min(R1 + 1, k1−1) and
t2 can decode at rate max(R2 − 1, 0).

(b) If M1 and M2 satisfy (1) rank([H11 H12M2]) =
r > rank([H11M1 H12M2]) = R1 + ∆, where
rank(H12M2) = ∆ ≤ R2, and (2) rank(H21M1) <
rank(H21), there exist M ′

1 and M ′
2 such that t1 can

decode at rate min(R1 + 1, k1−1) and t2 can decode at
rate max(R2 − 1, 0).

Lemma 3.7: Rate Exchange Lemma – 1-2 tradeoff. Con-
sider a rate point (R1, R2) ∈ RA with correspond-
ing matrices M1 and M2. If M1 and M2 satisfy (1)
rank([H11M1 H12M2]) = rank([H11 H12M2]) = r, where
R1+R2 ≥ r, and (2) rank(H21M1) < rank(H21), there exist
M ′′

1 and M ′′
2 such that t1 can decode at rate min(R1+1, k1−1)

and t2 can decode at rate max(R2 − 2, 0).
Proof: 1-1 tradeoff. We assume that R1 + 1 ≤ k1−1 and

R2−1 ≥ 0. A vector α⃗ is added to M1 to form M ′
1 such that
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M ′
1 = [α⃗ M1] and rank(H11M

′
1) = R1 + 1 where H11M

′
1

is of dimension k12−1 × (R1 + 1).
For part (a), because of Condition (1), H11α⃗ will be a

nonzero linear combination of the vectors in H11M1 and
H12M2, i.e., H11α⃗ = H11M1γ⃗1 + H12M2γ⃗2. Note that
γ⃗1 is unique; otherwise, assume that there exist γ⃗′

1 and γ⃗′
2

such that H11α⃗ = H11M1γ⃗
′
1 + H12M2γ⃗

′
2 where γ⃗′

1 ̸= γ⃗1.
If H12M2γ⃗2 = H12M2γ⃗

′
2 then H11M1γ⃗1 = H11M1γ⃗

′
1

which indicates that H11M1 is not full column rank. On
the other hand if H12M2γ⃗2 ̸= H12M2γ⃗

′
2, then it means that

span(H11M1) ∩ span(H12M2) ̸= {0}. Hence, by contradic-
tion, we have γ⃗′

1 = γ⃗1, which indicates that γ⃗1 is unique.
Then, β⃗ = H11α⃗ − H11M1γ⃗1 is a vector which contains at
least one nonzero element. Otherwise, if β⃗ is a zero vector,
rank(H11M

′
1) will be rank R1 which is a contradiction.

Assume w.l.o.g. that the nonzero element is on the first row
of β⃗.

Next, we select a full rank matrix U of dimension R2 ×
(R2 − 1) from the null space of the first row of H12M2

such that the first row of H12M2U is a zero row vector.
It follows that H11α⃗ can not be represented by a linear
combination of the vectors in H11M1 and H12M2U , which
indicates that H11α⃗ /∈ span([H11M1 H12M2U ]). Next,
because span(H11M1) ∩ span(H12M2) = {0}, we have
span(H11M1)∩span(H12M2U) = {0}. Finally, we conclude
that span(H11M

′
1) ∩ span(H12M

′
2) = {0} where M ′

2 =
M2U . Hence, t1 can decode at rate min(R1 + 1, k1−1).

For part (a) if Condition (2) is satisfied, span(H21M1) =
span(H21). Using an argument similar to the one used
in the proof of Lemma 3.4, it can be shown that
span(H21M

′
1) = span(H21) = span(H21M1). This im-

plies that span(H21M
′
1) ∩ span(H22M

′
2) = {0} since

span(H22M
′
2) ⊆ span(H22M2). Then t2 can decode at rate

R2 − 1 since rank(H22M
′
2) = R2 − 1.

For part (b) if Condition (1) is satisfied, we can find an
M ′

1 such that rank(H11M
′
1) = R1 + 1 and span(H11M

′
1) ∩

span(H12M2) = {0}. At the same time, if Condition (2)
of part (b) is satisfied, rank(H21M

′
1) − rank(H21M1) ≤ 1.

Then rank(span(H21M
′
1) ∩ span(H22M2)) can be as large

as 1. As H22M2 is a full column rank matrix, we can
find an M ′

2 by deleting one column from M2 such that
span(H21M

′
1) ∩ span(H22M

′
2) = {0} where M ′

2 is a full
rank matrix of dimension k2−12 × (R2 − 1). Furthermore,
since span(H12M

′
2) ⊆ span(H12M2), we will have that

span(H11M
′
1) ∩ span(H12M

′
2) = {0}. With this M ′

1 and
M ′

2, the rate point (R1 + 1, R2 − 1) can be achieved.
Proof: 1-2 tradeoff. We assume that R1 + 1 ≤ k1−1 and

R2 − 2 ≥ 0.
Note that Condition (1) here is the same as in the Rate

Exchange Lemma – 1-1 tradeoff – part(a). Therefore, we
can find two matrices M ′

1 and M ′
2 with rank R1 + 1

and R2 − 1 by appending one vector to M1 and select-
ing M ′

2 = M2U such that rank(H11M
′
1) = R1 + 1,

and span(H11M
′
1) ∩ span(H12M

′
2) = {0} where U is a

full rank matrix of dimension R2 × (R2 − 1) such that
rank(H12M2)− rank(H12M2U) = 1.

If Condition (2) is satisfied, rank(H21M
′
1)−rank(H21M1)

can be as large as 1. Then rank(span(H21M
′
1) ∩

span(H22M
′
2)) can be as large as 1. Because H22M

′
2
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Fig. 2. The achievable rate region for the low interference case. For each
point in the shaded grey area, both terminals can recover both the sources.
In the hatched grey area and the hatched white area, for a given rate point,
its x-coordinate is the rate for s1 − t1 and its y-coordinate is the rate for
s2−t2; the terminals are not guaranteed to decode both sources in this region.
The union of the hatched white region, the hatched gray region and the gray
region is the final extended rate region for the low interference case.

is a full column rank matrix, we can find an M ′′
2 by

deleting one column from M ′
2 such that span(H21M

′
1) ∩

span(H22M
′′
2 ) = {0} where M ′′

2 is a full rank ma-
trix of dimension k2−12 × (R2 − 2). Furthermore, since
span(H12M

′′
2 ) ⊆ span(H12M

′
2), we will have that

span(H11M
′
1)∩span(H12M

′′
2 ) = {0}. Finally let M ′′

1 = M ′
1.

With encoding matrices M ′′
1 and M ′′

2 , it can be seen that
(R1 + 1, R2 − 2) can be achieved.

By applying the Rate Exchange Lemma – 1-1 tradeoff –
part (a), at point W ′ = (k12−1 − k2−1, k12−2 − k1−2), we
have the following theorem.

Theorem 3.8: If k1−2 + k2−1 ≤ min(k12−1, k12−2), the
following rate region (see Fig. 2) can be achieved.
Region 1:

R1 ≤ k1−1, R2 ≤ k2−2,

R1 +R2 ≤ k12−1 − k2−1 + k12−2 − k1−2.

Proof: Note that point W ′ = (R1, R2) =
(k12−1 − k2−1, k12−2 − k1−2) is achieved by
using the Rate Increase Lemma. Let M1 and M2

be the encoding matrices at W ′. Then, we have
rank([H11M1 H12M2]) = rank([H11 H12M2]), and
we further have that rank(H21M1) = rank(H21) = k1−2.
Applying the Rate Exchange Lemma – 1-1 tradeoff – part (a)
we have the required conclusion.

Remark 3.9: Note that it always holds that k12−1 ≥ k1−1,
k12−2 ≥ k2−2. Along with the low interference condition,
we can conclude that k12−1 − k2−1 + k12−2 − k1−2 ≥
max(k1−1, k2−2) ≥ (k1−1 + k2−2)/2. As k1−1 + k2−2 is
always an upper bound (albeit loose) on R1+R2, this implies
that our rate region is within a multiplicative gap of two of
the outer bound.

B. High Interference Case- k1−2+k2−1 > min(k12−1, k12−2)

Note that for the low interference case, the low interference
condition implies that k1−1 ≥ k1−2 and k2−2 ≥ k2−1. How-
ever, in high interference case, there are several possibilities.
We show a case where k1−1 ≤ k1−2 and k2−2 ≤ k2−1 in
Fig. 3(a). When k1−1 ≥ k1−2, Fig. 3(b) illustrates an example
where k2−2 ≤ k2−1, and Fig. 1(a) (in Section III-A) illustrates
an example where k2−2 ≥ k2−1. It can be observed here that
unlike the low interference case, Q1 may not be the same
point as Q2. In the discussion below we present rate regions
by extending them from the rate points Q1 and Q2.
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Fig. 3. (a) High interference case where k1−1 ≤ k1−2 and k2−2 ≤ k2−1.
(b) High interference case where k1−1 ≥ k1−2 and k2−2 ≤ k2−1.

Claim 3.10: When Q1 ̸= Q2, the Rate Increase Lemma
cannot be applied to increase the rate to t2 above R∗

2 at Q1

or to increase the rate to t1 above R∗∗
1 at Q2.

Proof: As Q1 ̸= Q2, using eq. (1), we
conclude that min(k1−2, k1−1) + min(k2−1, k2−2) >
min(k12−1, k12−2). Then at Q1, R∗

2 =
min(min(k2−1, k2−2),min(k12−1, k12−2) −
min(k1−2, k1−1)) < min(k2−1, k2−2) ≤ k2−1. Next, since
rank(H12M2) ≤ rank(M2) = R∗

2 < rank(H12) = k2−1,
Condition (2) of the Rate Increase Lemma is not satisfied. A
similar argument applies for Q2.

In view of the above claim, using our achievable strategies
one can at best use the Rate Exchange Lemma to increase the
rate to t2 at Q1 while reducing the rate to t1. As Q1 ̸= Q2, the
multicast region is a pentagon and applying the 1-1 tradeoff
will at most allow us to achieve the boundary between Q1

and Q2, while the 1-2 tradeoff achieves interior points in the
multicast region. As points on the Q1 − Q2 boundary are
already achieved by multicasting both sources, the region is
not enlarged.

Hence, we will consider rate points (R1, R2) such that
R1 > R∗

1 and R2 = R∗
2 at Q1 (and similarly R1 = R∗∗

1

and R2 > R∗∗
2 at Q2). At Q1, if k1−2 ≥ k1−1, R∗

1 = k1−1,
i.e. increasing R1 is impossible since it attains its maximum.
Therefore, we assume that k1−2 < k1−1. By the high inter-
ference condition and the fact that k1−2 + k2−2 ≥ k12−2,
we have (R∗

1, R
∗
2) = (k1−2,min(k12−1, k12−2) − k1−2). We

begin by modifying the source encoding matrices at point Q1,
with the goal of increasing R1 the rate to t1 above R∗

1. Our
strategy at Q1 is similar to the one for the low interference
case, namely, we attempt to trace a region of achievable rates
by using the Rate Increase and Rate Exchange lemmas. The
main difference is that here we also use the 1-2 tradeoff result
(cf. Lemma 3.7). Note that in the discussion below, we present
the arguments for increasing rates at Q1 and Q2 separately.
However, if Q1 = Q2, then the arguments are still applicable.

Theorem 3.11: If k1−2 + k2−1 > min(k12−1, k12−2) and
k1−2 < k1−1, then the rate pair in the following region can
be achieved.

Region 2:

D1 ∩ (D2 ∪D3 ∪D4) if k2−1 < k2−2, or
D1 ∩ (D2 ∪D3) if k2−1 ≥ k2−2, where

D1 : R1 ≤ k1−1,

D2 : R1 +R2 ≤ rank([H11 H12M2])

when R2 ≤ R∗
2,

D3 : R1 + 2R2 ≤ R∗
2 + rank([H11 H12M2])

when R∗
2 ≤ R2 ≤ min(k2−1, k2−2),

D4 : R1 +R2 ≤ R∗
2 + rank([H11 H12M2])− k2−1

when k2−1 < R2 ≤ k2−2,

where R∗
2 = min(k12−1, k12−2) − k1−2, M1 and M2 are the

encoding matrices at Q1.
Note that in the above characterization, the rate constraints

depend on rank([H11 H12M2]); we show a lower bound on
rank([H11 H12M2]) in Section III-B1.

Proof: Given that k1−2 + k2−1 > min(k12−1, k12−2) and
k1−2 < k1−1, we will extend the rate region from Q1 where
R∗

1 = k1−2, R∗
2 = min(k12−1, k12−2)−k1−2. Let M1 and M2

denote the encoding matrices at Q1. At Q1, we first need to
increase R1 while keeping R2 as large as possible. Suppose
that we can use the Rate Increase Lemma to increase R1. This
implies that min(k12−1, k12−2) = rank([H11M1 H12M2]) <
rank([H11 H12M2]) ≤ rank([H11 H12]) = k12−1 which
implies that min(k12−2, k12−1) = k12−2. In the following
discussion, we assume this is the case. By Rate Increase
Lemma, we can achieve the rate point W ′ = (R′

1, R
′
2) =

(rank([H11 H12M2])−R∗
2, R

∗
2). The corresponding encoding

matrices are M ′
1 and M ′

2 = M2.
When we want to further increase R1 above R′

1, we could
use Rate Exchange Lemma – 1-1 tradeoff – part (a) repeatedly,
since rank(H21M1) = k1−2 = R∗

1 and span(M1) ⊆
span(M ′

1), implying that rank(H21M
′
1) = rank(H21) =

k1−2. When R′
1 is increased by δ, R′

2 is decreased by δ where
0 ≤ δ ≤ min(R∗

2, k1−1−R′
1) (δ ≤ k1−1−R′

1 comes from the
fact that R′

1 can be increased to at most k1−1). Terminal t1
can decode messages from s1 at rate R′′

1 = R′
1+ δ and t2 can

decode messages from s2 at rate R′′
2 = R′

2 − δ. Denote the
new set of encoding matrices as M ′′

1 and M ′′
2 . This is shown

by the line (W ′, W̄ ′) in Fig. 4(a) which corresponds to D2.
On the other hand, at W ′, we can increase R2

such that R2 = R′
2 + δ1 where 0 ≤ δ1 ≤

min(k2−1 − R∗
2, k2−2 − R∗

2). First note that k12−2 =
rank([H21M1 H22M2]) ≤ rank([H21M

′
1 H22M

′
2]) ≤

rank([H21M
′
1 H22]) ≤ rank([H21 H22]) = k12−2 which

implies rank([H21M
′
1 H22M

′
2]) = rank([H21M

′
1 H22]).

Then by using Rate Exchange Lemma – 1-2 tradeoff, since
rank(H12)− rank(H12M

′
2) = k2−1− (min(k12−1, k12−2)−

k1−2) > 0 we can increase R′
2 by δ1 and decrease R′

1 by
2δ1, and the boundary point (R′

1 − 2δ1, R
′
2 + δ1) can be

achieved where 0 ≤ δ1 ≤ min(k2−1 −R∗
2, k2−2 −R∗

2, R
′
1/2)

which corresponds to D3 (δ1 ≤ R′
1/2 comes from the fact

that R1 should be not smaller than 0). If we have that
k2−1 ≤ min(k2−2, R

′
1/2+R∗

2), we will arrive at the boundary
point W ′′ = (R′′

1 , R
′′
2 ) = (R∗

2 + rank([H11 H12M2]) −
2k2−1, k2−1). The corresponding matrices are M ′′

1 and M ′′
2 .

This is demonstrated by the line (W ′,W ′′) in Fig. 4(a).
If we have that R′′

1 ≥ 0 and k2−1 < k2−2, at point W ′′,
we can further increase R2 such that R2 = R′′

2 + δ2 and
R1 = R′′

1 − δ2 where 0 ≤ δ2 ≤ min(k2−2 − k2−1, R
′′
1 ). The

corresponding encoding matrix at s2 is M ′′′
2 . By Rate Ex-



2896 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 7, JULY 2013

2t
C

1t
C

11 12 2
([ ])rank H H M  

*

2 11 12 2 2 1([ ])R rank H H M k
−

+ −  

*

1 2 2 11 12 22 ([ ])R R R rank H H M+ ≤ +   

'W
''W

'''W

'W

2R

1R (a)

2t
C

1t
C

1 1 11 12 2 1 1
' ( , ([ ] )W k rank H H M k

− −
= −  

11 12 2 1 2 1 2
' ( ([ ] , )W rank H H M k k

− −
= −  

*

2 11 12 2 2 1 2 2 2 2
''' ( ([ ] , )W R rank H H M k k k

− − −
= + − −  

1R

2R

(b)

Fig. 4. (a) The extended rate region for the high interference case from point
Q1. (b) The final extended rate region for the case of high interference.

change Lemma – 1-1 tradeoff – part (a), since rank(H12) =
rank(H12M

′′
2 ), t1 can decode at rate R′′

1 − δ2, and t2 can
decode at rate R′′

2 + δ2. Then W ′′′ is achieved and the
procedure is demonstrated by the line (W ′′,W ′′′) in Fig. 4(a)
which corresponds to D4. The entire extended rate region for
this case is shown in Fig. 4(a).

We next consider increasing R2 above R∗∗
2 at Q2. If k2−1 ≥

k2−2, R2 cannot be increased as R∗∗
2 = k2−2. Hence, we

assume that k2−1 < k2−2. A similar analysis for Q2 results
in the following region.

Corollary 3.12: If k1−2 + k2−1 > min(k12−1, k12−2) and
k2−1 < k2−2, then the rate pair in the following region can
be achieved.
Region 3:

D′
1 ∩ (D′

2 ∪D′
3 ∪D′

4) if k1−2 < k1−1, or
D′

1 ∩ (D′
2 ∪D′

3) if k1−2 ≥ k1−1 where,

D′
1 : R2 ≤ k2−2,

D′
2 : R1 +R2 ≤ rank([H21M1 H22])

when R1 ≤ R∗∗
1 ,

D′
3 : 2R1 +R2 ≤ R∗∗

1 + rank([H21M1 H22])

when R∗∗
1 ≤ R1 ≤ min(k1−2, k1−1),

D′
4 : R1 +R2 ≤ R∗∗

1 + rank([H21M1 H22])− k1−2

when k1−2 < R1 ≤ k1−1,

where R∗∗
1 = min(k12−1, k12−2)− k2−1, M1 and M2 are the

encoding matrices at Q2.
From the above argument, the overall rate region is the

convex hull of multicast region, and either Region 2 or Region
3 or both depending upon the cut conditions. For instance
when k1−2 < k1−1 and k2−1 < k2−2 the final region is shown
in Fig. 4(b), where boundary segment W ′′′ −W ′ is achieved
via timesharing.

Finally, note that when k1−2 ≥ k1−1 and k2−1 ≥ k2−2,
we cannot enlarge the region using our achievability schemes,

i.e., the achievable region is the multicast region.
1) Lower bound of rank([H11 H12M2]): As before, let

(R∗
1, R

∗
2) denote the rate point at Q1 and let M1 and

M2 denote the corresponding encoding matrices. First note
that rank([H11 H12M2]) ≥ rank(H11) = k1−1 and
rank([H11 H12M2]) ≥ rank([H11M1 H12M2]) = R∗

1 +R∗
2.

Next we will also find another nontrivial lower bound of
rank([H11 H12M2]) by the following lemma.

Lemma 3.13: Given rank([H11 H12]) = k12−1,
rank(H12) = k2−1 and rank([H12M2]) = l, we have
rank([H11 H12M2]) ≥ k12−1 − k2−1 + l.

Proof: By the assumed conditions, there are k2−1

columns in H12 that are linearly independent, and in H11,
we can find a subset of k12−1 − k2−1 columns denoted H ′

11

such that span(H ′
11) ∩ span(H12) = {0} and rank(H ′

11) =
k12−1 − k2−1, which further imply that rank([H ′

11 H12]) =
k12−1.

Since span(H12M2) ⊆ span(H12) this means
that span(H ′

11) ∩ span(H12M2) = {0}. Then
rank([H ′

11 H12M2]) = rank(H ′
11) + rank(H12M2) =

k12−1 − k2−1 + l. Hence, rank([H11 H12M2]) ≥
rank([H ′

11 H12M2]) = k12−1 − k2−1 + l.
Together with the two lower bounds above, we have

rank([H11 H12M2]) ≥ max(k1−1, k12−1 − k2−1 +R∗
2, R

∗
1 +

R∗
2). A case where max(k1−1, k12−1 − k2−1 + R∗

2, R
∗
1 +

R∗
2) = k12−1 − k2−1 + R∗

2 is shown in Fig. 4(b) where
R∗

2 = k12−2 − k1−2.

C. Increasing the achievable rate region by modifying the
graph

Thus far, we have presented achievable rate regions for
both the low and high interference scenarios. An interesting
observation about these regions is that it is possible to enlarge
the regions by considering the removal of judiciously chosen
edges from the network. We have noted that by removing
certain edges from the network, the achievable rate region can
be extended. For example, Fig. 5 corresponds to a scenario
where k1−1 = 3, k1−2 = 1, k2−1 = 3, k2−2 = 3, k12−1 = 3
and k12−2 = 3. Hence, the sum rate R1 + R2 ≤ 3 using
Theorem 3.11. However, one can achieve the rate points
(R1, R2) = (1, 3) and (3, 1) by removing edges e1 and e2
since k2−1 drops to 1 and the low interference result (cf.
Theorem 3.8) applies. Furthermore note that the rate point
(1, 3) is not achievable by routing, i.e., network coding is
essential for achieving this point.

In principle, one could consider the union of the achievable
rate regions obtained by removing certain subset of the edges
from the network to perhaps obtain a larger region. Finding
such edges in a systematic manner is an interesting open
problem. However, we are unaware of any known algorithm
for it.

IV. ACHIEVABLE RATE REGION FOR GIVEN
k1−12, k2−12, k1−1, k2−2, k1−2, AND k2−1

We have discussed the achievable rate region given
k12−1, k12−2, k1−1, k2−2, k1−2, and k2−1 in the previous
section. However, there are other cuts that are potentially
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Fig. 5. An example of a network where a larger achievable rate region can
be achieved by removing edges e1 and e2.

useful in finding the achievable rate region. In this sec-
tion, we will discuss the achievable rate region for given
k1−12, k2−12, k1−1, k2−2, k1−2, and k2−1 using the reversibil-
ity result introduced in [26]. Towards this end define the
reverse of a network G as the network G′ = (V ′, E′) where
(1) The nodes V ′ and edges E′ in G′ are the same as in G,
except the direction of edges are reversed. (2) The sources in
G are the terminals in G′ and vice versa.

For the double unicast problem, we will have
that s′i = ti and t′i = si, i = 1, 2. Let
k1−12, k2−12, k1−1, k2−2, k1−2 and k2−1 denote the cut
in G and let k′12−1, k

′
12−2, k

′
1−1, k

′
2−2, k

′
1−2 and k′2−1 denote

the cut in G′. It is evident that k′12−1 = k1−12, k′12−2 = k2−12,
k′1−1 = k1−1, k′2−2 = k2−2, k′1−2 = k2−1 and k′2−1 = k1−2.
By Theorem 4 in [26] a linear network coding solution for
rate pair (R1, R2) in the original network G is in one-to-one
correspondence with the rate pair (R′

1, R
′
2) = (R1, R2) in

the reversed network G′. Thus, our idea is to determine
an achievable rate pair in G′ and then claim the existence
of a corresponding rate pair in G. The process consists of
substituting the corresponding cuts of the reverse network
into the multicast region B, Region 1, Region 2 and Region
3 of the original network, to obtain a new set of regions B′,
Region 1’, Region 2’ and Region 3’.

In the interest of avoiding repetitive arguments, we discuss
the process of determining Region 2’ by means of an example.
For the original graph, in Region 2, D2 : R1 + R2 ≤
rank([H11 H12M2]) when R2 ≤ min(k12−1, k12−2)−k1−2.
Thus, for Region 2’, the corresponding D2 : R1 + R2 ≤
rank([H ′

11 H ′
12M

′
2]) when R2 ≤ min(k1−12, k2−12)− k2−1

where H ′
ij is the transfer matrix from s′j to t′i, and M ′

i is the
source encoding matrix at s′i. The other inequalities can be
determined in a similar manner.

Hence, given all possible cuts in a double unicast network,
the achievable rate region is convex hull of multicast region B,
B′ and the corresponding extended region in different cases.

In order to demonstrate the utility of considering the re-
versed network, consider the network shown in Fig. 6. It
can be verified that the rate regions are different using the

1
s

2
s

1
t

2
t

Fig. 6. An example of a network where the achievable rate regions are
different using the original result and the reversibility result. All edges are
unit capacity.

original result and reversibility result. with our schemes. In
particular, using the reversibility result can achieve rate point
(1,1) whereas the original result cannot.

V. COMPARISON WITH EXISTING RESULTS

The work that is most closely related to the present paper
is by [14] that also considers the double unicast problem with
arbitrary rates. Assuming that k2−2 ≤ k1−1, the region in [14]
is given by EF09 = EF09(a) ∪ EF09(b), where

EF09(a) = {(R1, R2) : R1 + 2R2 ≤ k1−1, R2 ≤ k2−2}, and
EF09(b) = {(R1, R2) : 2R1 +R2 ≤ k2−2, R1 ≤ k1−1}.

A comparison between our region and theirs indicates that
our region is larger than theirs. To see this, consider the low
interference case and a rate point (R1, R2) that lies in EF09(a).
We have that R1+R2 ≤ R1+2R2 ≤ k1−1 ≤ k12−1−k2−1+
k12−2 − k1−2 (since k1−2 + k2−1 ≤ min(k12−1, k12−2)) and
R2 ≤ k2−2, i.e. (R1, R2) also belongs to our region.

For the high interference case, we argue as follows. Let
(R1, R2) belong to EF09(a).

• If k1−2 ≤ k1−1, we show that (R1, R2) belongs
to Region 2. Note that R1 + 2R2 ≤ k1−1 ≤
rank([H11 H12M2]). However, the RHS of D2 and
D3 is at least as large as rank([H11 H12M2]), and
for D4 we have R1 + 2R2 ≤ rank([H11 H12M2]) ≤
R∗

2 + rank([H11 H12M2]) − k2−1 + R2 (since in D4,
k2−1 < R2 ≤ k2−2) indicating that (R1, R2) is within
Region 2.

• If k1−2 > k1−1 and k2−1 ≥ k2−2, we have R1 +
R2 ≤ R1 + 2R2 ≤ k1−1 ≤ min(k1−2, k12−1) ≤
min(k12−2, k12−1) which shows that (R1, R2) is within
our multicast region.

• If k1−2 > k1−1 and k2−1 < k2−2, we consider dif-
ferent ranges for R2. For 0 ≤ R2 ≤ k2−1, R1 +
R2 ≤ R1 + 2R2 ≤ k1−1 ≤ min(k1−2, k12−1) ≤
min(k12−2, k12−1) which implies that (R1, R2) is within
our multicast region. On the other hand when k2−1 ≤
R2 ≤ k2−2, we have k1−1 − 2k2−2 ≤ R1 ≤
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k1−1 − 2k2−1 (from the definition of EF09(a)). This
implies that (R1, R2) belongs to Region 3. To see
this we note that the relevant range of Region 3
is D′

2 since k1−1 − 2k2−1 ≤ min(k12−1, k12−2) −
k2−1. We have R1 + R2 ≤ R1 + 2R2 ≤ k1−1 ≤
min(k1−1 + k2−1,min(k12−1, k12−2)) = R∗∗

1 + R∗∗
2 =

rank([H21M1 H22M2]) ≤ rank([H21M1 H22]) indi-
cating that such a point is within Region 3.

In a similar manner it can be shown that all rate points in
EF09(b) are within our rate region.

The authors in [12] and [13] explore the unit-rate case
R1 = R2 = 1 in detail. Such schemes can potentially
be packed into networks with higher capacities. References
[12], [13] rely heavily on an analysis of the graph theoretic
structures that are possible in double unicast networks. Thus,
our scheme will in general be weaker than their approach on
certain networks. Likewise the work of [8] [9] also considers
the achievable rate region using network coding between pair
of sources. However, there are networks where our approach
is strictly better than all the above approaches. We show such
an example in Fig. 7. In Fig. 7, we can achieve rates (4,2)
by the argument using in Region 2, whereas it can be verified
that the above schemes do not support this rate point. For
instance, if R2 = 2, R1 ≤ 3 in EF09, whereas the scheme in
[12] can at most achieve a rate of (1, 2). Furthermore, we note
that the enlargement of the achievable region by considering
the removal of certain edges discussed in Section III-C also
improves our region in many cases.

The following results have appeared since the submission
of the present paper and the publication of our preliminary
conference paper [21]. The work of [22] treats the two unicast
problem as an instance of a linear deterministic interference
channel and finds a network code that uses random linear
network coding. Their region contains our proposed achievable
region. The authors in [23] also derive an achievable region
by exploiting the equivalence with deterministic interference
channels; their region is completely specified by the cut values
in the network (in contrast, in certain cases our region and the
region in [22] is specified in terms of the rank of matrices that
depend on the network code). However, for some networks
our scheme achieves a larger region. As an example, if one
considers the two-unicast butterfly network with k1−1 =
k2−2 = 1, k1−2 = k2−1 = 2 and k12−1 = k12−2 = 2, our
scheme achieves the multicast point (1, 1) whereas the region
in [23] is empty.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented an achievable rate region for the
double unicast problem for directed acyclic networks with unit
capacity edges. The proposed strategy combines random linear
network coding along with appropriate precoding at the source
nodes. Networks are classified according the relationship of
the values of the cuts between various subsets of the sources
and the terminals. We begin with the multicast region where
both sources are multicast to both terminals and then enlarge
the region by either unilaterally increasing one of the rates
or trading off rates between the connections. The proposed
region can potentially be enlarged by considering regions that
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Fig. 7. An example of a high interference network when our scheme can
achieve a higher rate pair compared to many other schemes.

are obtained by the judicious removal of certain edges from
the network. Future work would include the investigation of
systematic techniques for finding the appropriate edges to be
removed.

APPENDIX

Lemma A.1: If rank(HM) = rank(H) = r, then
span(HM) = span(H).

Proof: First note that span(HM) ⊆ span(H). Assume
span(HM) ̸= span(H), then there is a vector v⃗ ∈ span(H)
but not in span(HM). Then,

rank([HM v⃗]) = rank(HM) + 1 = r + 1 > r = rank(H)

However, it contradicts the fact that rank(H) ≥
rank([HM v⃗]), since [HM v⃗] ⊆ span(H). Hence
span(HM) = span(H).
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