An Achievable Region for the Double Unicast Problem Based on a Minimum Cut Analysis

Shurui Huang, Student Member, IEEE, and Aditya Ramamoorthy, Member, IEEE

Abstract

We consider the multiple unicast problem under network coding over directed acyclic networks when there are two source-terminal pairs, $s_{1}-t_{1}$ and $s_{2}-t_{2}$. The capacity region for this problem is not known; furthermore, the outer bounds on the region have a large number of inequalities which makes them hard to explicitly evaluate. In this work we consider a related problem. We assume that we only know certain minimum cut values for the network, e.g., mincut $\left(S_{i}, T_{j}\right)$, where $S_{i} \subseteq\left\{s_{1}, s_{2}\right\}$ and $T_{j} \subseteq\left\{t_{1}, t_{2}\right\}$ for different subsets S_{i} and T_{j}. Based on these values, we propose an achievable rate region for this problem using linear network codes. Towards this end, we begin by defining a multicast region where both sources are multicast to both the terminals. Following this we enlarge the region by appropriately encoding the information at the source nodes, such that terminal t_{i} is only guaranteed to decode information from the intended source s_{i}, while decoding a linear function of the other source. The rate region depends upon the relationship of the different cut values in the network.

Index Terms-Network coding, multiple unicast, achievable region.

I. Introduction

IN a multiple unicast connection over a network, there are several source terminal pairs that want to communicate with each other. Each terminal is only interested in receiving messages from its corresponding source. This is in contrast to the multicast problem where each terminal requests exactly the same set of messages from the source nodes. The multicast problem under network coding is very well understood. In particular, several papers [1][2][3] discuss the capacity region and network code construction algorithms for this problem.

However, the multiple unicast problem is not that well understood. A significant amount of previous work has attempted to find inner and outer bounds on the capacity region for a given instance of a multiple unicast network. In [4], an information theoretic characterization for directed acyclic networks is provided. However, this region is not computable as there is no upper bound on the cardinality of the random variables involved in the characterization. The authors in [5] propose an outer bound on the capacity region for general networks. This bound is hard to evaluate even for small sized networks due to the large number of inequalities involved in the characterization. Reference [6] provides an outer bound

[^0]on the capacity region in a two unicast session network, and presents a network structure in which the outer bound is the exact capacity region. An improved network sharing outer bound was proposed in [7]; it was shown to be the tightest bound that can be realized with edge-cut bounds. The work of [8] proposes an achievable scheme by considering butterfly structures along with XOR coding in the network. Similarly, the work of [9] presents a rate region that can be supported by XOR coding between pairs of flows. Multiple unicast has been studied in [10], [11] for networks with link faults and errors; however, the topologies of these networks are restricted (though realistic in the protection context).

Several papers have focused on the case of two unicast networks. For instance, the work of [12] (see also [13]) presented a necessary and sufficient condition on the network structure for the existence of a network coding solution that supports unit rate transmission for each $s_{i}-t_{i}$ connection. Reference [14] considered directed acyclic networks and proposed an achievable rate region for this problem based on the number of edge disjoint paths for each $s_{i}-t_{i}$ connection.

More recent work has considered networks with three unicast sessions. Work by the present authors [15], [16], [17] considered unit rate transmission in such networks and references [18][19][20] discuss the usage of interference alignment in the network coding context.

In this work we propose an achievable region for the twounicast problem using linear network codes. We consider directed acyclic networks with unit capacity edges and assume that we only know certain minimum cut values for the network, e.g., $\operatorname{mincut}\left(S_{i}, T_{j}\right)$, where $S_{i} \subseteq\left\{s_{1}, s_{2}\right\}$ and $T_{j} \subseteq$ $\left\{t_{1}, t_{2}\right\}$ for different subsets S_{i} and T_{j}. We classify networks according to the relationship of the different cut values of the network. To find the achievable region, we first find a multicast region where both sources can be multicast to the terminals. Subsequently, this region is extended according to the specific class that the network belongs to. Our achievability scheme uses random linear network coding and appropriate precoding at the sources. Following the publication of our preliminary conference paper [21] (and the submission of the present manuscript), certain results have appeared in the literature that we now ouline. The work of [22] derives an achievable rate region by treating the two unicast problem as an instance of a two-user linear deterministic interference channel. Reference [22] uses the Han-Kobayashi scheme, i.e., splits the messages into private and common parts and arrives at an achievable region that is larger than our proposed region. The authors in [23] also derive an achievable rate region in terms of the cut values. For some networks, our scheme achieves a larger region than theirs.

This paper is organized as follows. Section II introduces the system model under consideration. Sections III and IV contain the precise problem formulation and the derivations of our proposed achievable rate region according to the different cut values. Section V compares our achievable region to existing literature and Section VI concludes this paper.

II. System Model

We consider a network represented by a directed acyclic graph $G=(V, E)$. There is a source set $S=\left\{s_{1}, s_{2}\right\} \in V$ in which each source observes a random process (the processes are independent) with a discrete integer entropy, and there is a terminal set $T=\left\{t_{1}, t_{2}\right\} \in V$ in which t_{i} needs to uniquely recover the information transmitted from s_{i} at rate R_{i}. Each edge $e \in E$ has unit capacity and can transmit one symbol from a finite field of size q. If a given edge has a higher capacity, it can be divided into multiple parallel edges with unit capacity. Without loss of generality (W.l.o.g.), we assume that there is no incoming edge into source s_{i}, and no outgoing edge from terminal t_{i}. By Menger's theorem, the minimum cut between sets $S_{N_{1}} \subseteq S$ and $T_{N_{2}} \subseteq T$ is the number of edge disjoint paths from $S_{N_{1}}$ to $T_{N_{2}}$, and will be denoted by $k_{N_{1}-N_{2}}$ where $N_{1}, N_{2} \subseteq\{1,2\}$. For two unicast sessions, we define the cut vector as the vector of the cut values k_{1-1}, $k_{2-2}, k_{1-2}, k_{2-1}, k_{12-1}, k_{12-2}, k_{1-12}, k_{2-12}$ and k_{12-12}.

The network coding model in this work is based on [2]. Assume that source s_{i} needs to transmit at rate R_{i}. Then the random variable observed at s_{i} is denoted as $X_{i}=$ $\left(X_{i 1}, X_{i 2}, \cdots, X_{i R_{i}}\right)$, where each $X_{i j}$ is an element of the finite field of size q denoted by $G F(q)$. For linear network codes, the signal on an edge (i, j) is a linear combination of the signals on the incoming edges on i or a linear combination of the source signals at i. Let $Y_{e_{n}}\left(\operatorname{tail}\left(e_{n}\right)=k\right.$ and $\operatorname{head}\left(e_{n}\right)=l$) denote the signal on edge $e_{n} \in E$. Then, we have

$$
\begin{aligned}
& Y_{e_{n}}=\sum_{\left\{e_{m} \mid \operatorname{head}\left(e_{m}\right)=k\right\}} f_{m, n} Y_{e_{m}} \text { if } k \in V \backslash\left\{s_{1}, s_{2}\right\}, \text { and } \\
& Y_{e_{n}}=\sum_{j=1}^{R_{i}} a_{i j, n} X_{i j} \text { if } X_{i} \text { is observed at } k .
\end{aligned}
$$

The local coding vectors $a_{i j, n}$ and $f_{m, n}$ are also chosen from $G F(q)$. We can also express $Y_{e_{n}}$ as $Y_{e_{n}}=\sum_{j=1}^{R_{1}} \alpha_{j, n} X_{1 j}+$ $\sum_{j=1}^{R_{2}} \beta_{j, n} X_{2 j}$. The global coding vector of $Y_{e_{n}}$ is $\left[\alpha_{n}, \beta_{n}\right]=$ $\left[\alpha_{1, n}, \cdots, \alpha_{R_{1}, n}, \beta_{1, n}, \cdots, \beta_{R_{2}, n}\right]$. We are free to choose an appropriate value of the field size q.

In this work, we present an achievable rate region given the cut vector; namely, $k_{1-1}, k_{2-2}, k_{1-2}, k_{2-1}, k_{12-1}, k_{12-2}$, k_{1-12}, k_{2-12} and k_{12-12}. W.l.o.g, we assume that there are $k_{i-i j}$ outgoing edges from s_{i} and $k_{i j-i}$ incoming edges into t_{i}. If this is not the case one can always introduce an artificial source (terminal) node connected to the original source (terminal) node by $k_{i-i j}\left(k_{i j-i}\right)$ edges. It can be seen that the new network has the same cut vector as the original network.

Fig. 1. (a) An example of $C_{t_{1}}$ and $C_{t_{2}}$ when the multicast region shaded is pentagonal. (b) Another example where the multicast region is rectangular.

$$
\begin{aligned}
& \text { III. Achievable Rate Region for Given } \\
& k_{12-1}, k_{12-2}, k_{1-1}, k_{2-2}, k_{1-2} \text {, AND } k_{2-1}
\end{aligned}
$$

We first consider the case that a subset of the cut values in the cut vector are available, namely, $k_{12-1}, k_{12-2}, k_{1-1}, k_{2-2}, k_{1-2}$, and k_{2-1}. Suppose for now that only t_{1} is interested in recovering both the random variables X_{1} and X_{2} which are observed at s_{1} and s_{2} respectively. Denote the rate from s_{1} to t_{1} and s_{2} to t_{1} as R_{11} and R_{12}. The rate pairs $\left(R_{11}, R_{12}\right)$ are achieved via routing [24] and the corresponding capacity region $C_{t_{1}}$ is given by

$$
C_{t_{1}}=\left\{R_{11} \leq k_{1-1}, \quad R_{12} \leq k_{2-1}, \quad R_{11}+R_{12} \leq k_{12-1}\right\}
$$

The capacity region $C_{t_{2}}$ for t_{2} can be drawn in a similar manner (an example is shown in Fig. 1(a)). We also find the boundary points $W_{1 u}, W_{1 l}, W_{2 u}, W_{2 l}{ }^{1}$ such that their coordinates are $W_{1 u}=\left(k_{12-1}-k_{2-1}, k_{2-1}\right), W_{1 l}=\left(k_{1-1}, k_{12-1}-\right.$ $\left.k_{1-1}\right), W_{2 u}=\left(k_{12-2}-k_{2-2}, k_{2-2}\right), W_{2 l}=\left(k_{1-2}, k_{12-2}-\right.$ $\left.k_{1-2}\right)$. A simple achievable rate region for our problem can be arrived at by multicasting both sources X_{1} and X_{2} to both the terminals t_{1} and t_{2}.

Lemma 3.1: Rate pairs $\left(R_{1}, R_{2}\right)$ belonging to the following set \mathcal{B} can be achieved for two unicast sessions.

$$
\begin{aligned}
\mathcal{B}=\{ & R_{1} \leq \min \left(k_{1-2}, k_{1-1}\right), R_{2} \leq \min \left(k_{2-1}, k_{2-2}\right) \\
& \left.R_{1}+R_{2} \leq \min \left(k_{12-1}, k_{12-2}\right)\right\}
\end{aligned}
$$

Proof: We multicast both the sources to each terminal. This can be done using the multi-source multi-sink multicast result (Thm. 8 in [2]).

Subsequently we will refer to region \mathcal{B} achieved by multicast as the multicast region (the grey region in Fig. 1(a)). It can be observed that if the cut values are such that

$$
\begin{equation*}
\min \left(k_{1-2}, k_{1-1}\right)+\min \left(k_{2-1}, k_{2-2}\right) \leq \min \left(k_{12-1}, k_{12-2}\right), \tag{1}
\end{equation*}
$$

then the region is rectangular (Fig. 1(b)), otherwise, it is pentagonal (Fig. 1(a)).

We now move on to precisely formulating the problem. Let Z_{i} denote the received vector at t_{i}, X_{i} denote the transmitted vector at s_{i}, and $H_{i j}$ denote the transfer function from s_{j} to t_{i}. Let M_{i} denote the encoding matrix at s_{i}, i.e., M_{i} is the transformation from X_{i} to the transmitted symbols on the outgoing edges from s_{i}. In our formulation, we will let the length of X_{i} to be k_{i-i}, i.e., the maximum possible. For transmission at rates R_{1} and R_{2}, we introduce precoding

[^1]TABLE I
DIMENSION AND RANK OF MATRICES

matrix	dimension	rank
H_{11}	$k_{12-1} \times k_{1-12}$	k_{1-1}
H_{12}	$k_{12-1} \times k_{2-12}$	k_{2-1}
$\left[\begin{array}{ll}H_{11} & H_{12}\end{array}\right]$	$k_{12-1} \times\left(k_{1-12}+k_{2-12}\right)$	k_{12-1}
H_{21}	$k_{12-2} \times k_{1-12}$	k_{1-2}
H_{22}	$k_{12-2} \times k_{2-12}$	k_{2-2}
$\left[\begin{array}{ll}H_{21} & H_{22}\end{array}\right]$	$k_{12-2} \times\left(k_{1-12}+k_{2-12}\right)$	k_{12-2}

matrices $V_{i}, i=1,2$ of dimension $R_{i} \times k_{i-i}$, so that the overall system of equations is as follows.

$$
\begin{align*}
& Z_{1}=H_{11} M_{1} V_{1} X_{1}+H_{12} M_{2} V_{2} X_{2} \tag{2}\\
& Z_{2}=H_{21} M_{1} V_{1} X_{1}+H_{22} M_{2} V_{2} X_{2}
\end{align*}
$$

We say that t_{i} can receive information at rate R_{i} from s_{i} if it can decode $V_{i} X_{i}$ perfectly; each entry in V_{i} is either 0 or 1 . The row dimension of the V_{i} 's can be adjusted to obtain different rate vectors. Under random linear network coding, it can be shown that there exist local coding vectors over a large enough field such that the ranks of the different matrices in the first column of Table I are given by the corresponding entries in the third column, which correspond to the maximum possible. Furthermore, by the multi-source multi-sink multicast result [2], when $\left(R_{1}, R_{2}\right) \in \mathcal{B}$ these matrices are such that $\left[\begin{array}{lll}H_{11} & M_{1} & H_{12} M_{2}\end{array}\right]$ is a full column rank matrix of dimension $k_{12-1} \times\left(R_{1}+R_{2}\right)$, and [$\left.H_{21} M_{1} H_{22} M_{2}\right]$ is a full column rank matrix of dimension $k_{12-2} \times\left(R_{1}+R_{2}\right)$. In Table I, for instance since the minimum cut between s_{1} and t_{1} is k_{1-1}, we know that the maximum rank of H_{11} is k_{1-1}. Using the formalism of [2], we can conclude that there is a square submatrix of H_{11} of dimension $k_{1-1} \times k_{1-1}$ whose determinant is not identically zero. Such appropriate submatrices can be found for each of the matrices in the first column of Table I. This in turn implies that their product is not identically zero and therefore using the Schwartz-Zippel lemma [25], we can conclude that there exists an assignment of local coding vectors over a sufficiently large finite field so that the rank of all the matrices is simultaneously the maximum possible. While, the Schwartz-Zippel lemma requires random choice of the local coding vectors, the probability of success in the algorithm can be made arbitrarily close to one if the field size is chosen large enough, or through repeated trials, hence it runs in random polynomial time. For the rest of the paper, we assume that such a choice of local coding vectors has been made. Our arguments will revolve around appropriately modifying source encoding matrices M_{1} and M_{2}.

Note that in general the multicast region has a pentagonal shape (see Fig. 1(a)). Two points on this pentagon (denoted as Q_{1} and Q_{2}) are of specific interest. At point Q_{1}, we denote the achievable rate pair by $\left(R_{1}^{*}, R_{2}^{*}\right)$ where

$$
\begin{aligned}
& R_{1}^{*}=\min \left(k_{1-2}, k_{1-1}\right), \text { and } \\
& R_{2}^{*}=\min \left(\min \left(k_{2-1}, k_{2-2}\right), \min \left(k_{12-1}, k_{12-2}\right)-R_{1}^{*}\right)
\end{aligned}
$$

If the region is pentagonal, then $R_{1}^{*}=\min \left(k_{1-2}, k_{1-1}\right)$ and $R_{2}^{*}=\min \left(k_{12-1}, k_{12-2}\right)-R_{1}^{*}$. Likewise at point Q_{2}, we
denote the achievable rate pair by $\left(R_{1}^{* *}, R_{2}^{* *}\right)$ where
$R_{1}^{* *}=\min \left(\min \left(k_{1-2}, k_{1-1}\right), \min \left(k_{12-1}, k_{12-2}\right)-R_{2}^{* *}\right)$, and $R_{2}^{* *}=\min \left(k_{2-1}, k_{2-2}\right)$.

If the region is pentagonal, then $R_{1}^{* *}=\min \left(k_{12-1}, k_{12-2}\right)-$ $R_{2}^{* *}$ and $R_{2}^{* *}=\min \left(k_{2-1}, k_{2-2}\right)$. If the region is rectangular, then $Q_{1}=Q_{2}$, and $R_{1}^{*}=R_{1}^{* *}=\min \left(k_{1-2}, k_{1-1}\right)$ and $R_{2}^{*}=R_{2}^{* *}=\min \left(k_{2-1}, k_{2-2}\right)$. In Fig. 1(a), these boundary points are $Q_{1}=W_{2 l}$ and $Q_{2}=W^{*}$, and the multicast region is pentagonal. Another example is shown in Fig. 1(b) where $Q_{1}=Q_{2}$ and the multicast region is rectangular.

In what follows, we will present our arguments towards increasing the value of R_{1} and R_{2} to achieve points that are near Q_{1} but do not belong to \mathcal{B}. In this paper we refer to $k_{1-2}+k_{2-1}$ as a measure of the interference in the network and in the subsequent discussion present achievable regions based on its value. We emphasize though that this is nomenclature used for ease of presentation. Indeed a high value of k_{1-2} does not necessarily imply that there is a lot of interference at t_{2}, since the network code itself dictates the amount of interference seen by t_{2}. The following lemma will be used extensively.

Lemma 3.2: Consider a system of equations $Z=H_{1} X_{1}+$ $H_{2} X_{2}$, where X_{1} is a vector of length l_{1} and X_{2} is a vector of length l_{2} and $Z \in \operatorname{span}\left(\left[\begin{array}{ll}H_{1} & H_{2}\end{array}\right]\right)^{2}$. The matrix H_{1} has dimension $z_{t} \times l_{1}$, and rank $l_{1}-\sigma$, where $0 \leq \sigma \leq l_{1}$. The matrix H_{2} is full rank and has dimension $z_{t} \times l_{2}$ where $z_{t} \geq\left(l_{1}+l_{2}-\sigma\right)$. Furthermore, the column spans of H_{1} and H_{2} intersect only in the all-zeros vectors, i.e., $\operatorname{span}\left(H_{1}\right) \cap \operatorname{span}\left(H_{2}\right)=\{0\}$. Then, there exists a unique solution for X_{2}.

Proof: As $Z \in \operatorname{span}\left(\left[\begin{array}{ll}H_{1} & H_{2}\end{array}\right]\right)$, there exist X_{1} and X_{2} such that $Z=H_{1} X_{1}+H_{2} X_{2}$. Now assume that there exist X_{1}^{\prime} and X_{2}^{\prime} (different from X_{1} and X_{2}) such that $Z=H_{1} X_{1}^{\prime}+$ $H_{2} X_{2}^{\prime}$. This implies

$$
\begin{equation*}
H_{1}\left(X_{1}-X_{1}^{\prime}\right)=H_{2}\left(X_{2}-X_{2}^{\prime}\right) \tag{3}
\end{equation*}
$$

Since $\operatorname{span}\left(H_{1}\right) \cap \operatorname{span}\left(H_{2}\right)=\{0\}$, both sides of eq. (3) are zero. Furthermore, since H_{2} is a full rank matrix, $X_{2}=X_{2}^{\prime}$, i.e., the solution for X_{2} is unique.

We next define the achievable rate region which will be used in the rest of the paper.

Definition 3.3: A rate point $\left(R_{1}, R_{2}\right)$ is said to lie in the achievable rate region \mathcal{R}_{A} if there exist full column rank source encoding matrices M_{1} and M_{2} where $\operatorname{rank}\left(M_{1}\right)=R_{1}$ and $\operatorname{rank}\left(M_{2}\right)=R_{2}$ such that

$$
\begin{align*}
& \operatorname{rank}\left(H_{11} M_{1}\right)=\operatorname{rank}\left(M_{1}\right), \operatorname{rank}\left(H_{22} M_{2}\right)=\operatorname{rank}\left(M_{2}\right), \\
& \operatorname{span}\left(H_{i 1} M_{1}\right) \cap \operatorname{span}\left(H_{i 2} M_{2}\right)=\{0\} \text { for } i=1,2 . \tag{4}
\end{align*}
$$

The condition above will be referred in the remainder of the paper as the achievable condition. It can be observed that the multicast region \mathcal{B} is a subset of \mathcal{R}_{A}.

[^2]A. Low Interference Case $-k_{1-2}+k_{2-1} \leq \min \left(k_{12-1}, k_{12-2}\right)$

Note that it always holds that $k_{2-1}+k_{1-1} \geq k_{12-1}$ and $k_{1-2}+k_{2-2} \geq k_{12-2}$. Together with the low interference condition, this implies that $k_{1-1} \geq k_{1-2}$ and $k_{2-2} \geq k_{2-1}$. It follows that the multicast region is a rectangle since eq. (1) is satisfied and $R_{1}^{*}=k_{1-2}, R_{2}^{*}=k_{2-1}$. Furthermore, $Q_{1}=Q_{2}=W^{*}$ as shown in the example in Fig. 1(b).

Our solution strategy is to first consider the encoding matrices M_{1} and M_{2} at the point Q_{1}, and to introduce a new encoding matrix at s_{1}, denoted M_{1}^{\prime} (with $R_{1}^{*}+\delta$ columns) such that $\operatorname{span}\left(H_{11} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{12}\right)=\{0\}$. As shown below, this will allow t_{1} to decode from s_{1} at rate $R_{1}^{*}+\delta$ and t_{2} to decode from s_{2} at rate R_{2}^{*}. After the modification, each t_{i} is guaranteed to decode at the appropriate rate from s_{i}. A similar argument applies for R_{2}^{*} to arrive at the achievable rate region. At the point Q_{1}, as both terminals can decode both sources, it holds that

$$
\begin{aligned}
& \operatorname{rank}\left(H_{i 1} M_{1}\right)=k_{1-2}, \operatorname{rank}\left(H_{i 2} M_{2}\right)=k_{2-1}, \text { and } \\
& \operatorname{span}\left(H_{i 1} M_{1}\right) \cap \operatorname{span}\left(H_{i 2} M_{2}\right)=\{0\} \text { for } i=1,2 .
\end{aligned}
$$

Before stating the main result, we present the following lemma.

Lemma 3.4: Rate Increase Lemma. Consider a rate point $\left(R_{1}, R_{2}\right) \in \mathcal{R}_{A}$ with corresponding matrices M_{1} and M_{2} such that (1) $\operatorname{rank}\left(\left[H_{11} \quad H_{12} M_{2}\right]\right) \quad=r>$ $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} M_{1} & H_{12} M_{2}\end{array}\right]\right)=R_{1}+\Delta$, where $\operatorname{rank}\left(H_{12} M_{2}\right)=$ $\Delta \leq R_{2}$ and (2) $\operatorname{rank}\left(\left[H_{21} M_{1}\right]\right)=\operatorname{rank}\left(H_{21}\right)$. There exist matrices M_{1}^{\prime} and M_{2}^{\prime} such that t_{1} can decode at rate $r-\Delta$ and t_{2} can decode at rate R_{2}.

Proof: We first prove that if M_{1} and M_{2} satisfy Condition (1), then there exist a series of full rank matrices $\bar{M}_{1}^{(n)}=\left[\tilde{M}_{1}^{(n)} \quad M_{1}\right]$ of dimension $k_{1-12} \times\left(n+R_{1}\right)$ such that $\operatorname{rank}\left(\left[H_{11} \bar{M}_{1}^{(n)} \quad H_{12} M_{2}\right]\right)=R_{1}+\Delta+n, 0 \leq n \leq$ $\left(r-R_{1}-\Delta\right)$. We prove this part by induction. When $n=0$, $\bar{M}_{1}^{(0)}=M_{1}, \operatorname{rank}\left(\left[H_{11} \bar{M}_{1}^{(0)} \quad H_{12} M_{2}\right]\right)=R_{1}+\Delta$.

Assume that when $n=l \leq r-1-R_{1}-\Delta, \bar{M}_{1}^{(n)}$ can be found such that $\operatorname{rank}\left(\left[H_{11} \bar{M}_{1}^{(l)} \quad H_{12} M_{2}\right]\right)=R_{1}+\Delta+l$. When $n=l+1 \leq r-R_{1}-\Delta$, if there does not exist an $\bar{M}_{1}^{(l+1)}$, all the columns in $\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]$ are linear combinations of $\left[H_{11} \bar{M}_{1}^{(l)} \quad H_{12} M_{2}\right.$], which contradicts the fact that $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)=r>r-1 \geq l+R_{1}+\Delta$. Hence, there must exist a series of full rank matrices $\bar{M}_{1}^{(n)}$ such that $\operatorname{rank}\left(\left[H_{11} \bar{M}_{1}^{(n)} \quad H_{12} M_{2}\right]\right)=R_{1}+\Delta+n$ is satisfied when $0 \leq n \leq r-R_{1}-\Delta$.

Next, we prove that t_{1} can decode at rate $r-\Delta$ and t_{2} can decode at rate R_{2} using $M_{1}^{\prime}=\bar{M}_{1}^{\left(r-R_{1}-\Delta\right)}$ and $M_{2}^{\prime}=M_{2}$.
Decoding at t_{1} : Since M_{1}^{\prime} is a full rank matrix of dimension $k_{1-12} \times(r-\Delta)$, it also satisfies (i) $\operatorname{rank}\left(H_{11} M_{1}^{\prime}\right)=r-\Delta$ and (ii) $\operatorname{span}\left(H_{11} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{12} M_{2}\right)=\{0\}$ because of the following argument. We have

$$
\begin{aligned}
r & =\operatorname{rank}\left(\left[H_{11} M_{1}^{\prime} \quad H_{12} M_{2}\right]\right) \\
& \leq \operatorname{rank}\left(\left[H_{11} M_{1}^{\prime}\right]\right)+\operatorname{rank}\left(\left[H_{12} M_{2}\right]\right) \\
& \leq \operatorname{rank}\left(M_{1}^{\prime}\right)+\operatorname{rank}\left(H_{12} M_{2}\right)=r-\Delta+\Delta=r
\end{aligned}
$$

Then all the inequalities become equalities and (i) and (ii) are satisfied. Then by Lemma 3.2 and the above conditions, t_{1} can decode at rate $r-\Delta$.

Decoding at t_{2} : From Condition (2), we have $\operatorname{span}\left(H_{21} M_{1}\right)=\operatorname{span}\left(H_{21}\right)$ (see Lemma A. 1 in the Appendix). Furthermore, since $\operatorname{span}\left(M_{1}\right) \subseteq \operatorname{span}\left(M_{1}^{\prime}\right)$, we have $\operatorname{span}\left(H_{21} M_{1}\right) \subseteq \operatorname{span}\left(H_{21} M_{1}^{\prime}\right) \subseteq \operatorname{span}\left(H_{21}\right)$. This implies that $\operatorname{span}\left(H_{21} M_{1}\right)=\operatorname{span}\left(H_{21} M_{1}^{\prime}\right)=\operatorname{span}\left(H_{21}\right)$. Furthermore, since $\operatorname{span}\left(H_{21} M_{1}\right) \cap \operatorname{span}\left(H_{22} M_{2}\right)=\{0\}$, we also have $\operatorname{span}\left(H_{21} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{22} M_{2}\right)=\{0\}$. Then by Lemma 3.2 and the fact that $H_{22} M_{2}$ is full rank, t_{2} can decode at rate R_{2}.

Lemma 3.5: If $k_{1-2}+k_{2-1} \leq \min \left(k_{12-1}, k_{12-2}\right)$, the rate pair in the following region can be achieved.

$$
R_{1} \leq k_{12-1}-k_{2-1}, \quad R_{2} \leq k_{12-2}-k_{1-2}
$$

Proof: In this case, $\left(R_{1}^{*}, R_{2}^{*}\right)=\left(k_{1-2}, k_{2-1}\right)$ is the boundary point $Q_{1}=Q_{2}$. Let M_{1} and M_{2} denote the source encoding matrices at Q_{1}.

First, note that $\operatorname{rank}\left(H_{12} M_{2}\right)=\operatorname{rank}\left(H_{12}\right)=k_{2-1}$, which implies that $\operatorname{span}\left(H_{12}\right)=\operatorname{span}\left(H_{12} M_{2}\right)$. Therefore

$$
\begin{aligned}
\operatorname{rank}\left(\left[\begin{array}{ll}
H_{11} & H_{12}
\end{array}\right]\right) & =\operatorname{rank}\left(\left[\begin{array}{lll}
H_{11} & H_{12} & H_{12} M_{2}
\end{array}\right]\right. \\
& =\operatorname{rank}\left(\left[\begin{array}{ll}
H_{11} & H_{12} M_{2}
\end{array}\right]\right)
\end{aligned}
$$

This implies that $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)=k_{12-1} \geq k_{1-2}+$ $k_{2-1}=\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & M_{1}\end{array} H_{12} M_{2}\right]\right)$ since by assumption $k_{1-2}+$ $k_{2-1} \leq \min \left(k_{12-1}, k_{12-2}\right)$. Moreover, $\operatorname{rank}\left(H_{21} M_{1}\right)=$ $\operatorname{rank}\left(H_{21}\right)=k_{1-2}$. Therefore by the Rate Increase Lemma, we can achieve rate point $\left(R_{1}=k_{12-1}-k_{2-1}, R_{2}=k_{2-1}\right)$. Using a similar argument, we can further increase R_{2} such that rate pair $\left(k_{12-1}-k_{2-1}, k_{12-2}-k_{1-2}\right)$ can be achieved. This region is the hatched gray region in Fig. 2.

This implies that the point $W^{\prime}=\left(k_{12-1}-k_{2-1}, k_{12-2}-\right.$ k_{1-2}) is achievable. Also note that since we applied the Rate Increase Lemma, we have $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} M_{1}^{\prime} & H_{12} M_{2}\end{array}\right]\right)=$ $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)$. Next, we consider the scenario in which rates can be traded off between the two unicast sessions.

Lemma 3.6: Rate Exchange Lemma - 1-1 tradeoff. Consider a rate point $\left(R_{1}, R_{2}\right) \in \mathcal{R}_{A}$ with corresponding matrices M_{1} and M_{2}.
(a) If M_{1} and M_{2} satisfy (1) $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} M_{1} & H_{12} M_{2}\end{array}\right]\right)=$ $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)=r$, where $R_{1}+R_{2} \geq r$, and (2) $\operatorname{rank}\left(H_{21} M_{1}\right)=\operatorname{rank}\left(H_{21}\right)$, there exist M_{1}^{\prime} and M_{2}^{\prime} such that t_{1} can decode at rate $\min \left(R_{1}+1, k_{1-1}\right)$ and t_{2} can decode at rate $\max \left(R_{2}-1,0\right)$.
(b) If M_{1} and M_{2} satisfy (1) $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)=$ $r>\operatorname{rank}\left(\left[H_{11} M_{1} \quad H_{12} M_{2}\right]\right)=R_{1}+\Delta$, where $\operatorname{rank}\left(H_{12} M_{2}\right)=\Delta \leq R_{2}$, and (2) $\operatorname{rank}\left(H_{21} M_{1}\right)<$ $\operatorname{rank}\left(H_{21}\right)$, there exist M_{1}^{\prime} and M_{2}^{\prime} such that t_{1} can decode at rate $\min \left(R_{1}+1, k_{1-1}\right)$ and t_{2} can decode at rate $\max \left(R_{2}-1,0\right)$.
Lemma 3.7: Rate Exchange Lemma - 1-2 tradeoff. Consider a rate point $\left(R_{1}, R_{2}\right) \in \mathcal{R}_{A}$ with corresponding matrices M_{1} and M_{2}. If M_{1} and M_{2} satisfy (1) $\operatorname{rank}\left(\left[H_{11} M_{1} H_{12} M_{2}\right]\right)=\operatorname{rank}\left(\left[H_{11} H_{12} M_{2}\right]\right)=r$, where $R_{1}+R_{2} \geq r$, and (2) $\operatorname{rank}\left(H_{21} M_{1}\right)<\operatorname{rank}\left(H_{21}\right)$, there exist $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$ such that t_{1} can decode at rate $\min \left(R_{1}+1, k_{1-1}\right)$ and t_{2} can decode at rate $\max \left(R_{2}-2,0\right)$.

Proof: 1-1 tradeoff. We assume that $R_{1}+1 \leq k_{1-1}$ and $R_{2}-1 \geq 0$. A vector $\vec{\alpha}$ is added to M_{1} to form M_{1}^{\prime} such that
$M_{1}^{\prime}=\left[\begin{array}{ll}\vec{\alpha} & M_{1}\end{array}\right]$ and $\operatorname{rank}\left(H_{11} M_{1}^{\prime}\right)=R_{1}+1$ where $H_{11} M_{1}^{\prime}$ is of dimension $k_{12-1} \times\left(R_{1}+1\right)$.

For part (a), because of Condition (1), $H_{11} \vec{\alpha}$ will be a nonzero linear combination of the vectors in $H_{11} M_{1}$ and $H_{12} M_{2}$, i.e., $H_{11} \vec{\alpha}=H_{11} M_{1} \vec{\gamma}_{1}+H_{12} M_{2} \vec{\gamma}_{2}$. Note that $\vec{\gamma}_{1}$ is unique; otherwise, assume that there exist $\vec{\gamma}_{1}^{\prime}$ and $\vec{\gamma}_{2}^{\prime}$ such that $H_{11} \vec{\alpha}=H_{11} M_{1} \vec{\gamma}_{1}^{\prime}+H_{12} M_{2} \vec{\gamma}_{2}^{\prime}$ where $\vec{\gamma}_{1}^{\prime} \neq \vec{\gamma}_{1}$. If $H_{12} M_{2} \vec{\gamma}_{2}=H_{12} M_{2} \vec{\gamma}_{2}^{\prime}$ then $H_{11} M_{1} \vec{\gamma}_{1}=H_{11} M_{1} \vec{\gamma}_{1}^{\prime}$ which indicates that $H_{11} M_{1}$ is not full column rank. On the other hand if $H_{12} M_{2} \vec{\gamma}_{2} \neq H_{12} M_{2} \vec{\gamma}_{2}^{\prime}$, then it means that $\operatorname{span}\left(H_{11} M_{1}\right) \cap \operatorname{span}\left(H_{12} M_{2}\right) \neq\{0\}$. Hence, by contradiction, we have $\vec{\gamma}_{1}^{\prime}=\vec{\gamma}_{1}$, which indicates that $\vec{\gamma}_{1}$ is unique. Then, $\vec{\beta}=H_{11} \vec{\alpha}-H_{11} M_{1} \vec{\gamma}_{1}$ is a vector which contains at least one nonzero element. Otherwise, if $\vec{\beta}$ is a zero vector, $\operatorname{rank}\left(H_{11} M_{1}^{\prime}\right)$ will be rank R_{1} which is a contradiction. Assume w.l.o.g. that the nonzero element is on the first row of $\vec{\beta}$.

Next, we select a full rank matrix U of dimension $R_{2} \times$ $\left(R_{2}-1\right)$ from the null space of the first row of $H_{12} M_{2}$ such that the first row of $H_{12} M_{2} U$ is a zero row vector. It follows that $H_{11} \vec{\alpha}$ can not be represented by a linear combination of the vectors in $H_{11} M_{1}$ and $H_{12} M_{2} U$, which indicates that $H_{11} \vec{\alpha} \notin \operatorname{span}\left(\left[H_{11} M_{1} \quad H_{12} M_{2} U\right]\right)$. Next, because $\operatorname{span}\left(H_{11} M_{1}\right) \cap \operatorname{span}\left(H_{12} M_{2}\right)=\{0\}$, we have $\operatorname{span}\left(H_{11} M_{1}\right) \cap \operatorname{span}\left(H_{12} M_{2} U\right)=\{0\}$. Finally, we conclude that $\operatorname{span}\left(H_{11} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{12} M_{2}^{\prime}\right)=\{0\}$ where $M_{2}^{\prime}=$ $M_{2} U$. Hence, t_{1} can decode at rate $\min \left(R_{1}+1, k_{1-1}\right)$.

For part (a) if Condition (2) is satisfied, $\operatorname{span}\left(H_{21} M_{1}\right)=$ $\operatorname{span}\left(H_{21}\right)$. Using an argument similar to the one used in the proof of Lemma 3.4, it can be shown that $\operatorname{span}\left(H_{21} M_{1}^{\prime}\right)=\operatorname{span}\left(H_{21}\right)=\operatorname{span}\left(H_{21} M_{1}\right)$. This implies that $\operatorname{span}\left(H_{21} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{22} M_{2}^{\prime}\right)=\{0\}$ since $\operatorname{span}\left(H_{22} M_{2}^{\prime}\right) \subseteq \operatorname{span}\left(H_{22} M_{2}\right)$. Then t_{2} can decode at rate $R_{2}-1$ since $\operatorname{rank}\left(H_{22} M_{2}^{\prime}\right)=R_{2}-1$.

For part (b) if Condition (1) is satisfied, we can find an M_{1}^{\prime} such that $\operatorname{rank}\left(H_{11} M_{1}^{\prime}\right)=R_{1}+1$ and $\operatorname{span}\left(H_{11} M_{1}^{\prime}\right) \cap$ $\operatorname{span}\left(H_{12} M_{2}\right)=\{0\}$. At the same time, if Condition (2) of part (b) is satisfied, $\operatorname{rank}\left(H_{21} M_{1}^{\prime}\right)-\operatorname{rank}\left(H_{21} M_{1}\right) \leq 1$. Then $\operatorname{rank}\left(\operatorname{span}\left(H_{21} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{22} M_{2}\right)\right)$ can be as large as 1. As $H_{22} M_{2}$ is a full column rank matrix, we can find an M_{2}^{\prime} by deleting one column from M_{2} such that $\operatorname{span}\left(H_{21} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{22} M_{2}^{\prime}\right)=\{0\}$ where M_{2}^{\prime} is a full rank matrix of dimension $k_{2-12} \times\left(R_{2}-1\right)$. Furthermore, since $\operatorname{span}\left(H_{12} M_{2}^{\prime}\right) \subseteq \operatorname{span}\left(H_{12} M_{2}\right)$, we will have that $\operatorname{span}\left(H_{11} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{12} M_{2}^{\prime}\right)=\{0\}$. With this M_{1}^{\prime} and M_{2}^{\prime}, the rate point $\left(R_{1}+1, R_{2}-1\right)$ can be achieved.

Proof: 1-2 tradeoff. We assume that $R_{1}+1 \leq k_{1-1}$ and $R_{2}-2 \geq 0$.

Note that Condition (1) here is the same as in the Rate Exchange Lemma - 1-1 tradeoff - part(a). Therefore, we can find two matrices M_{1}^{\prime} and M_{2}^{\prime} with rank $R_{1}+1$ and $R_{2}-1$ by appending one vector to M_{1} and selecting $M_{2}^{\prime}=M_{2} U$ such that $\operatorname{rank}\left(H_{11} M_{1}^{\prime}\right)=R_{1}+1$, and $\operatorname{span}\left(H_{11} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{12} M_{2}^{\prime}\right)=\{0\}$ where U is a full rank matrix of dimension $R_{2} \times\left(R_{2}-1\right)$ such that $\operatorname{rank}\left(H_{12} M_{2}\right)-\operatorname{rank}\left(H_{12} M_{2} U\right)=1$.

If Condition (2) is satisfied, $\operatorname{rank}\left(H_{21} M_{1}^{\prime}\right)-\operatorname{rank}\left(H_{21} M_{1}\right)$ can be as large as 1. Then $\operatorname{rank}\left(\operatorname{span}\left(H_{21} M_{1}^{\prime}\right) \cap\right.$ $\left.\operatorname{span}\left(H_{22} M_{2}^{\prime}\right)\right)$ can be as large as 1. Because $H_{22} M_{2}^{\prime}$

Fig. 2. The achievable rate region for the low interference case. For each point in the shaded grey area, both terminals can recover both the sources. In the hatched grey area and the hatched white area, for a given rate point, its x-coordinate is the rate for $s_{1}-t_{1}$ and its y-coordinate is the rate for $s_{2}-t_{2}$; the terminals are not guaranteed to decode both sources in this region. The union of the hatched white region, the hatched gray region and the gray region is the final extended rate region for the low interference case.
is a full column rank matrix, we can find an $M_{2}^{\prime \prime}$ by deleting one column from M_{2}^{\prime} such that $\operatorname{span}\left(H_{21} M_{1}^{\prime}\right) \cap$ $\operatorname{span}\left(H_{22} M_{2}^{\prime \prime}\right)=\{0\}$ where $M_{2}^{\prime \prime}$ is a full rank matrix of dimension $k_{2-12} \times\left(R_{2}-2\right)$. Furthermore, since $\operatorname{span}\left(H_{12} M_{2}^{\prime \prime}\right) \subseteq \operatorname{span}\left(H_{12} M_{2}^{\prime}\right)$, we will have that $\operatorname{span}\left(H_{11} M_{1}^{\prime}\right) \cap \operatorname{span}\left(H_{12} M_{2}^{\prime \prime}\right)=\{0\}$. Finally let $M_{1}^{\prime \prime}=M_{1}^{\prime}$. With encoding matrices $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$, it can be seen that $\left(R_{1}+1, R_{2}-2\right)$ can be achieved.

By applying the Rate Exchange Lemma - 1-1 tradeoff part (a), at point $W^{\prime}=\left(k_{12-1}-k_{2-1}, k_{12-2}-k_{1-2}\right)$, we have the following theorem.

Theorem 3.8: If $k_{1-2}+k_{2-1} \leq \min \left(k_{12-1}, k_{12-2}\right)$, the following rate region (see Fig. 2) can be achieved.
Region 1:

$$
\begin{aligned}
R_{1} & \leq k_{1-1}, \quad R_{2} \leq k_{2-2}, \\
R_{1}+R_{2} & \leq k_{12-1}-k_{2-1}+k_{12-2}-k_{1-2}
\end{aligned}
$$

Proof: Note that point $W^{\prime}=\left(R_{1}, R_{2}\right)=$ $\left(k_{12-1}-k_{2-1}, k_{12-2}-k_{1-2}\right)$ is achieved by using the Rate Increase Lemma. Let M_{1} and M_{2} be the encoding matrices at W^{\prime}. Then, we have $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} M_{1} & H_{12} M_{2}\end{array}\right]\right)=\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)$, and we further have that $\operatorname{rank}\left(H_{21} M_{1}\right)=\operatorname{rank}\left(H_{21}\right)=k_{1-2}$. Applying the Rate Exchange Lemma - 1-1 tradeoff - part (a) we have the required conclusion.

Remark 3.9: Note that it always holds that $k_{12-1} \geq k_{1-1}$, $k_{12-2} \geq k_{2-2}$. Along with the low interference condition, we can conclude that $k_{12-1}-k_{2-1}+k_{12-2}-k_{1-2} \geq$ $\max \left(k_{1-1}, k_{2-2}\right) \geq\left(k_{1-1}+k_{2-2}\right) / 2$. As $k_{1-1}+k_{2-2}$ is always an upper bound (albeit loose) on $R_{1}+R_{2}$, this implies that our rate region is within a multiplicative gap of two of the outer bound.

B. High Interference Case- $k_{1-2}+k_{2-1}>\min \left(k_{12-1}, k_{12-2}\right)$

Note that for the low interference case, the low interference condition implies that $k_{1-1} \geq k_{1-2}$ and $k_{2-2} \geq k_{2-1}$. However, in high interference case, there are several possibilities. We show a case where $k_{1-1} \leq k_{1-2}$ and $k_{2-2} \leq k_{2-1}$ in Fig. 3(a). When $k_{1-1} \geq k_{1-2}$, Fig. 3(b) illustrates an example where $k_{2-2} \leq k_{2-1}$, and Fig. 1(a) (in Section III-A) illustrates an example where $k_{2-2} \geq k_{2-1}$. It can be observed here that unlike the low interference case, Q_{1} may not be the same point as Q_{2}. In the discussion below we present rate regions by extending them from the rate points Q_{1} and Q_{2}.

Fig. 3. (a) High interference case where $k_{1-1} \leq k_{1-2}$ and $k_{2-2} \leq k_{2-1}$. (b) High interference case where $k_{1-1} \geq k_{1-2}$ and $k_{2-2} \leq k_{2-1}$.

Claim 3.10: When $Q_{1} \neq Q_{2}$, the Rate Increase Lemma cannot be applied to increase the rate to t_{2} above R_{2}^{*} at Q_{1} or to increase the rate to t_{1} above $R_{1}^{* *}$ at Q_{2}.

Proof: As $Q_{1} \neq Q_{2}$, using eq. (1), we conclude that $\min \left(k_{1-2}, k_{1-1}\right)+\min \left(k_{2-1}, k_{2-2}\right)>$ $\min \left(k_{12-1}, k_{12-2}\right)$ Then at $\quad Q_{1}, \quad R_{2}^{*}=$ $\min \left(\min \left(k_{2-1}, k_{2-2}\right), \min \left(k_{12-1}, k_{12-2}\right)\right.$
$\left.\min \left(k_{1-2}, k_{1-1}\right)\right)<\min \left(k_{2-1}, k_{2-2}\right) \leq k_{2-1}$. Next, since $\operatorname{rank}\left(H_{12} M_{2}\right) \leq \operatorname{rank}\left(M_{2}\right)=R_{2}^{*}<\operatorname{rank}\left(H_{12}\right)=k_{2-1}$, Condition (2) of the Rate Increase Lemma is not satisfied. A similar argument applies for Q_{2}.

In view of the above claim, using our achievable strategies one can at best use the Rate Exchange Lemma to increase the rate to t_{2} at Q_{1} while reducing the rate to t_{1}. As $Q_{1} \neq Q_{2}$, the multicast region is a pentagon and applying the 1-1 tradeoff will at most allow us to achieve the boundary between Q_{1} and Q_{2}, while the 1-2 tradeoff achieves interior points in the multicast region. As points on the $Q_{1}-Q_{2}$ boundary are already achieved by multicasting both sources, the region is not enlarged.

Hence, we will consider rate points $\left(R_{1}, R_{2}\right)$ such that $R_{1}>R_{1}^{*}$ and $R_{2}=R_{2}^{*}$ at Q_{1} (and similarly $R_{1}=R_{1}^{* *}$ and $R_{2}>R_{2}^{* *}$ at Q_{2}). At Q_{1}, if $k_{1-2} \geq k_{1-1}, R_{1}^{*}=k_{1-1}$, i.e. increasing R_{1} is impossible since it attains its maximum. Therefore, we assume that $k_{1-2}<k_{1-1}$. By the high interference condition and the fact that $k_{1-2}+k_{2-2} \geq k_{12-2}$, we have $\left(R_{1}^{*}, R_{2}^{*}\right)=\left(k_{1-2}, \min \left(k_{12-1}, k_{12-2}\right)-k_{1-2}\right)$. We begin by modifying the source encoding matrices at point Q_{1}, with the goal of increasing R_{1} the rate to t_{1} above R_{1}^{*}. Our strategy at Q_{1} is similar to the one for the low interference case, namely, we attempt to trace a region of achievable rates by using the Rate Increase and Rate Exchange lemmas. The main difference is that here we also use the 1-2 tradeoff result (cf. Lemma 3.7). Note that in the discussion below, we present the arguments for increasing rates at Q_{1} and Q_{2} separately. However, if $Q_{1}=Q_{2}$, then the arguments are still applicable.

Theorem 3.11: If $k_{1-2}+k_{2-1}>\min \left(k_{12-1}, k_{12-2}\right)$ and $k_{1-2}<k_{1-1}$, then the rate pair in the following region can be achieved.

Region 2:

$$
\begin{array}{ll}
D_{1} \cap\left(D_{2} \cup D_{3} \cup D_{4}\right) & \text { if } k_{2-1}<k_{2-2} \text {, or } \\
D_{1} \cap\left(D_{2} \cup D_{3}\right) & \text { if } k_{2-1} \geq k_{2-2}, \text { where }
\end{array}
$$

$$
\begin{aligned}
D_{1} & : R_{1} \leq k_{1-1} \\
D_{2} & : R_{1}+R_{2} \leq \operatorname{rank}\left(\left[\begin{array}{ll}
H_{11} & H_{12} M_{2}
\end{array}\right]\right) \\
& \quad \text { when } R_{2} \leq R_{2}^{*}, \\
D_{3} & : R_{1}+2 R_{2} \leq R_{2}^{*}+\operatorname{rank}\left(\left[\begin{array}{ll}
H_{11} & H_{12} M_{2}
\end{array}\right]\right) \\
& \quad \text { when } R_{2}^{*} \leq R_{2} \leq \min \left(k_{2-1}, k_{2-2}\right) \\
D_{4} & : R_{1}+R_{2} \leq R_{2}^{*}+\operatorname{rank}\left(\left[\begin{array}{ll}
H_{11} & H_{12} M_{2}
\end{array}\right]\right)-k_{2-1} \\
& \text { when } k_{2-1}<R_{2} \leq k_{2-2},
\end{aligned}
$$

where $R_{2}^{*}=\min \left(k_{12-1}, k_{12-2}\right)-k_{1-2}, M_{1}$ and M_{2} are the encoding matrices at Q_{1}.

Note that in the above characterization, the rate constraints depend on $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)$; we show a lower bound on $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)$ in Section III-B1.

Proof: Given that $k_{1-2}+k_{2-1}>\min \left(k_{12-1}, k_{12-2}\right)$ and $k_{1-2}<k_{1-1}$, we will extend the rate region from Q_{1} where $R_{1}^{*}=k_{1-2}, R_{2}^{*}=\min \left(k_{12-1}, k_{12-2}\right)-k_{1-2}$. Let M_{1} and M_{2} denote the encoding matrices at Q_{1}. At Q_{1}, we first need to increase R_{1} while keeping R_{2} as large as possible. Suppose that we can use the Rate Increase Lemma to increase R_{1}. This implies that $\min \left(k_{12-1}, k_{12-2}\right)=\operatorname{rank}\left(\left[H_{11} M_{1} H_{12} M_{2}\right]\right)<$ $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right) \leq \operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12}\end{array}\right]\right)=k_{12-1}$ which implies that $\min \left(k_{12-2}, k_{12-1}\right)=k_{12-2}$. In the following discussion, we assume this is the case. By Rate Increase Lemma, we can achieve the rate point $W^{\prime}=\left(R_{1}^{\prime}, R_{2}^{\prime}\right)=$ $\left(\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} \\ M_{2}\end{array}\right]\right)-R_{2}^{*}, R_{2}^{*}\right)$. The corresponding encoding matrices are M_{1}^{\prime} and $M_{2}^{\prime}=M_{2}$.
When we want to further increase R_{1} above R_{1}^{\prime}, we could use Rate Exchange Lemma - 1-1 tradeoff - part (a) repeatedly, since $\operatorname{rank}\left(H_{21} M_{1}\right)=k_{1-2}=R_{1}^{*}$ and $\operatorname{span}\left(M_{1}\right) \subseteq$ $\operatorname{span}\left(M_{1}^{\prime}\right)$, implying that $\operatorname{rank}\left(H_{21} M_{1}^{\prime}\right)=\operatorname{rank}\left(H_{21}\right)=$ k_{1-2}. When R_{1}^{\prime} is increased by δ, R_{2}^{\prime} is decreased by δ where $0 \leq \delta \leq \min \left(R_{2}^{*}, k_{1-1}-R_{1}^{\prime}\right)\left(\delta \leq k_{1-1}-R_{1}^{\prime}\right.$ comes from the fact that R_{1}^{\prime} can be increased to at most k_{1-1}). Terminal t_{1} can decode messages from s_{1} at rate $R_{1}^{\prime \prime}=R_{1}^{\prime}+\delta$ and t_{2} can decode messages from s_{2} at rate $R_{2}^{\prime \prime}=R_{2}^{\prime}-\delta$. Denote the new set of encoding matrices as $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$. This is shown by the line $\left(W^{\prime}, \bar{W}^{\prime}\right)$ in Fig. 4(a) which corresponds to D_{2}.

On the other hand, at W^{\prime}, we can increase R_{2} such that $R_{2}=R_{2}^{\prime}+\delta_{1}$ where $0 \leq \delta_{1} \leq$ $\min \left(k_{2-1}-R_{2}^{*}, k_{2-2}-R_{2}^{*}\right)$. First note that $k_{12-2}=$ $\operatorname{rank}\left(\left[H_{21} M_{1} \quad H_{22} M_{2}\right]\right) \leq \operatorname{rank}\left(\left[H_{21} M_{1}^{\prime} \quad H_{22} M_{2}^{\prime}\right]\right) \leq$ $\operatorname{rank}\left(\left[\begin{array}{ll}H_{21} M_{1}^{\prime} & H_{22}\end{array}\right]\right) \leq \operatorname{rank}\left(\left[\begin{array}{ll}H_{21} & H_{22}\end{array}\right]\right)=k_{12-2}$ which implies $\operatorname{rank}\left(\left[\begin{array}{lll}H_{21} M_{1}^{\prime} & \left.\left.H_{22} M_{2}^{\prime}\right]\right) & =\operatorname{rank}\left(\left[\begin{array}{ll}H_{21} M_{1}^{\prime} & H_{22}\end{array}\right]\right) \text {. } . \text {. } \text {. }\end{array}\right.\right.$ Then by using Rate Exchange Lemma - 1-2 tradeoff, since $\operatorname{rank}\left(H_{12}\right)-\operatorname{rank}\left(H_{12} M_{2}^{\prime}\right)=k_{2-1}-\left(\min \left(k_{12-1}, k_{12-2}\right)-\right.$ $\left.k_{1-2}\right)>0$ we can increase R_{2}^{\prime} by δ_{1} and decrease R_{1}^{\prime} by $2 \delta_{1}$, and the boundary point $\left(R_{1}^{\prime}-2 \delta_{1}, R_{2}^{\prime}+\delta_{1}\right)$ can be achieved where $0 \leq \delta_{1} \leq \min \left(k_{2-1}-R_{2}^{*}, k_{2-2}-R_{2}^{*}, R_{1}^{\prime} / 2\right)$ which corresponds to $D_{3}\left(\delta_{1} \leq R_{1}^{\prime} / 2\right.$ comes from the fact that R_{1} should be not smaller than 0). If we have that $k_{2-1} \leq \min \left(k_{2-2}, R_{1}^{\prime} / 2+R_{2}^{*}\right)$, we will arrive at the boundary point $W^{\prime \prime}=\left(R_{1}^{\prime \prime}, R_{2}^{\prime \prime}\right)=\left(R_{2}^{*}+\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)-\right.$ $\left.2 k_{2-1}, k_{2-1}\right)$. The corresponding matrices are $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$. This is demonstrated by the line ($W^{\prime}, W^{\prime \prime}$) in Fig. 4(a).

If we have that $R_{1}^{\prime \prime} \geq 0$ and $k_{2-1}<k_{2-2}$, at point $W^{\prime \prime}$, we can further increase R_{2} such that $R_{2}=R_{2}^{\prime \prime}+\delta_{2}$ and $R_{1}=R_{1}^{\prime \prime}-\delta_{2}$ where $0 \leq \delta_{2} \leq \min \left(k_{2-2}-k_{2-1}, R_{1}^{\prime \prime}\right)$. The corresponding encoding matrix at s_{2} is $M_{2}^{\prime \prime \prime}$. By Rate Ex-

Fig. 4. (a) The extended rate region for the high interference case from point Q_{1}. (b) The final extended rate region for the case of high interference.
change Lemma - 1-1 tradeoff - part (a), since $\operatorname{rank}\left(H_{12}\right)=$ $\operatorname{rank}\left(H_{12} M_{2}^{\prime \prime}\right), t_{1}$ can decode at rate $R_{1}^{\prime \prime}-\delta_{2}$, and t_{2} can decode at rate $R_{2}^{\prime \prime}+\delta_{2}$. Then $W^{\prime \prime \prime}$ is achieved and the procedure is demonstrated by the line ($\left.W^{\prime \prime}, W^{\prime \prime \prime}\right)$ in Fig. 4(a) which corresponds to D_{4}. The entire extended rate region for this case is shown in Fig. 4(a).

We next consider increasing R_{2} above $R_{2}^{* *}$ at Q_{2}. If $k_{2-1} \geq$ k_{2-2}, R_{2} cannot be increased as $R_{2}^{* *}=k_{2-2}$. Hence, we assume that $k_{2-1}<k_{2-2}$. A similar analysis for Q_{2} results in the following region.

Corollary 3.12: If $k_{1-2}+k_{2-1}>\min \left(k_{12-1}, k_{12-2}\right)$ and $k_{2-1}<k_{2-2}$, then the rate pair in the following region can be achieved.
Region 3:

$$
\begin{array}{ll}
D_{1}^{\prime} \cap\left(D_{2}^{\prime} \cup D_{3}^{\prime} \cup D_{4}^{\prime}\right) & \text { if } k_{1-2}<k_{1-1}, \text { or } \\
D_{1}^{\prime} \cap\left(D_{2}^{\prime} \cup D_{3}^{\prime}\right) & \text { if } k_{1-2} \geq k_{1-1} \text { where }
\end{array}
$$

$$
\begin{aligned}
& D_{1}^{\prime}: R_{2} \leq k_{2-2}, \\
& D_{2}^{\prime}: R_{1}+R_{2} \leq \operatorname{rank}\left(\left[\begin{array}{ll}
H_{21} M_{1} & H_{22}
\end{array}\right]\right) \\
& \quad \text { when } R_{1} \leq R_{1}^{* *}, \\
& D_{3}^{\prime}: 2 R_{1}+R_{2} \leq R_{1}^{* *}+\operatorname{rank}\left(\left[\begin{array}{ll}
H_{21} M_{1} & H_{22}
\end{array}\right]\right) \\
& \quad \text { when } R_{1}^{* *} \leq R_{1} \leq \min \left(k_{1-2}, k_{1-1}\right), \\
& D_{4}^{\prime}: R_{1}+R_{2} \leq R_{1}^{* *}+\operatorname{rank}\left(\left[\begin{array}{ll}
H_{21} M_{1} & H_{22}
\end{array}\right]\right)-k_{1-2} \\
& \text { when } k_{1-2}<R_{1} \leq k_{1-1},
\end{aligned}
$$

where $R_{1}^{* *}=\min \left(k_{12-1}, k_{12-2}\right)-k_{2-1}, M_{1}$ and M_{2} are the encoding matrices at Q_{2}.

From the above argument, the overall rate region is the convex hull of multicast region, and either Region 2 or Region 3 or both depending upon the cut conditions. For instance when $k_{1-2}<k_{1-1}$ and $k_{2-1}<k_{2-2}$ the final region is shown in Fig. 4(b), where boundary segment $W^{\prime \prime \prime}-W^{\prime}$ is achieved via timesharing.

Finally, note that when $k_{1-2} \geq k_{1-1}$ and $k_{2-1} \geq k_{2-2}$, we cannot enlarge the region using our achievability schemes,
i.e., the achievable region is the multicast region.

1) Lower bound of $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)$: As before, let $\left(R_{1}^{*}, R_{2}^{*}\right)$ denote the rate point at Q_{1} and let M_{1} and M_{2} denote the corresponding encoding matrices. First note that $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right) \geq \operatorname{rank}\left(H_{11}\right)=k_{1-1}$ and $\operatorname{rank}\left(\left[H_{11} H_{12} M_{2}\right]\right) \geq \operatorname{rank}\left(\left[H_{11} M_{1} H_{12} M_{2}\right]\right)=R_{1}^{*}+R_{2}^{*}$. Next we will also find another nontrivial lower bound of $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)$ by the following lemma.

Lemma 3.13: Given $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12}\end{array}\right]\right)=k_{12-1}$, $\operatorname{rank}\left(H_{12}\right)=k_{2-1}$ and $\operatorname{rank}\left(\left[H_{12} M_{2}\right]\right)=l$, we have $\operatorname{rank}\left(\left[H_{11} H_{12} M_{2}\right]\right) \geq k_{12-1}-k_{2-1}+l$.

Proof: By the assumed conditions, there are k_{2-1} columns in H_{12} that are linearly independent, and in H_{11}, we can find a subset of $k_{12-1}-k_{2-1}$ columns denoted H_{11}^{\prime} such that $\operatorname{span}\left(H_{11}^{\prime}\right) \cap \operatorname{span}\left(H_{12}\right)=\{0\}$ and $\operatorname{rank}\left(H_{11}^{\prime}\right)=$ $k_{12-1}-k_{2-1}$, which further imply that $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11}^{\prime} & H_{12}\end{array}\right]\right)=$ k_{12-1}.

Since $\operatorname{span}\left(H_{12} M_{2}\right) \subseteq \operatorname{span}\left(H_{12}\right)$ this means that $\operatorname{span}\left(H_{11}^{\prime}\right) \cap \operatorname{span}\left(H_{12} M_{2}\right)=\{0\}$. Then $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11}^{\prime} & H_{12} M_{2}\end{array}\right]\right)=\operatorname{rank}\left(H_{11}^{\prime}\right)+\operatorname{rank}\left(H_{12} M_{2}\right)=$ $k_{12-1}-k_{2-1}+l$. Hence, $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right) \geq$ $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11}^{\prime} & H_{12} M_{2}\end{array}\right]\right)=k_{12-1}-k_{2-1}+l$.

Together with the two lower bounds above, we have $\operatorname{rank}\left(\left[H_{11} H_{12} M_{2}\right]\right) \geq \max \left(k_{1-1}, k_{12-1}-k_{2-1}+R_{2}^{*}, R_{1}^{*}+\right.$ $\left.R_{2}^{*}\right)$. A case where $\max \left(k_{1-1}, k_{12-1}-k_{2-1}+R_{2}^{*}, R_{1}^{*}+\right.$ $\left.R_{2}^{*}\right)=k_{12-1}-k_{2-1}+R_{2}^{*}$ is shown in Fig. 4(b) where $R_{2}^{*}=k_{12-2}-k_{1-2}$.

C. Increasing the achievable rate region by modifying the graph

Thus far, we have presented achievable rate regions for both the low and high interference scenarios. An interesting observation about these regions is that it is possible to enlarge the regions by considering the removal of judiciously chosen edges from the network. We have noted that by removing certain edges from the network, the achievable rate region can be extended. For example, Fig. 5 corresponds to a scenario where $k_{1-1}=3, k_{1-2}=1, k_{2-1}=3, k_{2-2}=3, k_{12-1}=3$ and $k_{12-2}=3$. Hence, the sum rate $R_{1}+R_{2} \leq 3$ using Theorem 3.11. However, one can achieve the rate points $\left(R_{1}, R_{2}\right)=(1,3)$ and $(3,1)$ by removing edges e_{1} and e_{2} since k_{2-1} drops to 1 and the low interference result (cf. Theorem 3.8) applies. Furthermore note that the rate point $(1,3)$ is not achievable by routing, i.e., network coding is essential for achieving this point.

In principle, one could consider the union of the achievable rate regions obtained by removing certain subset of the edges from the network to perhaps obtain a larger region. Finding such edges in a systematic manner is an interesting open problem. However, we are unaware of any known algorithm for it.

$$
\begin{aligned}
& \text { IV. Achievable Rate Region for Given } \\
& k_{1-12}, k_{2-12}, k_{1-1}, k_{2-2}, k_{1-2} \text {, AND } k_{2-1}
\end{aligned}
$$

We have discussed the achievable rate region given $k_{12-1}, k_{12-2}, k_{1-1}, k_{2-2}, k_{1-2}$, and k_{2-1} in the previous section. However, there are other cuts that are potentially

Fig. 5. An example of a network where a larger achievable rate region can be achieved by removing edges e_{1} and e_{2}.
useful in finding the achievable rate region. In this section, we will discuss the achievable rate region for given $k_{1-12}, k_{2-12}, k_{1-1}, k_{2-2}, k_{1-2}$, and k_{2-1} using the reversibility result introduced in [26]. Towards this end define the reverse of a network G as the network $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where (1) The nodes V^{\prime} and edges E^{\prime} in G^{\prime} are the same as in G, except the direction of edges are reversed. (2) The sources in G are the terminals in G^{\prime} and vice versa.

For the double unicast problem, we will have that $s_{i}^{\prime}=t_{i}$ and $t_{i}^{\prime}=s_{i}, i=1,2$. Let $k_{1-12}, k_{2-12}, k_{1-1}, k_{2-2}, k_{1-2}$ and k_{2-1} denote the cut in G and let $k_{12-1}^{\prime}, k_{12-2}^{\prime}, k_{1-1}^{\prime}, k_{2-2}^{\prime}, k_{1-2}^{\prime}$ and k_{2-1}^{\prime} denote the cut in G^{\prime}. It is evident that $k_{12-1}^{\prime}=k_{1-12}, k_{12-2}^{\prime}=k_{2-12}$, $k_{1-1}^{\prime}=k_{1-1}, k_{2-2}^{\prime}=k_{2-2}, k_{1-2}^{\prime}=k_{2-1}$ and $k_{2-1}^{\prime}=k_{1-2}$. By Theorem 4 in [26] a linear network coding solution for rate pair $\left(R_{1}, R_{2}\right)$ in the original network G is in one-to-one correspondence with the rate pair $\left(R_{1}^{\prime}, R_{2}^{\prime}\right)=\left(R_{1}, R_{2}\right)$ in the reversed network G^{\prime}. Thus, our idea is to determine an achievable rate pair in G^{\prime} and then claim the existence of a corresponding rate pair in G. The process consists of substituting the corresponding cuts of the reverse network into the multicast region \mathcal{B}, Region 1, Region 2 and Region 3 of the original network, to obtain a new set of regions \mathcal{B}^{\prime}, Region 1', Region 2' and Region 3'.

In the interest of avoiding repetitive arguments, we discuss the process of determining Region 2' by means of an example. For the original graph, in Region 2, $D_{2}: R_{1}+R_{2} \leq$ $\operatorname{rank}\left(\left[H_{11} H_{12} M_{2}\right]\right)$ when $R_{2} \leq \min \left(k_{12-1}, k_{12-2}\right)-k_{1-2}$. Thus, for Region 2', the corresponding $D_{2}: R_{1}+R_{2} \leq$ $\operatorname{rank}\left(\left[H_{11}^{\prime} \quad H_{12}^{\prime} M_{2}^{\prime}\right]\right)$ when $R_{2} \leq \min \left(k_{1-12}, k_{2-12}\right)-k_{2-1}$ where $H_{i j}^{\prime}$ is the transfer matrix from s_{j}^{\prime} to t_{i}^{\prime}, and M_{i}^{\prime} is the source encoding matrix at s_{i}^{\prime}. The other inequalities can be determined in a similar manner.

Hence, given all possible cuts in a double unicast network, the achievable rate region is convex hull of multicast region \mathcal{B}, \mathcal{B}^{\prime} and the corresponding extended region in different cases.

In order to demonstrate the utility of considering the reversed network, consider the network shown in Fig. 6. It can be verified that the rate regions are different using the

Fig. 6. An example of a network where the achievable rate regions are different using the original result and the reversibility result. All edges are unit capacity.
original result and reversibility result. with our schemes. In particular, using the reversibility result can achieve rate point $(1,1)$ whereas the original result cannot.

V. Comparison with Existing Results

The work that is most closely related to the present paper is by [14] that also considers the double unicast problem with arbitrary rates. Assuming that $k_{2-2} \leq k_{1-1}$, the region in [14] is given by EF09 $=\mathrm{EF} 09$ (a) $\cup \mathrm{EF} 09$ (b), where

EF09(a) $=\left\{\left(R_{1}, R_{2}\right): R_{1}+2 R_{2} \leq k_{1-1}, R_{2} \leq k_{2-2}\right\}$, and
EF09(b) $=\left\{\left(R_{1}, R_{2}\right): 2 R_{1}+R_{2} \leq k_{2-2}, R_{1} \leq k_{1-1}\right\}$.
A comparison between our region and theirs indicates that our region is larger than theirs. To see this, consider the low interference case and a rate point $\left(R_{1}, R_{2}\right)$ that lies in EF09(a). We have that $R_{1}+R_{2} \leq R_{1}+2 R_{2} \leq k_{1-1} \leq k_{12-1}-k_{2-1}+$ $k_{12-2}-k_{1-2}\left(\right.$ since $\left.k_{1-2}+k_{2-1} \leq \min \left(k_{12-1}, k_{12-2}\right)\right)$ and $R_{2} \leq k_{2-2}$, i.e. $\left(R_{1}, R_{2}\right)$ also belongs to our region.

For the high interference case, we argue as follows. Let (R_{1}, R_{2}) belong to EF09(a).

- If $k_{1-2} \leq k_{1-1}$, we show that $\left(R_{1}, R_{2}\right)$ belongs to Region 2. Note that $R_{1}+2 R_{2} \leq k_{1-1} \leq$ $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)$. However, the RHS of D_{2} and D_{3} is at least as large as $\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)$, and for D_{4} we have $R_{1}+2 R_{2} \leq \operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right) \leq$ $R_{2}^{*}+\operatorname{rank}\left(\left[\begin{array}{ll}H_{11} & H_{12} M_{2}\end{array}\right]\right)-k_{2-1}+R_{2}\left(\right.$ since in D_{4}, $\left.k_{2-1}<R_{2} \leq k_{2-2}\right)$ indicating that $\left(R_{1}, R_{2}\right)$ is within Region 2.
- If $k_{1-2}>k_{1-1}$ and $k_{2-1} \geq k_{2-2}$, we have $R_{1}+$ $R_{2} \leq R_{1}+2 R_{2} \leq k_{1-1} \leq \min \left(k_{1-2}, k_{12-1}\right) \leq$ $\min \left(k_{12-2}, k_{12-1}\right)$ which shows that $\left(R_{1}, R_{2}\right)$ is within our multicast region.
- If $k_{1-2}>k_{1-1}$ and $k_{2-1}<k_{2-2}$, we consider different ranges for R_{2}. For $0 \leq R_{2} \leq k_{2-1}, R_{1}+$ $R_{2} \leq R_{1}+2 R_{2} \leq k_{1-1} \leq \min \left(k_{1-2}, k_{12-1}\right) \leq$ $\min \left(k_{12-2}, k_{12-1}\right)$ which implies that $\left(R_{1}, R_{2}\right)$ is within our multicast region. On the other hand when $k_{2-1} \leq$ $R_{2} \leq k_{2-2}$, we have $k_{1-1}-2 k_{2-2} \leq R_{1} \leq$
$k_{1-1}-2 k_{2-1}(f r o m$ the definition of EF09(a)). This
implies that $\left(R_{1}, R_{2}\right)$ belongs to Region 3 . To see
this we note that the relevant range of Region 3
is D_{2}^{\prime} since $k_{1-1}-2 k_{2-1} \leq \min \left(k_{12-1}, k_{12-2}\right)-$
k_{2-1}. We have $R_{1}+R_{2} \leq R_{1}+2 R_{2} \leq k_{1-1} \leq$
$\min \left(k_{1-1}+k_{2-1}, \min \left(k_{12-1}, k_{12-2}\right)\right)=R_{1}^{* *}+R_{2}^{* *}=$
$\operatorname{rank}\left(\left[H_{21} M_{1} H_{22} M_{2}\right]\right) \leq \operatorname{rank}\left(\left[H_{21} M_{1} H_{22}\right]\right)$ indi-
cating that such a point is within Region 3.
In a similar manner it can be shown that all rate points in EF09(b) are within our rate region.

The authors in [12] and [13] explore the unit-rate case $R_{1}=R_{2}=1$ in detail. Such schemes can potentially be packed into networks with higher capacities. References [12], [13] rely heavily on an analysis of the graph theoretic structures that are possible in double unicast networks. Thus, our scheme will in general be weaker than their approach on certain networks. Likewise the work of [8] [9] also considers the achievable rate region using network coding between pair of sources. However, there are networks where our approach is strictly better than all the above approaches. We show such an example in Fig. 7. In Fig. 7, we can achieve rates $(4,2)$ by the argument using in Region 2, whereas it can be verified that the above schemes do not support this rate point. For instance, if $R_{2}=2, R_{1} \leq 3$ in EF09, whereas the scheme in [12] can at most achieve a rate of $(1,2)$. Furthermore, we note that the enlargement of the achievable region by considering the removal of certain edges discussed in Section III-C also improves our region in many cases.

The following results have appeared since the submission of the present paper and the publication of our preliminary conference paper [21]. The work of [22] treats the two unicast problem as an instance of a linear deterministic interference channel and finds a network code that uses random linear network coding. Their region contains our proposed achievable region. The authors in [23] also derive an achievable region by exploiting the equivalence with deterministic interference channels; their region is completely specified by the cut values in the network (in contrast, in certain cases our region and the region in [22] is specified in terms of the rank of matrices that depend on the network code). However, for some networks our scheme achieves a larger region. As an example, if one considers the two-unicast butterfly network with $k_{1-1}=$ $k_{2-2}=1, k_{1-2}=k_{2-1}=2$ and $k_{12-1}=k_{12-2}=2$, our scheme achieves the multicast point $(1,1)$ whereas the region in [23] is empty.

VI. Conclusions and Future Work

In this work, we presented an achievable rate region for the double unicast problem for directed acyclic networks with unit capacity edges. The proposed strategy combines random linear network coding along with appropriate precoding at the source nodes. Networks are classified according the relationship of the values of the cuts between various subsets of the sources and the terminals. We begin with the multicast region where both sources are multicast to both terminals and then enlarge the region by either unilaterally increasing one of the rates or trading off rates between the connections. The proposed region can potentially be enlarged by considering regions that

Fig. 7. An example of a high interference network when our scheme can achieve a higher rate pair compared to many other schemes.
are obtained by the judicious removal of certain edges from the network. Future work would include the investigation of systematic techniques for finding the appropriate edges to be removed.

Appendix

Lemma A.1: If $\operatorname{rank}(H M)=\operatorname{rank}(H)=r$, then $\operatorname{span}(H M)=\operatorname{span}(H)$.

Proof: First note that $\operatorname{span}(H M) \subseteq \operatorname{span}(H)$. Assume $\operatorname{span}(H M) \neq \operatorname{span}(H)$, then there is a vector $\vec{v} \in \operatorname{span}(H)$ but not in $\operatorname{span}(H M)$. Then,
$\operatorname{rank}\left(\left[\begin{array}{ll}H M & \vec{v}\end{array}\right]\right)=\operatorname{rank}(H M)+1=r+1>r=\operatorname{rank}(H)$
However, it contradicts the fact that $\operatorname{rank}(H) \geq$ $\operatorname{rank}\left(\left[\begin{array}{ll}H M & \vec{v}\end{array}\right]\right)$, since $\left[\begin{array}{ll}H M & \vec{v}\end{array}\right] \subseteq \operatorname{span}(H)$. Hence $\operatorname{span}(H M)=\operatorname{span}(H)$.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, "Network information flow," IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204-1216, 2000.
[2] R. Koetter and M. Médard, "An algebraic approach to network coding," IEEE/ACM Trans. Networking, vol. 11, no. 5, pp. 782-795, 2003.
[3] T. Ho, R. Koetter, M. Médard, M. Effros, J. Shi, and D. Karger, "A random linear network coding approach to multicast," IEEE Trans. Inf. Theory, vol. 28, no. 4, pp. 585-592, 1982.
[4] X. Yan, R. W. Yeung, and Z. Zhang, "The capacity region for multisource multi-sink network coding," in Proc. 2007 IEEE Intl. Symp. on Inf. Theory, pp. 116-120.
[5] N. Harvey, R. Kleinberg, and A. Lehman, "On the capacity of information networks," IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2345-2364, 2006.
[6] J. Price and T. Javidi, "Network coding games with unicast flows," IEEE J. Sel. Areas Commun., vol. 26, no. 7, pp. 1302-1316, 2008.
[7] S. U. Kamath, D. N. C. Tse, and V. Anantharam, "Generalized network sharing outer bound and the two-unicast problem," in Proc. 2011 Netcod, pp. 1-6.
[8] D. Traskov, N. Ratnakar, D. Lun, R. Koetter, and M. Medard, "Network coding for multiple unicasts: an approach based on linear optimization," in Proc. 2006 IEEE Intl. Symp. on Inf. Theory, pp. 1758-1762.
[9] T. Ho, Y. Chang, and K. J. Han, "On constructive network coding for multiple unicasts," in 2006 Allerton Conf. on Comm., Contr. and Comp.
[10] A. E. Kamal, A. Ramamoorthy, L. Long, and S. Li, "Overlay protection against link failures using network coding," IEEE/ACM Trans. Networking, vol. 19, no. 4, pp. 1071-1084, 2011.
[11] S. Li and A. Ramamoorthy, "Protection against link errors and failures using network coding in overlay networks," IEEE Trans. Commun., vol. 59, no. 2, pp. 518-528, 2011.
[12] C.-C. Wang and N. B. Shroff, "Pairwise intersession network coding on directed networks," IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 38793900, 2010.
[13] S. Shenvi and B. K. Dey, "A simple necessary and sufficient condition for the double unicast problem," in Proc. 2010 IEEE Intl. Conf. Comm., pp. 1-5.
[14] E. Erez and M. Feder, "Improving the multicommodity flow rate with network codes for two sources," IEEE J. Sel. Areas Commun., vol. 27, no. 5, pp. 814-824, 2009.
[15] S. Huang and A. Ramamoorthy, "A note on the multiple unicast capacity of directed acyclic networks," in Proc. 2011 IEEE Intl. Conf. Comm., pp. 1-6.
[16] _-, "On the multiple unicast capacity of 3-source, 3-terminal directed acyclic networks," in Proc. 2012 Information Theory and Applications Workshop, pp. 152-159.
[17] _-, "On the multiple unicast capacity of 3-source, 3-terminal directed acyclic networks," IEEE/ACM Trans. Networking, 2013, to appear. Available: http://arxiv.org/abs/1302.4474.
[18] A. Das, S. Vishwanath, S. A. Jafar, and A. Markopoulou, "Network coding for multiple unicasts: an interference alignment approach," in Proc. 2010 IEEE Intl. Symp. on Inf. Theory, pp. 1878-1882.
[19] A. Ramakrishnan, A. Das, H. Maleki, A. Markopoulou, S. Jafar, and S. Vishwanath, "Network coding for three unicast sessions: interference alignment approaches," in Proc. 2010 Allerton Conf. on Comm., Contr. and Comp., pp. 1054-1061.
[20] J. Han, C.-C. Wang, and N. Shroff, "Analysis of precoding-based intersession network coding and the corresponding 3 -unicast interference alignment scheme," in Proc. 2011 Allerton Conf. on Comm., Contr. and Comp., pp. 1033-1040.
[21] S. Huang and A. Ramamoorthy, "An achievable region for the double unicast problem based on a minimum cut analysis," in Proc. 2011 IEEE Information Theory Workshop, pp. 120-124.
[22] X. Xu, Y. Zeng, Y. Guan, and T. Ho, "On the capacity region of two-user linear deterministic interference channel and its application to multi-session network coding." Available: http://www.arxiv.org/abs/1207.1986.
[23] W. Zeng, V. R. Cadambe, and M. Medard, "An edge reduction lemma for linear network coding and an application to two-unicast networks," in 2012 Allerton Conf. on Comm., Contr. and Comp.
[24] R. K. Ahuja, T. L. Maganti, and J. B. Orlin, Network Flows:Theory, Algorithms and Applications. Prentice-Hall, 1993.
[25] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press, 1995.
[26] R. Koetter, M. Effros, T. Ho, and M. Médard, "Network codes as codes on graphs," in 2004 Conf. on Information Sciences and Systems.

Shurui Huang Shurui Huang received her B. Eng degree in Automation from Tsinghua University, Beijing, China in 2006. She worked on image processing in Broadband Network and Digital Media Lab at Tsinghua University during 2005. She received her M.S. degree in Electrical Engineering from Iowa State University in 2009. Since Fall 2009, she has been a Ph.D. student in Department of Electrical and Computer Engineering, Iowa State University. Her research interests include channel coding, network coding theory and application. She is a student member of IEEE.

Aditya Ramamoorthy (M'05) received the B.Tech. degree in electrical engineering from the Indian Institute of Technology, Delhi, in 1999, and the M.S. and Ph.D. degrees from the University of California, Los Angeles (UCLA), in 2002 and 2005, respectively. He was a systems engineer with Biomorphic VLSI Inc. until 2001. From 2005 to 2006, he was with the Data Storage Signal Processing Group of Marvell Semiconductor Inc. Since fall 2006, he has been with the Electrical and Computer Engineering Department at Iowa State University, Ames, IA 50011, USA. His research interests are in the areas of network information theory, channel coding and signal processing for storage devices, and its applications to nanotechnology.
Dr. Ramamoorthy is the recipient of the 2012 Iowa State University's Early Career Engineering Faculty Research Award, the 2012 NSF CAREER award, and the Harpole-Pentair professorship in 2009 and 2010. He has been serving as an associate editor for the IEEE Transactions on Communications since 2011.

[^0]: Manuscript received July 27, 2012; revised January 28, 2013. The editor coordinating the review of this paper and approving it for publication was T . Ho.
 The authors are with the Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA (e-mail: \{hshurui, adityar\}@iastate.edu).

 The material in this work has appeared in part at the 2011 IEEE Information Theory Workshop held in Paraty, Brazil. This research was supported in part by NSF grants CCF-1018148, DMS-1120597 and CCF-1149860.

 Digital Object Identifier 10.1109/TCOMM.2013.053013.120542

[^1]: ${ }^{1}$ subscripts l and u are meant to denote lower and upper.

[^2]: ${ }^{2}$ Throughout the paper, $\operatorname{span}(A)$ refers to the column span of A.

