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Abstract—We consider the multiple-unicast problem with three
source–terminal pairs over directed acyclic networks with unit-ca-
pacity edges. The three – pairs wish to communicate at unit-
rate via network coding. The connectivity between the – pairs is
quantified by means of a connectivity-level vector, such
that there exist edge-disjoint paths between and . In this
paper, we attempt to classify networks based on the connectivity
level. It can be observed that unit-rate transmission can be sup-
ported by routing if , for all . In this paper, we
consider connectivity-level vectors such that .
We present either a constructive linear network coding scheme
or an instance of a network that cannot support the desired unit-
rate requirement, for all such connectivity-level vectors except the
vector [1 2 4] (and its permutations). The benefits of our schemes
extend to networks with higher and potentially different edge ca-
pacities. Specifically, our experimental results indicate that for net-
works where the different source–terminal paths have a significant
overlap, our constructive unit-rate schemes can be packed along
with routing to provide higher throughput as compared to a pure
routing approach.

Index Terms—Interference alignment, multiple unicast, network
coding, precoding.

I. INTRODUCTION

I N A NETWORK that supports multiple unicast, there are
several source–terminal pairs; each source wishes to com-

municate with its corresponding terminal. Multiple-unicast con-
nections form the bulk of the traffic over both wired and wire-
less networks. Thus, network coding schemes that can help im-
prove network throughput for multiple unicasts are of consid-
erable interest. However, it is well recognized that the design
of constructive network coding schemes for multiple unicasts
is a hard problem when compared to the case of multicast that
is very well understood [1]–[3]. Specifically, it is known that
there are instances of networks where linear (whether scalar or
vector) network coding is insufficient [4].
The multiple-unicast problem has been examined for both di-

rected acyclic networks [5]–[15] and undirected networks [16]
in previous work.
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The work of [6] provides an information-theoretic charac-
terization for directed acyclic networks. However, this bound
is not computable. The work of [7] proposes an outer bound
for general directed networks. However, this bound is hard to
evaluate even for small networks due to the large number of
inequalities involved. There have been attempts to find con-
structive schemes leveraging network coding between pairs of
sources [8], [9]. Numerous works consider restricted cases such
as unicast with two sessions [10]–[13] and unicast with three
sessions [14], [15], [17]. We discuss the related work in detail
in Section II.
In this paper, we consider network coding for wired 3-source,

3-terminal directed acyclic networks with unit capacity edges.
There are source–terminal pairs denoted – ,
such that the maximum flow from to is . Each source
contains a unit-entropy message that needs to be communicated
to the corresponding terminal. In this work, for a given con-
nectivity-level vector , we attempt to either design a
constructive scheme based on linear network codes or demon-
strate an instance of a network where supporting unit-rate trans-
mission is impossible. Our achievability schemes use a combi-
nation of random linear network coding and appropriate pre-
coding. Our solutions are based on either scalar or vector net-
work codes that operate over at most two time units (i.e., two
network uses). This is useful, as one can arrive at multiple-uni-
cast schemes for arbitrary rates by packing unit-rate structures
for which our achievability schemes apply.
Main Contributions:
• For the case of three unicast sessions with unit rates, we
identify certain feasible and infeasible connectivity levels

. For the feasible cases, we construct schemes
based on linear network coding. For the infeasible cases,
we provide counterexamples, i.e., instances of graphs
where the multiple unicast cannot be supported under any
(potentially nonlinear) network coding scheme.

• We provide experimental results that demonstrate that our
feasible schemes for unit-rate are useful for networks with
higher capacity edges. Specifically, we demonstrate classes
of networks with higher capacity edges, where packing our
unit-rate schemes allows us to achieve transmission rates
that are strictly greater than those achieved by pure routing.

This paper is organized as follows. Section II contains an
overview of related work. In Section III, we introduce the
network coding model and problem formulation. Section IV
discusses infeasible instances, and Section V discusses our
achievable schemes for 3-source, 3-terminal multiple-unicast
networks. Section VI presents simulation results on networks
with higher capacity edges, and Section VII concludes the
paper with a discussion of future work.
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II. BACKGROUND AND RELATED WORK

It is well recognized that network coding for multiple uni-
cast is significantly harder than the network coding for multi-
cast. The work of [1] establishes an equivalence between net-
work-coded multicast and the problem of solving systems of
linear equations. In the same paper, they also point out that for
multiple unicast, one also needs to somehow decode the in-
tended message in the presence of undesired interference. In
general, it is intractable to find network code assignments that
simultaneously allow the intended message to be decoded while
mitigating the interference. In fact, it is known that linear codes
are insufficient for the multiple-unicast problem [4].
In this paper, our focus is exclusively on multiple unicast for

directed acyclic networks (see [16] for the undirected case). Pre-
vious work in this domain includes the work of [6] that presents
an information-theoretic characterization of the capacity region.
However, in practice this bound is not computable due to the
lack of upper bounds on the cardinality of the alphabets of the
random variables involved in the characterization. Moreover,
even for small-sized networks, the number of inequalities in-
volved is very large. Similar issues exist with the outer bound
of [7]. There have been numerous works on achievable schemes
for multiple unicast. The butterfly network with two unicast ses-
sions is an instance where there is clear advantage to performing
network coding over routing. Accordingly, Traskov et al. [8]
proceed by packing butterfly networks for general multiple uni-
cast. Ho et al. [9] propose an achievable region by using XOR
coding coupled with back-pressure algorithms. Multiple unicast
in the presence of link faults and errors under certain restricted
(though realistic) network topologies has been studied in [18]
and [19].
Further progress has been made in certain restricted classes

of problems. For instance, an improved outer bound (GNS
bound) over the network sharing outer bound for two-unicast
is proposed in [12]. Price et al. [13] also propose an outer
bound for two-unicast and demonstrate a network for which
the outer bound is the exact capacity region. For two-uni-
cast, Wang et al. [10] (also see [20]) present a necessary and
sufficient condition for unit-rate transmission, and the work
of [11], [21], and [22] proposes an achievable region for general
rates.
Some recent work deals with the case of three unicast

sessions, which is also the focus of our work. The work of
[14] and [15] uses the technique of interference alignment
(proposed in [23]) for multiple unicast. Roughly speaking,
they use random linear network coding and design appropriate
precoding matrices at the source nodes that allow undesired
interference at a terminal to be aligned. However, their ap-
proach requires several algebraic conditions to be satisfied
in the network. It does not appear that these conditions can
be checked efficiently. There has been a deeper investigation
of these conditions in [17]. Our work is closest in spirit to
these papers. Specifically, we also examine network coding
for the three-unicast problem. However, the problem setting
is somewhat different. Considering networks with unit ca-
pacity edges and given the maximum-flow between each
source –terminal pair, we attempt to either design a
network code that allows unit-rate communication between

each source–terminal pair or demonstrate an instance of a
network where unit-rate communication is impossible. Our
achievability schemes for unit rate are useful since they can be
packed into networks with higher capacity edges. Furthermore,
these schemes require vector network coding over at most two
time units, unlike the work of [14] and [15], which requires a
significantly higher level of time expansion.

III. PRELIMINARIES

We represent the network as a directed acyclic graph
. Each edge has unit capacity and can transmit one

symbol from a finite field of size per unit time (we are free
to choose large enough). If a given edge has higher capacity,
it can be treated as multiple unit capacity edges. A directed
edge between nodes and is represented as , so that

and . A path between two nodes and
is a sequence of edges such that

and .
The network contains a set of source nodes and terminal
nodes . Each source node observes a discrete
integer-entropy source that needs to be communicated to ter-
minal . Without loss of generality, we assume that the source
(terminal) nodes do not have incoming (outgoing) edges. If this
is not the case, one can always introduce an artificial source (ter-
minal) node connected to the original source (terminal) node by
an edge of sufficiently large capacity that has no incoming (out-
going) edges.
We now discuss the network coding model under consider-

ation in this paper. For the sake of understanding the model,
suppose for now that each source has unit-entropy, denoted by
(as will be evident, in the sequel we work with integer en-

tropy sources). In scalar linear network coding, the signal on
an edge is a linear combination of the signals on the in-
coming edges of or the source signals at (if is a source). We
shall only be concerned with networks that are directed acyclic
and can therefore be treated as delay-free networks [1]. Let
(such that and ) denote the signal on
edge . Then, we have

if

where if is not observed at

The coefficients and are from the operational field. Note
that since the graph is directed acyclic, it is equivalently possible
to express for an edge in terms of the sources ’s. If

then we say that the global coding vector
of edge is . We shall also occasionally
use the term coding vector instead of global coding vector in
this paper. We say that a node (or edge ) is downstream of
another node (or edge ) if there exists a path from (or )
to (or ).
Vector linear network coding is a generalization of the scalar

case, where we code across the source symbols in time, and the
intermediate nodes can implement more powerful operations.
Formally, suppose that the network is used over time units.
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We treat this case as follows. Source node now observes a
vector source . Each edge in the original graph
is replaced by parallel edges. In this graph, suppose that a
node has a set of incoming edges over which it receives
a certain number of symbols, and outgoing edges. Under
vector network coding, node chooses a matrix of dimension

. Each row of this matrix corresponds to the local
coding vector of an outgoing edge from .
Note that the general multiple-unicast problem, where edges

have different capacities and the sources have different en-
tropies, can be cast in the above framework by splitting higher
capacity edges into parallel unit capacity edges and a higher
entropy source into multiple, collocated unit-entropy sources.
This is the approach taken below.
An instance of the multiple-unicast problem is specified by

the graph and the source terminal pairs – ,
and is denoted – , where the integer rates
denote the entropy of the th source. The – connections will
be referred to as sessions that we need to support.
Let the sources at be denoted as . The

instance is said to have a scalar linear network coding so-
lution if there exists a set of linear encoding coefficients
for each node in such that each terminal can recover

using the received symbols at its input
edges. Likewise, it is said to have a vector linear network
coding solution with vector length if the network employs
vector linear network codes and each terminal can recover

. If the instance has either
a scalar or a vector network coding solution, we say that it is
feasible.
We will also be interested in examining the existence of a

routing solution, wherever possible. In a routing solution, each
edge carries a copy of one of the sources, i.e., each coding vector
is such that at most one entry takes the value 1, all others are
0. Scalar (vector) routing solutions can be defined in a manner
similar to scalar (vector) network codes. We now define some
quantities that shall be used throughout the paper.
Definition 1: Connectivity Level: The connectivity level

for source–terminal pair – is said to be if the max-
imum flow between and in is . The connectivity
level of the set of connections – – is the vector

– – – .
In this work, our aim is to characterize the feasibility of

the multiple-unicast problem based on the connectivity level
of the – pairs. The questions that we seek to answer are
of the following form—suppose that the connectivity level is

. Does any instance always have a linear (scalar
or vector) network coding solution? If not, is it possible to
demonstrate a counterexample, i.e., an instance of a graph
and – ’s such that recovering the th source at for all is
impossible under linear or nonlinear strategies?
We conclude this section by observing that a multiple-unicast

instance – with connectivity level
is always feasible. Let denote

the th unit-entropy source. We employ vector routing over
time units. Source observes symbols.

Each edge in the original graph is replaced by parallel
edges, . Let represent the subgraph of this

Fig. 1. (a) Example of [2 2 2] connectivity network without a network coding
solution. (b) Example of [1 1 3] connectivity network without a network coding
solution.

Fig. 2. Example of [2 3] connectivity network, rate cannot be supported.

graph consisting of edges with superscript . It is evident
that – over . Thus, we transmit

over using routing, for all . It
is clear that this strategy satisfies the demands of all the termi-
nals in general, though a network with the above connectivity
level may not be able to support a scalar routing solution.

IV. NETWORK CODING FOR THREE UNICAST
SESSIONS—INFEASIBLE INSTANCES

It is clear based on the discussion above that for three unicast
sessions if the connectivity level is [3 3 3], then a vector routing
solution always exists. We investigate counterexamples for cer-
tain connectivity levels in this section.
Lemma 2: There exist multiple-unicast instances with three

unicast sessions, – such that the con-
nectivity levels [2 2 2] and [1 1 3] are infeasible.

Proof: The examples are shown in Fig. 1(a) and (b). In
Fig. 1(a), the cut specified by the set of nodes
has a value of two, while it needs to support a sum rate of three.
Similarly in Fig. 1(b), the cut has a value of one,
but needs to support a rate of two.
While the cut set bound is useful in the above cases, there

exist certain connectivity levels for which a cut set bound is not
tight enough. We now present such an instance in Fig. 2. This
instance was also presented in [11], though the authors did not
provide a formal proof of this fact.
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Lemma 3: There exists a multiple-unicast instance with two
sessions – – with connectivity level
[2 3] that is infeasible.

Proof: The graph instance is shown in Fig. 2. Assume that
in time units, observes two vector sources
and and observes one vector source

. The sources are denoted as , and
and are independent. The symbols that are transmitted over
edge are denoted by . Suppose that the alphabet of
is . Since the entropy rates for the three sources are the same,
we assume . Also, since we are interested
in the feasibility of the solution, we assume that the alphabet
size of is also the same as , and
by the capacity constraint of the edge. At terminal and ,
from , and , we estimate , and .
Let the estimate be denoted as , and . Suppose that
there exist network codes and decoding functions such that

as . For successful
decoding at , using Fano’s inequality, we have

(1)

where
and as . The topological structure

of the network implies that are functions of and
. Hence, we have

(2)

Since , using (2) and the independence of
, and , by Claim 18 (see Appendix), we have

(3)

(4)

Next, we have

(5)

where (a) follows from the chain rule, (b) holds because is
a function of and , (c) follows from the capacity con-
straints and the fact that conditioning reduces entropy, (d) fol-
lows as is a function of and , (e) is due to the fact
that is a function of and , (f) follows from the def-
inition of mutual information, and (g) is a consequence of (2)
and (3). The above inequalities indicate that and need

to carry the same information asymptotically for successful de-
coding at .
From the network, we know that is a function of and
. This implies that

(6)

where (a) is due to (4). Finally, we have

(7)

where (a) is due to (6), (b) is because of (5), and (c) holds be-
cause of the capacity constraint on . This implies that
cannot decode with an asymptotically vanishing probability
of error.
Corollary 4: There exists a multiple-unicast instance with

three sessions and connectivity level [2 3 2] that is infeasible.
Proof: Consider the instance – ,

where is the graph in Fig. 2. The sources and are
collocated at (in ), and the terminals and are collo-
cated at (in ). Likewise, the source and terminal are
located at and in . The three sessions have connectivity
level [2 3 2]. Based on the arguments in Lemma 3, there is no
feasible solution for this instance.
The previous example can be generalized to an instance with

two unicast sessions with connectivity level that cannot
support rates when
and . For instance, when is even by considering
copies of the basic structure in Fig. 2 so that –
and an additional edge-disjoint paths between

and , one can arrive at the result by considering a very similar
line of argument as the one made above. The details are not
included owing to space limitations.

V. NETWORK CODING FOR THREE UNICAST
SESSIONS—FEASIBLE INSTANCES

It is evident that there exist instances with connectivity
level [2 2 3] (and componentwise lower) that are infeasible.
Therefore, the possible instances that are potentially feasible
are [1 3 3] and [1 2 4], or their permutations and connectivity
levels that are greater than them. In the discussion here, we
show that all the instances with the connectivity levels [1 3 3],
[2 2 4], and [1 2 5] are feasible using linear network codes.
Our work leaves out one specific connectivity level vector,
namely [1 2 4] for which we have been unable to provide
either a feasible network code or a network topology where
communicating at unit rate is impossible.
As pointed out by the work of [1], under linear network

coding, the case of multiple unicast requires: 1) the transfer
matrix for each source–terminal pair to have a rank that is high
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enough, and 2) the interference at each terminal to be zero.
Under random linear network coding, it is possible to assert
that the rank of any given transfer matrix from a source to a
terminal has w.h.p. a rank equal to the minimum cut between
and . However, in general this is problematic for satisfying

the zero-interference condition.
Our strategies rely on a combination of graph-theoretic and

algebraic methods. Specifically, starting with the connectivity
level of the graph, we use graph-theoretic ideas to argue that
the transfer matrices of the different terminals have certain re-
lationships. The identified relationships then allow us to assert
that suitable precoding matrices that allow each terminal to be
satisfied can be found. A combination of graph-theoretic and
algebraic ideas were also used in the work of [24], where the
problem of multicasting finite field sums over wired networks
was considered. However, there are some crucial differences.
Reference [24] considered a multicast situation; thus, the issue
of dealing with interference did not exist. As will be evident, a
large part of the effort in the current work is to demonstrate that
the terminals can decode their intended message in the presence
of the interfering messages.
We begin with the following definitions.
Definition 5: Minimality: Consider a multiple-unicast in-

stance – , with connectivity
level . The graph is said to be minimal if the
removal of any edge from reduces the connectivity level. If
is minimal, we will also refer to the multiple-unicast instance

as minimal.
Clearly, given a nonminimal instance , we can al-

ways remove the nonessential edges from it, to obtain the min-
imal graph . This does not affect connectivity. A network
code for can be converted into a network
code for by simply assigning the zero coding vector to the
edges in .
Definition 6: Overlap Edge: An edge is said to be an

overlap edge for paths and in , if .
Definition 7: Overlap Segment: Consider a set of edges

that forms a path. This path is called
an overlap segment for paths and if the following apply.
i) is an overlap edge for and .
ii) None of the incoming edges into are overlap
edges for and .

iii) None of the outgoing edges leaving are overlap
edges for and .

Our solution strategy is as follows. We first convert the original
instance into another structured instance where each internal
node has at most degree three (in-degree out-degree).We then
convert this new instance into a minimal one, and develop the
network code assignment algorithm. This network code can be
converted into a network code for the original instance.
Following [25], we can efficiently construct a structured

graph in which each internal node is of
total degree at most three with the following properties.
1) is acyclic.
2) For every source (terminal) in , there is a corresponding
source (terminal) in .

3) For any two edge-disjoint paths and for one unicast
session in , there exist two vertex-disjoint paths in for
the corresponding session in .

4) Any feasible network coding solution in can be effi-
ciently turned into a feasible network coding solution in .

In all the following discussions, we will assume that the graph
is structured. It is clear that this is w.l.o.g. based on the previous
arguments.

A. Code Assignment Procedure for Instances With
Connectivity Level [1 3 3]

We begin by showing some basic results for two-unicast. The
three-unicast result follows by applying vector network coding
over two time units and using the two-unicast results.
Lemma 8: A minimal multiple-unicast instance

– – with connectivity level
is always feasible.

Proof: Denote the path from to as , and
the paths from to as .
The information that needs to be transmitted from is ,
and the information that needs to be transmitted from is

. We assume that overlaps with all paths in
. Otherwise, if overlaps with paths in where

, w.l.o.g., assume they are . Then,
can be simply transmitted over the overlap-free

paths , and the problem reduces to commu-
nicating and over ,
which corresponds to the statement of the theorem with re-
placed by . Hence, we focus on the case that overlaps
with all paths in .
We assume that the local coding vectors for each edge are

indeterminates for now. Source uses a precoding matrix ;
the rows of specify the coding vectors on the outgoing edges
of . The choice of the local coding vectors and is dis-
cussed below. The transmitted symbol on the outgoing edge
from belonging to is , where

. Let , where
.

As overlaps with all paths on , there will be many
overlap segments on . Let denote the overlap segment
that is closest to (under the topological order imposed by the
directed acyclic nature of the graph) along and suppose that
it is on . A key observation is that is also the overlap
segment on that is closest to . Indeed if there is another
overlap segment that is closer to along , then it im-
plies the existence of a cycle in the graph. Let the coding vec-
tors at each intermediate node be specified by indeterminates for
now.
The overall transfer matrix from the pair of sources

to can be expressed as

Similarly, the transfer matrix from the pair of sources
to can be expressed as

...
...

. . .
...

The received vector at terminal is therefore

. The variables
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and in the above matrices depend on the indeterminate
local coding vectors and are therefore undetermined at this
point.
We emphasize that the first row of is the same as

. As there exists a single path between and , it is
clear that is not identically zero. Similarly, as there are
edge-disjoint paths between to , we have that
is not identically zero. Now suppose that we employ random
linear network coding at all nodes. Using the Schwartz–Zippel
lemma [26], this implies that and w.h.p.
We assume that and in the discussion
below. Next, we select
such that they satisfy the following equation:

...
. . .

...
(8)

where are nonzero values. Note that such
can be chosen since is full-rank.
Terminal can decode since and

, and can decode since is available at , and
[from (8)]. Finally, we note that

there are choices for each .
We remark that the main issue in the above argument is to

demonstrate that the choice of works simultaneously for both
and . The observation that is the overlap segment

closest to and along and , respectively, allows us
to make this argument.
The result for three unicast sessions with connectivity level

[1 3 3] now follows by using vector linear network coding over
two time units, as discussed in the following.
Theorem 9: A multiple-unicast instance with three sessions,

– with connectivity level at least [1 3 3]
is feasible.

Proof: W.l.o.g., we assume that the connectivity level is
exactly [1 3 3]. We use vector linear network coding over two
time units. For facilitating the presentation, we form a new
graph where each edge is replaced by two parallel
unit capacity edges and in . The messages at source
node are denoted . Let the subgraph
of induced by all edges with superscript be denoted .
In , there exists a single – path and three edge-disjoint
– paths. Therefore, we can transmit from to and

from to using the result of Lemma 8. Similarly,
we use to communicate from to and
from to . Thus, over two time units, a rate of [1 1 1] can be
supported.

B. Code Assignment Procedure for Instances With
Connectivity Level [2 2 4]

Our solution approach is similar in spirit to the discussion
above. In particular, we first investigate a two-unicast scenario
with connectivity level [2 4] and rate requirement and
use that in conjunction with vector network coding to address
the three-unicast with connectivity level [2 2 4].
Lemma 10: A minimal multiple-unicast instance

– – with connectivity level [2 4] is
feasible.

Fig. 3. (a) Instance of network where there are several pairs of neighboring
overlap segments. and are neighboring overlap segments along .

and are neighboring overlap segments along . and are not
overlap segments along any paths. (b) Network with connectivity level [2 4]
and rate . The coloring of the different paths helps us to show that a linear
network coding solution exists.

Proof: Let denote two edge-disjoint
paths (also vertex-disjoint due to the structured nature of )
from to , and denote the four
vertex-disjoint paths from to . Let the source messages at
be denoted by and , and the source message at by
. We color the edges of the graph such that each edge on

is colored red, each edge on is colored blue, and each edge
on a path in is colored black.
As the paths in and are vertex-disjoint, it is clear that a

node with an in-degree of two is such that its outgoing edge has
two colors (either (blue, black) or (red, black)). The path further
downstream continues to have two colors until it reaches a node
of out-degree two.
Such an overlap segment with two colors will be referred to as

a mixed-color overlap segment. We shall also use the terms red
or blue overlap segment to refer to segments with colors (red,
black) and (blue, black), respectively. Note that by our naming
convention, path is a path that enters terminal . Under the
topological order in , we can identify the overlap segment on

that is closest to . In the following discussion, this will be
referred to as the last overlap segment with respect to path .
Two overlap segments and are said to be neighboring
with respect to if there are no overlap segments between
them along . An example of neighboring overlap segments
is shown in Fig. 3(a).
Claim 11: Consider two neighboring mixed-color overlap

segments and with respect to path . Then,
and cannot lie on the same path .
Proof: W.l.o.g., assume that and

are such that is upstream of . Now
assume that both and are on . Note that
has two outgoing edges, one of which belongs to and the
other belongs to (denoted by ). We claim that can be
removed while the connectivity level remains the same. This is
because does not belong to and . Moreover,
after the removal, can be modified to the path specified
as – – ,
where is along . The new is vertex-dis-
joint of , since and are neighboring
mixed-color overlap segments along , which means that
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is either purely blue or purely red. This contra-
dicts the minimality of the graph.
Likewise, two neighboring mixed-color overlap segments

with respect to , cannot lie on the same path .
To explain our coding scheme, we first denote the last red

(blue) overlap segment with respect to by . If
there is no , then can be transmitted along . According
to Lemma 8, and can be transmitted to and , respec-
tively. A similar argument can be applied to the case when there
is no . Hence, we assume that both and exist. Based
on their locations in , we distinguish the following two cases.
• Case 1: and are on different paths .
W.l.o.g., we assume that and are on paths
and . If there are no mixed-color overlap segments on
either or can be transmitted to through
the overlap-free path, and can be routed to .
Therefore, we focus on the case that there are mixed-color
overlap segments on both and . Let denote
the last mixed-color overlap segments with respect to

[see Fig. 3(b)].
Our coding scheme is as follows. Symbol is transmitted
over the outgoing edge from over ; symbols

are transmitted over the outgoing edges of over
, respectively. The values of

will be chosen as part of the code assignment below. Let the
coding vectors at each intermediate node be specified by
indeterminates for now. The overall transfer matrix from
the pair of sources to can be expressed as

such that the received vector at is
. Recall that and

are the last mixed-color segments with respect to
and . Thus, they carry the same information as the
incoming edges of , which implies that the row vectors
of are the coding vectors on and ,
respectively. Similarly, the transfer matrix from
to the edge set can be expressed as

where we use the superscript to emphasize that these
transfer matrices are to the edge set
and not to the terminal .
Note that the entries of the transfer matrices above are
functions of the choice of the local coding vectors in the
network that are indeterminate. Thus, at this point, the

and matrices are also composed of indetermi-
nates. As there exist two edge-disjoint paths from to

, the determinant of is not identically zero.
Similarly, since the edges , and lie on
different paths in , there are four edge-disjoint paths
from to the edge subset , and the
determinant of is not identically zero. This implies
that their product is not identically zero. Hence, by the
Schwartz–Zippel lemma [26], under random linear net-
work coding there exists an assignment of local coding

vectors so that and .
We assume that the local coding vectors are chosen from
a large enough field so that this is the case. For
this choice of local coding vectors, we propose a choice
of such that the decoding is simultane-
ously successful at both and .
Decoding at : As is a square full-rank matrix, we
only need to null the interference from . Accordingly,
we choose from the null space of , i.e.,

(9)

There are at least such nonzero choices for as
is a 2 4 matrix.
Decoding at : The primary issue is that one needs to
demonstrate that the choice of allows both terminals to
simultaneously decode. Indeed, it may be possible that our
choice of along with a specific network topology may
make it impossible to decode at . The key argument
that this does not happen requires us to leverage certain
topological properties of the overlap segments, which we
present as follows.
Claim 12: In , either one or both of the following state-

ments hold.
i) is the last overlap segment w.r.t. .
ii) is the last overlap segment w.r.t. .
Proof: Assume that neither statement is true. This

means that there is a blue overlap segment below
along , and there is a red overlap segment below

along . Thus, is upstream of and is up-
stream of . However, this means that edges ,
and form a cycle, which is a contradiction.
In the discussion below, w.l.o.g., we assume that is the
last overlap segment on . The argument above allows
us to identify edges , and that carry the same
symbols as those entering . We show below that the
and components can be canceled by using the informa-
tion on and while retaining the component.
Let represent the vector
in the discussion below. Note that if and
are linearly independent, there exist and such that

where and are not both zero. Thus, can recover
. Note that , by the

constraint on above, thus we only need to pick such
that . To see that this can be done, we
note that is full-rank, which implies that the matrix

is full, rank. Therefore, there exist
at most choices for such that
. Hence, there are at least nonzero choices
for that allow decoding at and simultaneously.
If and are dependent, decoding can be per-
formed simply by working only with the received values
over and using a similar argument as above.

• Case 2: and are on the same path .
W.l.o.g., assume that is downstream of along .
Then, will be the last overlap segment w.r.t. . Let

denote the blue overlap segment that is a neighbor of
w.r.t. . Note that cannot be on according to
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Claim 11. If does not exist, it implies that there is only
one blue overlap segment (namely, ) in the network.
Therefore, there only exist red overlap segments on
and ; using Lemma 8, and can be transmitted to
and , respectively, over , and can

be routed along to .
We now focus on the case when an exists and assume
(w.l.o.g.) that it is on . The main difference is that in-
stead of using random coding over the entire graph, we
modify our coding scheme such that random coding is per-
formed over the graph except at and all the edges down-
stream of . At , deterministic coding is performed
such that carries the same information as the incoming
edge of it along . The information on is further
routed to all the downstream edges of . Note that by the
deterministic coding, carries the same information as
.

Decoding at : Using the arguments developed in Case 1,
it is clear that and can be decoded from the infor-
mation on and . The code assignment ensures that
and carry the same information, thus is satisfied.

Decoding at : In Case 1, we showed that can be de-
coded from the information on , and . A sim-
ilar argument can be made that can be decoded from
the information on , and . Since carries
the same information as and is the last overlap seg-
ment on , terminal can decode by the information
on , and .

By using the result of Lemma 10 and the idea of vector net-
work coding, we have the following theorem when the connec-
tivity level is [2 2 4].
Theorem 13: Amultiple-unicast instance with three sessions,

– with connectivity level at least [2 2 4] is
feasible.

Proof: It can be seen that the line of argument used in the
proof of Theorem 9, namely using vector network coding over
two time units and use the result of Lemma 10, gives us the
desired result.

C. Code Assignment Procedure for Instances With
Connectivity Level [1 2 5]

We now consider network code assignment for networks
where the connectivity level is [1 2 5]. The code assignment in
this case requires somewhat different techniques. In particular,
the idea of using a two-session unicast result along with vector
network coding does not work unlike the cases considered pre-
viously. At the top level, we still use random network coding
followed by appropriate precoding to align the interference
seen by the terminals. However, as we shall see, we will need
to depart from a purely random linear code in the network in
certain situations.
As before, we consider a minimal structured graph

and let be the source symbol at source node for
and denote the path from to

denote the edge-disjoint paths from to
and denote the edge-disjoint
paths from to .
Our scheme operates as follows: is transmitted over the

outgoing edge from along are transmitted over the

outgoing edges of along , and are trans-
mitted over the outgoing edges of along
where and are precoding vectors
chosen from a finite field with size .
Let denote the transfer matrix from

to terminal . Each corresponds to the transfor-
mation from source to terminal , i.e., the number of columns
in is 1, 2, and 5 for , and 3, respectively. Similarly,
the number of rows in is 1, 2, and 5 for , and 3,
respectively.
In the following discussion, we will need to refer to the in-

dividual entries of and . Accordingly, we express these
matrices explicitly as follows:

where the entries of the matrices above are functions of inde-
terminate local coding vectors. The cut conditions imply that

is not identically zero for , and further-
more that their product is not
identically zero.
Our solution proceeds as follows. We first identify a minimal

structured subgraph of with the following properties.
1) There exists a path , from to ;
2) vertex-disjoint paths and from to ;
3) path from to ;
4) path from to .
Again, is said to be minimal if the removal of any edge from
it causes one of the above properties to fail. We note that it is
possible that there do not exist any paths from to or from
to in . These situations are considered below.
Our analysis depends on the following topological properties

of .
Case 1: The graph is such that either of the following.
• There is no path from to in , i.e., (this
happens only if there is no path from to in ).

• There is no path from to in , i.e., (this
happens only if there is no path from to in ).

• There are paths and in , and there are
overlap segments between and .

Case 2: The graph is such that the following.
• There are paths and in , and does not
overlap with either or .

We emphasize that together Cases 1 and 2 cover all the possible
types of subgraphs for . Specifically, either or

. If both and exist in , then either there
are overlaps between and or there are not.
Theorem 14: A multiple-unicast instance with three ses-

sions, – , with connectivity level [1 2 5]
is feasible.

Proof: We break up the proof into two parts based on type
of the subgraph that we can find in .
Proof When There Exists a Subgraph That Satisfies the

Conditions of Case 1: We perform random linear coding over



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG AND RAMAMOORTHY: MULTIPLE-UNICAST CAPACITY OF 3-SOURCE, 3-TERMINAL DIRECTED ACYCLIC NETWORKS 9

the graph over a large enough field. In the discussion below,
we will leverage the fact that multivariate polynomials that are
not identically zero evaluate to a nonzero value w.h.p. under
a uniformly random choice of the variables. This is needed at
several places. By using standard union bound techniques, we
can claim that our strategy works w.h.p.
In particular, in the discussion below, we assume that the ma-

trices are full-rank and design appropriate
precoding vectors and .
Decoding at : For to decode , we need to have

and the precoding constraints

(10)

(11)

There are at least nonzero vectors and nonzero
vectors that can be selected from the field of size such that
(10) and (11) are satisfied.
Decoding at :We begin by noting that since

, as long as . Next, we argue according to
the topological structure of . The following possibilities can
occur.
i) There is no path from to in , i.e., .
This implies that and in , interference
at only exists from . Next, at least one component
of will be nonzero, based on the argument above;
w.l.o.g., assume that it is the first component. We choose
to satisfy

(12)

It is evident that there are at least nonzero choices
of that satisfy the required constraints on [(11) and
(12)]. Hence can decode.

ii) There exists a path from to , i.e., .
This means that is not identically zero. Here, we first
align the interference from within the span of interfer-
ence from by selecting an appropriate . We have the
following lemma.
Lemma 15: If , there exist at least

choices for such that

(13)

where is some constant.
Proof: First, w.l.o.g., we assume . Hence,

there exists a full-rank 2 2 upper triangular matrix
such that . Next, define

(14)

and choose to satisfy and set .
Upon inspection, it can be verified that this implies that

. As is invertible, and there is
only one linear constraint on , we have the required
conclusion.
Thus, under this choice of , the interference from is
aligned within the span of the interference from at .
Let . The received signal at is

(15)

Fig. 4. (a) Subgraph when overlaps with . (b) Subgraph when
overlaps with both and .

The following claim concludes the decoding argument for
.
Claim 16: If is not identically zero, under

random linear coding w.h.p., there exists a such that
and .

Proof:We will show that there exists an assignment
of local coding vectors such that .
This will imply that w.h.p. under random linear coding,
this property continues to hold.
Suppose that there is no path from to in , i.e.,

and is identically zero. This does not
impose any constraint on . Next, is full-rank w.h.p.
Hence, we can choose a such that required condition is
satisfied.
If there exists a path from to in
is not identically zero. W.l.o.g., we assume that is not
identically zero. By Lemma 19 (see Appendix), proving
that is equivalent to checking that
the determinant in (22) is not identically zero. Now we
demonstrate that there exists a set of local coding vec-
tors such that the determinant in (22) is nonzero. We con-
sider the case when the subgraph

(identified above)—our choice of
the coding vectors on all the other edges will be assigned
to the zero vector. As both and , we
only consider the case where overlaps with .
We distinguish the following cases.
1) overlaps with either or . W.l.o.g., assume
it is . First note that when overlap with one of

and in , there is a path from to and a
path from to in . Hence, can
be completely represented by . This
is shown in Fig. 4(a). It is evident that we can choose
coding coefficients such that

(16)
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Fig. 5. (a)–(c) Possible subgraphs when does not overlap with either or .

By substituting them into (22), the determinant of
is not zero.

2) overlaps with both and . Using a similar
argument as above, can be completely represented
by if overlaps with both and
. Note that there will be one overlap between

and each of and . Otherwise, assume there
are two overlaps between and , then some
edges can be removed without contradicting the min-
imality of the graph . This is shown in Fig. 4(b).
Assume overlaps with first. We can find a
set of coding coefficients such that

(17)

By substituting them into (22), the determinant of
is not zero.

In both cases, therefore the required condition holds
w.h.p. under random linear coding.
Terminal can decode since it can solve the system of
equations specified by in (15).

Decoding at : At , we need to decode in the presence
of the interference from and . The prior constraints on ,
namely (11) and (12) for case (i), or (11) and (13) for case (ii)
allow at least choices for it. As is full-rank, this
implies that there are at least corresponding distinct
vectors. Next, for to decode , from Lemma 20, we need to
have

(18)

Since there are at most vectors in , there
are at least choices for such that all the required
constraints on are satisfied.
We now summarize our network code construction as

follows.
1) The network codes at each node are randomly chosen.
2) Given , and , we choose such that

and .

3) We then choose such that
, and at the interference from

is either zero or aligned within the interference from .
Proof When There Exists a Subgraph That Satisfies the

Conditions of Case 2: As before, our overall strategy will be
to use random linear network coding, however in certain cases
we will need to make modifications to the code assignment. We
argue based on the properties of the minimal structured sub-
graph . Recall that under Case 2, paths and exist
and does not overlap with . As the graph is struc-
tured, this implies that , and are all vertex-disjoint.
Our first goal is to show that is topologically equivalent

to one of the graphs shown in Fig. 5(a)–(c). Toward this end,
we color black, the path red, and the
path blue. In this process, certain edges will get a set of
colors (which are a subset of ). Note that there
cannot be any edge that has the color . To see this,
assume otherwise: Then, one could find a new path from to
that overlaps and and delete at least one edge from
, contradicting the minimality of . By similar arguments,
and cannot overlap on . Hence, paths
and can only overlap if they also overlap with .

Next, we identify certain special edges in . As there is only
one path going out of and will overlap. A sim-
ilar argument shows that and will overlap. Likewise,

and will overlap with or . Consider, the
overlap between and . Using the minimality of it
can be seen that there can be exactly one overlap segment be-
tween them; we identify the edge at the farthest
distance from , such that it has two outgoing edges belonging
to exclusively and , and call it . Similarly, we iden-
tify the edge that is closest to , and call it .
Next, consider the overlap between and .

Once again, by minimality it holds that there is exactly one con-
tiguous overlap segment between and , that
can either be on or . We identify as the edge in

that is closest to . In a similar manner,
is identified as the edge that is farthest

away from .
We now consider the possible orders of the edges .

As and belong to , one of them has to be downstream
of the other along . Consider the following cases.
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• is downstream of along . If edges and lie on
the same path , we first note that has to be
downstream of (by minimality, otherwise the segment
between and along can be removed); the graph
is topographically equivalent to Fig. 5(a). If and

lie on different paths , the graph is topo-
graphically equivalent to Fig. 5(b).

• is downstream of along , or . In this case
and have to lie on different paths . To

see this, assume they both lie on : If is downstream of
, theminimality of does not hold (segment between

and along can be removed), whereas if is down-
stream of , the acyclicity of is contradicted. There-
fore, the only possibility is that and lie on different
paths and in this case is topographically
equivalent to Fig. 5(c).

With the above arguments in place, it is clear that is topo-
graphically equivalent to one of the graphs in Fig. 5(a)–(c).
We now present our schemes for the different possibilities

for . For the class of that fall in Fig. 5(a), it suffices to
use the approach in the proof of Theorem 14. Namely, we use
random linear network coding in the network and precoding at
sources and . As in this case , one needs to argue
that . Following the line of argument used
previously, we can do this by demonstrating a choice of local
coding coefficients such that and

. However, such an approach does not work when

the subgraph belongs to the class of graphs shown in Fig. 5(b)
and (c). For instance, it is easy to observe that if we use random
coding on Fig. 5(b), and precoding to cancel the component
at , then will receive a linear combination of and
w.h.p., i.e., decoding at will fail. Accordingly, when
looks like Fig. 5(b) or (c), we require a different scheme that we
now present.
Modified Random Coding for Cases in Fig. 5(b) and (c): It

is clear that the strategy of random linear network coding and
precoding at the sources fails since the determinant of the ma-
trix is identically zero for the cases in Fig. 5(b)
and (c). Thus, at the top level our approach is to modify the
original graph by removing certain edges and identifying a
special node in that is upstream of . The transfer matrix on
the two incoming edges of this special node can be expressed
as such that the determinant of
is not identically zero. Thus, at this node it becomes possible
to remove the effect of via deterministic coding. Accord-
ingly, our strategy is to first perform random linear coding at
all nodes except the special node and those that are downstream
of the special node. Following this, we perform deterministic
coding at the special node to cancel the effect of , and random
linear coding downstream of it. Finally, we argue based on the
precoding constraints that each terminal can decode its desired
message. In the following discussion, we outline each of the
steps and the corresponding analysis in a systematic manner.
Recall that based on (which is a subgraph of ), we have

identified paths that are all vertex-disjoint, paths
and , and edges . At the outset, we demon-

strate that certain structures in need not be considered. In par-
ticular, we have the following.

• If in there exists a path from to that has an overlap
with , it is clear that an alternate minimal sub-
graph can be found that satisfies the conditions of Case
1.

• In , a path from cannot have an overlap with
– . To see this, note that is a subgraph of .

Therefore, if – ) exists in it, then it necessarily
has to belong to a path from to . We emphasize
that the entire path including and has to belong to

because by assumption all nodes in the graph have
in-degree out-degree at most 3. In a similar manner,
on any path from , a segment that overlaps with the
path – needs to belong to path . If , then it
implies the existence of a path from to that has an
overlap with . However, this is explicitly ruled
out by the discussion in the previous bullet. Thus, .
However, this is impossible since the paths and
are edge-disjoint.

Accordingly, in the following discussion, we will assume that
the above scenarios do not occur.
Graph Modification Procedure for Original Graph :
i) Remove all edges downstream of on that have no
overlap with a path from .

ii) Identify an edge, denoted on , with the property
that is the edge closest to such that there exists a

– . Note that exists due to the existence
of path in .

iii) Remove edges downstream of while maintaining
the following properties: a) there exists a path from

– ; and b) - – . Rename to
be – – . It is important to note that after
this procedure, removal of any edge downstream of
would cause either property a) or b) to fail.

iv) Identify edge such that it is the edge closest to
with the property that it has two incoming edges—
such that there exists – and .

Again, is guaranteed to exist as exists in .
As a consequence of the modification procedure, there is no
overlap between and . To see this, assume
otherwise, i.e., an overlap segment, denoted exists between

– and . As is the edge closest to such
that there is a path between and , it follows that
is downstream of along . However, this contradicts the
property of themodified graph after Step (iii) in themodification
procedure above.
Next, note that has to overlap with a path from

(as is minimal), which means that the downstream
neighboring edge of along cannot belong to any path in

andwill be removed in Step (i). Likewise, the incoming
edge of along will also be removed. At the end of the
graph modification procedure, and using the observations made
above, it is clear that we can identify a subgraph of that is
topologically equivalent to either Fig. 6(a) or (b).
Next, we perform random linear coding over the modified

graph except at edge and all the edges downstream of ,
and impose the precoding constraints and
. This ensures that is satisfied. Furthermore, note that there
is no path from to ; therefore any code assignment on

and its downstream edges will not affect decoding at .
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Fig. 6. (a), (b) Possible subgraphs obtained after the graph modification procedure for . (c) Example of the overlap between the red – paths and .

For to decode , we first demonstrate that by using de-
terministic coding for edge , the component can be can-
celed while the component can be maintained on . Note
that and denote the incoming edges of ; we denote the
transfer matrix to these two edges by .
Claim 17: For the network structures in Fig. 6(a) and (b),

the determinant of is not identically zero where
satisfies .

Proof: Based on previous arguments, we have identified
the subgraph of that is topologically equivalent to either
Fig. 6(a) or (b). By Lemma 19, proving the claim is equivalent
to showing that the determinant of (22) is not identically zero.
Based on , it is evident that local coding vectors for the case
of Fig. 6(a) can be chosen such that

(19)

Similarly, for the case of Fig. 6(b), they can be chosen as

(20)

Substituting the local coefficients into (22), we have the required
conclusion.
We now want to argue that can be satisfied. Note that

edge must belong to a path from , as the graph is min-
imal. Assume that there are paths from that overlap with

; w.l.o.g., we assume that these are the paths
.

Next, we note that there can be at most one overlap between
a path and . This is due to Step (iii)
of the graph modification procedure, where we removed
edges downstream of (and hence ) such that the

- – and there is a path between – . If
there are multiple overlaps between and – ,
this would mean that there exists at least one edge that was not
removed by Step (iii). As depicted in Fig. 6(c), we denote the
overlap segments as , where is upstream

of for along . Also note that the
first edge of is .
The next step in the code assignment is to use deterministic

local coding coefficients so that the transmitted symbol on
does not have an component. Note that it is guaranteed to
have an component by Claim 17. Following this, we again
use random linear coding on edges downstream of . By the
definition of , no edge is reachable from without
using . Thus, all coding vectors along downstream of

do not have an component. Let the coding vector on the

edge closest to be denoted by , where it is
evident that w.h.p. We enforce the precoding constraint

. This satisfies .
Finally, we discuss the decoding at . Consider the overlap

segments discussed above. Each of these
overlap segments has an incoming edge that does not lie on

(the other has to be on ). We denote these edges by
, where we emphasize that . Let

the edges entering on paths be denoted
. Denote the transfer matrix on the edges

by . Note that with high probability it holds
that since the max-flow from to these set of
edges is 5.
Next, consider the rank of the coding vectors on edges

. For the sake of argument, suppose that
we remove the row of corresponding to and replace it
with the corresponding row of . As we used a deterministic
code assignment for edge , the rank of the updated
may drop to four, however it will be no less than four since it
has four linearly independent row vectors.
It can be seen that further random linear coding downstream

of will therefore be such that (recall that
is the transfer matrix to ) is at least four

w.h.p. Moreover, it can be seen that the information on
also reaches , thus can decode . Therefore at over
the other four incoming edges we have a system of equations
specified by the matrix (of dimension 4 6) with
unknowns and . Furthermore, . The
constraints on thus far dictate that there are nonzero
choices for it. As shown in the Appendix (cf. Lemma 21), this
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Fig. 7. (a) Level-1 network. (b) Level-2 network. (c) Level-3 network. (d) Level-4 network.

implies that there are at least distinct values for .
For decoding at , from Lemma 20, we need to have

(21)

As there are at most vectors in the span of , it follows that
there are at least nonzero values of such that
can be satisfied.
We now summarize the above modified random coding con-

struction for the cases in Fig. 5(b) and (c) as follows.
1) The network codes are chosen randomly except on edge

and its downstream nodes (we assign the codes on
these edges later as explained below).

2) Given , and , we choose such that
and .

3) We use deterministic coding at such that the interfer-
ence from is canceled. The network codes at nodes that
are downstream of are randomly chosen.

4) We then choose such that the interference from at
and are zero and .

VI. SIMULATION RESULTS

Our feasibility results thus far have been for the case of unit-
rate transmission over networks with unit capacity edges. In
this section, we present simulation results that demonstrate that
these can also be used for networks with higher edge capaci-
ties, that can potentially support higher rates for the connections.
The main idea is to pack multiple basic feasible solutions along
with fractional routing solutions to achieve a higher throughput.
The packing can be achieved by formulating appropriate integer
linear programs. We compared these results to the case of solu-
tions that can be achieved via pure fractional routing.
We applied our technique to several classes of networks. We

did not see a benefit in the case of networks generated using
random geometric graphs (this is consistent with previous re-
sults [8]). We have found that our techniques are most pow-
erful for networks where the paths between the various –
pairs have significant overlap. Accordingly, we experimented
with four classes of networks (shown in Fig. 7) with varying
levels of overlap between the different source–terminal pairs.

TABLE I
PROPORTIONS OF NETWORKS WITH DIFFERENCES AND PERFORMANCE

IMPROVEMENT

The level-1 network [Fig. 7(a)] has the maximum overlap be-
tween the – paths and the other paths; the overlap decreases
with an increase in the level number of the network. The edge
capacities in the networks were chosen randomly and indepen-
dently with distributions as explained below. We conducted two
sets of simulations.
• Simulation 1: Let denote the edge capacity. For the
level-1 network for the black edges we chose

;
for the other edges,

. In the other networks, we chose

for all the edges. Thus, in this set of simulations, the max-
imum edge capacity is three. We generated 300 networks
from these distributions and compared the performance of
our schemes to pure fractional routing. The results shown
in the first row of Table I indicate that the level-1 network
has the maximum number of instances where a difference
in the throughput was observed; both [1 2 5] and [2 2 4]
structures appear here. For the other networks, the [2 2 4]
structure appeared most often. The second row of Table I
records the average performance improvement when there
was a difference between our scheme and routing; it varies
between 4.9% to 5.59%.

• Simulation 2: In this set of simulations, we increased the
average edge capacity. For the level-1 network for the
black edges, we chose

; for the other edges,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

. In the other
networks, we chose

for all the edges. Again, we gener-
ated 300 networks from these distributions and compared
the performance of our schemes to pure fractional routing.
The results shown in the third row of Table I indicate that
in this higher capacity simulation, the number of networks
where our schemes outperform pure routing is significantly
higher. For instance, for the level-2 and level-3 networks,
more than 50% of the networks showed an increase in the
throughput using our methods. Another interesting point
is that one observes an increased gap for level-3 networks
compared to the other cases. The fourth row of Table I
records the average performance improvement when there
was a difference between our scheme and routing; it varies
between 0.45% to 1.16%.

We found that although there were instances of all the struc-
tures being packed by the integer linear program (ILP), the ma-
jority were [2 2 4] structures. For the level-4 network, since
[2 2 4] structure cannot be packed effectively, there is a sig-
nificant drop in the proportions of networks that exhibit a dif-
ference with respect to routing as compared to the level-3 and
level-4 networks. There were significant advantages in our ap-
proach for the case of networks with higher edge capacities as
in these networks the chance of packing our basic feasible struc-
tures is higher. The average performance improvement obtained
when there was a difference between our schemes and routing
is not very high. We remark that the complexity of running the
ILP increases with higher edge capacities and that was a lim-
iting factor in our experiments; the performance improvement
may be higher for large-scale examples. Overall, our results in-
dicate that there is a benefit to using our techniques even for
networks with higher capacities, where the different source–ter-
minal paths have a large overlap.

VII. CONCLUSION AND FUTURE WORK

In this paper, we considered the 3-source, 3-terminal mul-
tiple-unicast problem for directed acyclic networks with unit
capacity edges. Our focus was on characterizing the feasibility
of achieving unit-rate transmission for each session based
on the knowledge of the connectivity-level vector. For the
infeasible instances, we have demonstrated specific network
topologies where communicating at unit-rate is impossible,
while for the feasible instances, we have designed constructive
linear network coding schemes that satisfy the demands of each
terminal. Our schemes are nonasymptotic and require vector
network coding over at most two time units. Our work leaves
out one specific connectivity-level vector, namely [1 2 4], for
which we have been unable to provide either a feasible network
code or a network topology where communicating at unit rate
is impossible. Our experimental results indicate that there
are benefits to using our techniques even for networks where
the edges have higher and potentially different capacities.
Specifically, our basic feasible solutions can be packed along
with routing to obtain a higher throughput. Future work would
include a study of real-world networks where these techniques
are most useful.

APPENDIX

Claim 18: For two independent random variables and
with and , if where
is another random variable with , then

.
Proof: Since and , we have

Next, implies that

As and are independent and , we have

Thus

Finally, we obtain

Lemma 19: If can be represented
by

(22)

where satisfies .
Proof: Because satisfies , we can have

. Note can be selected to be nonzero, regard-
less of the value of . By substituting into , the
determinant of becomes

(23)

where is nonzero.
Lemma 20: Consider a system of equations

, where is a vector of length and is a vector of
length and .1 The matrix has dimen-
sion , and rank , where . The matrix
is full-rank and has dimension where .
Furthermore, the column spans of and intersect only in
the all-zeros vectors, i.e., . Then,
there exists a unique solution for .

1 refers to the column span of .
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Proof: Since , there exists and
such that . Now assume there is another
set of and such that . Then, we will
have

(24)

Because , both sides of (24) are
zero. Furthermore, since is a full-rank matrix, .
The solution of is unique.
Lemma 21: There are at least distinct values for

when there are distinct values for .
Proof: Since is a 4 5 matrix with rank at least

3, we can find two vectors and such that the matrix

and . This implies

that there are distinct values for . Next, note that
since can be selected as the coding vector

for on so that . The precoding

constraint implies that . Hence, by removing from

, there continue to be distinct vectors. If we further
remove from , there will be at least distinct

values, i.e., there are distinct values for .
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