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Abstract— The atomic force microscope (AFM) is one of
the major advances in recent science that has enabled imaging
of samples at the nanometer scale. Over the years, different
techniques have been developed to improve the speed, resolution
and accuracy of imaging using AFM. As AFMs can scan and
deform material with extremely high resolution, it has also
been used as a data read-write system where the high or low
topography of the sample surface are interpreted as a one or a
zero bit. Data storage using this method can produce extremely
high data storage density. In this paper a new method called
the innovations mismatch method (IM) is developed that can be
used for both imaging and data storage applications. The IM
scheme utilizes the dynamic mode of operation and therefore is
applicable to soft matter interrogation. In this work, IM method
is shown to outperform previously developed techniques.

I. INTRODUCTION

Since its invention [2], the atomic force microscope

(AFM) has become the tool of choice for investigating ma-

terials with nanometer scale resolution. The basic operation

of an AFM is described in Fig. 1. As AFMs can be used

to deform material and measure topography on a material

with nanometer scale resolution, researchers have developed

it for ultra-high density data storage purposes [11]. AFM

based data storage systems can achieve extremely high areal

density (upto 3 Tb per square inch) [6]. In probe based data

storage using static mode of operation [3], the cantilever tip

always interacts with the sample. The tip movement parallel

to the surface creates large lateral frictional forces resulting

in wear and tear of the material especially when the material

is soft. In the amplitude modulation AFM (AM-AFM) which

is a dynamic mode of operation (see Fig. 1), the cantilever

is forced sinusoidally at or near the first resonant frequency.

Under the presence of the sample, the cantilever interacts

with the sample intermittently every oscillation cycle that

alters the amplitude and phase of cantilever oscillations. The

changes in measured amplitude of the cantilever trajectory

is used to interpret the sample topography. The dynamic

mode reduces the large lateral frictional forces present in the

contact mode scheme substantially due to the intermittent

contact with sample. However, the high quality factors of

the cantilever (low damping) creates large transients and

slow down imaging. In [7], a faster dynamic mode imaging

method called the transient force atomic force microscopy

(TF-AFM) was introduced that achieved significantly higher

speed than conventional AM-AFM. TF-AFM utilized the
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Fig. 1. Atomic force microscope (AFM). The main components are
a micro-cantilever, a piezoelectric nanopositioner and a laser-photodiode
based cantilever tip position detection system. In dynamic mode of opera-
tion, the cantilever is sinusoidally oscillated typically near the first resonance
frequency of the cantilever. The tip-sample interactions modify the oscilla-
tion amplitude and phase of the cantilever tip and these modifications are
utilized in infering sample topography.

linear time-invariant (LTI) behavior of the cantilever dy-

namics to realize an observer. Typically the cantilever am-

plitude is in the 27-200 nm range whereas the force on

the cantilever due to the sample is effective only within 3-

4 nm range from the sample surface. Exploiting the short

duration of the interaction, TF-AFM method assumes that the

cantilever interaction with the sample can be approximated

as an impulsive hit in every oscillation cycle that abruptly

changes the cantilever state. Then the problem is reduced

to the detection of the cantilever state jumps. With small

measurement noise, the observer’s tracking bandwidth can be

decoupled from the quality factor (damping) of the cantilever

where the observer is capable of tracking the cantilever state

even when it is in transient phase after an interaction with the

sample. Thus, TF-AFM is a fast imaging method. However,

the magnitude of the impulsive impacts strongly depends on

the past cantilever trajectory. After an impulsive interaction

with the sample, typically, the cantilever tip interaction with

the sample becomes milder. This is evident in Fig. 2. The

signal labeled sep in Fig. 2 is the separation between the

cantilever base and the sample. High sep indicates free air

cantilever oscillations. Low sep (or raised sample) implies

cantilever interacts with the sample with interaction length

of 2 nm. When the sample is raised at time 1 µ sec, the

cantilever experiences a large impulsive interaction with the

sample, that leads to loss of tracking resulting in large

error signal (labeled innov) between the actual cantilever

deflection and the deflection estimated by the observer.

However, with topography raised at the same level, amplitude

of the cantilever oscillation reduces. Thus, the strength of the

impulsive forces on the cantilever are reduced leading to a

smaller innov signal. As a result, persistent high topography

becomes difficult to detect. In data storage settings, different

topographic profiles etched on the material encode bits 0

and 1. For example, a raised topographic profile can encode
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Fig. 2. Innovation from free space observer vs separation of cantilever
base from sample. During the initial phase of interaction innov has high
magnitude. However, with persistent high topography innov loses its initial
strength.

bit 1 and a depressed topographic profile can encode bit

0. It is evident from the earlier discussion that TF-AFM

suffers while detecting a consecutive sequence of one bits.

To overcome this drawback, in [5], the cantilever system

is modeled as a communication channel, and a maximum

a posterior estimation methodology is adopted. This method

involves learning how the innov signal changes for different

bit sequences and then exploiting this information in a

real-time detection application. This technique resulted in

significant reduction in bit error rates. However, it involves

a learning step where the exact topographic profile that

encodes a one and a zero plays an important role. Such

an assumption is valid in a data storage scenario where

the topographic profile is designed. However, in imaging

situation such an assumption is not valid as the topographic

profile is not known a-priori.

In this article we substantially improve over the TF-AFM

method, where we obtain, an LTI equivalent model, that

characterizes the cantilever behavior under sample’s influ-

ence using averaging techniques. This model is used in con-

junction with the cantilever model to realize two observers;

one matched to the sample free situation and another to

the situation where sample is present. The effectiveness of

this strategy is demonstrated first via simulations followed

by experimental results. We show that the problem of low

SNR of the TF-AFM method under persistent interaction

is alleviated. A maximum likelihood sequence detection

scheme is also developed that gains over bit by bit detection.

This article is organized as follows. Section II explains the

basic system and detection models that are developed in

previous works. In section III, the concept of equivalent

cantilever model is explained and the idea of innovations

mismatch (IM) is developed. Section IV explains the se-

quence detection method applied on innovations mismatch

signal. Section V verifies the benefit of IM with simulation

results. An experimental result is presented in section VI that

provides strong evidence for applicability of IM. Section VII

summarizes this paper and concludes with future works.

II. BACKGROUND AND SIGNIFICANCE

A. System model and test signal

The system model and the detection schemes used in the

previous works are briefly explained in this section. The first

mode approximation of the cantilever is given by the spring

mass damper dynamics as below [9]:

p̈+
ω0

Q
ṗ+ ω2

0p = f(t) =
1

m
(η + g + h) , (1)

h = φ(p, ṗ), y = p+ υ, (2)

where p is tip deflection, ṗ is the tip velocity, m is the

cantilever mass, f(t) is force per unit mass on the cantilever,

η is thermal noise input, g is the dither forcing input and

h = φ(p, ṗ) is tip-media interaction force (φ is a nonlinear

function of the cantilever position and velocity). Typically,

g is a sinusoidal signal with frequency close or equal to the

first resonant frequency ω0. y is the measured deflection and

υ is the measurement noise. Q is the quality factor and ω0 is

the first resonant frequency given by ω0 =
√

k
m , Q =

√
km
c .

c and k are the damping constant and the stiffness of the

spring-mass-damper model of the cantilever (obtained by the

first mode approximation). A state space representation is

described by

ẋ = Ax+Bf, y = Cx+ υ. (3)

Here, x is the state vector given by [p ṗ]T , where ṗ is the

cantilever tip velocity. The matrices A, B and C are

A =

[

0 1
−ω2

0 −ω0

Q

]

, B =

[

0
1

]

, C =
[

1 0
]

. (4)

As explained in [7], the TF-AFM scheme uses a Kalman

observer together with the original system to have an esti-

mate of the tip deflection. A continuous time Kalman filter

matched to the free space model is given by

˙̂x = Ax̂+B
g

m
+ L(y − ŷ), x̂(0) = x̂0, ŷ = Cx̂, (5)

where L is the Kalman gain, x̂ is the estimated state vector=
[p̂ ˆ̇p]T . Hence the error between the actual state and the

estimated state is governed by the following dynamics

˙̃x = [A− LC] x̃+
[

B −L B
]





η/m
υ

h/m



 . (6)

e = (y − ŷ) = Cx̃+
[

0 1
]

[

η
υ

]

. (7)

e (also termed as innovation) is the error between the

measured cantilever deflection and the deflection estimated

by the observer. For sinusoidal excitation g, cantilever os-

cillates sinusoidally in steady state with amplitude typically

in the 25 nm to 200 nm range. Normally in dynamic mode

operation, interaction with the sample extends withing a few

nanometers which is a very small fraction of cantilever orbit.

Hence, the sample force h can be modeled as an impulsive

force that suddenly changes the cantilever state. With such an

assumption the discretized model of the cantilever dynamics

is given by [7]

xk+1 = Fxk +G(gk + ηk) + δθ,k+1ν, yk = Hxk + υk.
(8)

Matrices F , G and H can be obtained from continuous time

model by discretization. Here, δθ,k+1ν denotes the sudden
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change in the state at the time of impact. ν models the impact

strength and θ models the time of impact (δi,j = 1 when

i = j, else 0). The discrete time Kalman observer model is

x̂k+1 = Fx̂k +Ggk + LK (yk −Hx̂k) ,

ŷk = Hx̂k, ek = (yk − ŷk) .
(9)

B. Detection algorithm

From equations (8) - (9) it can be shown that once there

is an impact at time θ, the discrete time innovation ek can

be written as [7]

ek = Γk;θν + nk; Γk;θ = H (F − LKH)
k−θ

, (10)

where nk is discrete time Gaussian noise with variance

V . Hence, Γk;θ (which is the impulse response from an

impulsive force input at time θ to the innovation signal) can

be used to realize a matched filter to extract an impulsive

force interaction from the sampled innovations. Let M be

the sample window size that is used for detection. The binary

hypotheses

H0 : ek = nk, H1 : ek = Γk,θν + nk, (11)

represent absence and presence of sample; k = 1, 2, · · · ,M .

H0 is the hypothesis that ek is white noise. H1 is the

hypothesis that the profile Γk;θν (ν is the strength of the

impulsive interaction) appears in ek. Here, ek and nk are

the sampled innovation and noise. In case of locally most

powerful (LMP) technique the likelihood ratio is given by

(see [5])

llmp(M) = ēTV −1Γ, (12)

where Γ = [H,H(F − LKH), · · · , H(F − LKH)M−1]T .

ē = [e1, e2, · · · , eM ]
T

is the observed innovations vec-

tor. We remark that llmp correlates the discrete innovation

sequence with the profile Γk;1. M is chosen depending

on the effective duration of Γk;θ. Observed noise vector

n̄ = [n1, n2, · · · , nM ]
T

is zero mean with covariance matrix

V IM×M . For imaging, llmp is compared to a threshold

τ1

(

llmp ≶H0

H1
τ1

)

that is chosen to have a good balance

between false alarm and detection probability. As pointed out

in Section I, one of the main issues with TF-AFM is that it is

a force detector and the current impulsive force ν depends on

the past topography. Indeed, a persistent raised topography

reduces the strength of ν. Thus, TF-AFM detection method

generates high SNR at the introduction of a step whereas

SNR is small near its steady state. In case of probe storage,

suppose a single bit lasts for q oscillation cycles. Then llmp

obtained in each cycle is observed and in a bit duration (say

T ), q LMP outputs (l1,lmp(M), l2,lmp(M), · · · , lq,lmp(M))
are stored. The presence or absence of a bit is decided by

(see [5]) max (l1,lmp(M), l2,lmp(M), · · · , lq,lmp(M)) ≶H0

H1

τ1. Here again, τ1 is chosen to tailor a desired balance

between detection and false alarm probabilities. In [5], a

communications model is developed that takes into account

the past topography encountered. This method involves a

maximum a-posteriori estimation of the topography using

Viterbi detection and yields significant improvement in bit

error rate (BER). However, it requires a statistical learning

step that is effective when the nature of the topographic

profile encoding a bit is known (this holds in a data storage

application). In an imaging application, where the nature of

the topography is less certain the effectiveness remains to

be seen. This article introduces a new method that alleviates

drawbacks of the TF-AFM method and the sequence estima-

tion based approach. The details follow in the next section.

III. USE OF ON-SAMPLE INNOVATIONS MISMATCH

In this section a new approach is proposed that is based

on the equivalent cantilever perspective. When the cantilever

interacts with the material, h = φ(p, ṗ) in (1) is not zero.

Since, φ(p, ṗ) is a complicated nonlinear function (see [10]),

it is difficult to obtain a direct solution of the differential

equation (1). However, when the steady state is reached,

interaction occurs in each cycle of oscillation. Hence the

force h can be assumed to be periodic with the same period

as g. The cantilever gain at resonant frequency is high. So the

excitation g required is small. Again, most of the cantilever

orbit is in free air, so the damping c is small. Finally, the

periodic nonlinear interaction h for typical interaction lengths

considered is very small too. With such small magnitude

assumptions on c, g and h = φ(p, ṗ), they can be replaced

by c = ǫc1, g = ǫg1, φ = ǫφ1. where ǫ is a small

parameter. Ignoring the noise term, from (1) we can write

p̈+ω2p = ǫ
mφ1(p, ṗ)+

ǫ
mg1(t)− ǫ

mc1ṗ. Then, we can change

the coordinates from (p, ṗ) 7→ (a, θ) using p = a cos(ωt+θ),
ṗ = −aω sin(ωt + θ). Differentiating the new coordinates

with respect to time we can get dynamics of the changed

coordinates as:

ȧ =− ǫ

ωm
[φ1(a cos(ωt+ θ),−aω sin(ωt+ θ))

+ c1aω sin(ωt+ θ) + g1(t)] sin(ωt+ θ),
(13)

θ̇ =− ǫ

ωm
[φ1(a cos(ωt+ θ),−aω sin(ωt+ θ))

+ c1aω sin(ωt+ θ) + g1(t)] cos(ωt+ θ).
(14)

Assuming the forcing g1(t) = E sin(ωt) it can be seen that

dynamics of (13) and (14) are periodic with period 2π
ω . Now

we can apply the first order periodic averaging theory [8]

that states that if we consider

ẋ = ǫf(t, x); ẋav = ǫfav(xav) (15)

where f(t, x) is T periodic in the variable t and fav(x) :=
1
T

∫ T

0
f(τ, x) dτ with initial conditions x(0) = xav(0) = x0.

Then with mild assumptions on f , there exist constraints L
and M ′ such that

supt∈[0,L/ǫ]|x(t)− xav(t)| ≤M ′ǫ. (16)

Application of theorem (16) to the time varying dynamics

(13) and (14) results in the averaged time invariant dynamics

(using the notations a and θ for time averaged amplitude and
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phase) as described by

ȧ = −ce(a)
2m

a− ǫ

2mω
E sin θ,

θ̇ = ωe(a)− ω − ǫ

2maω
E cos θ,

(17)

where ω2
e(a) = w2 − 2

am φ̄c,
ce(a)
2m = c1

m +
1

amω φ̄d. The parameters φ̄c and φ̄d are given by

φ̄c = 1
2π

∫ 2π

0
φ (a cosψ,−aω sinψ) cosψ dψ, φ̄d =

1
2π

∫ 2π

0
φ (a cosψ,−aω sinψ) sinψ dψ. One can get back

to the original coordinates (p, ṗ) using the relations p =
a cos(ωt + θ), ṗ = −aω sin(ωt + θ). a and θ follow the

averaged dynamics (17). It can be shown that p obtained

this way satisfies the following equation

p̈+
ce
m
ṗ+ ω2

ep =
1

m
g(t). (18)

This dynamics describes an equivalent cantilever with

changed resonant frequency ωe and damping ce. We remark

that the equivalent damping and equivalent stiffness are

functions of amplitude. However, the amplitude evolves on

a slow time scale and thus can be considered constant over

the time scale on which the sample presence/absence has

to be inferred. Thus we have realized an equivalent LTI

model of the cantilever-sample interconnection. Correspond-

ing equivalent stiffness is ke = mω2
e and quality factor

Qe =
√
kem/ce. As found in [1], ωe and Qe normally

reduce with increase in interaction length lint. If for some

value of lint, one has the estimate of ωe and Qe, a new state

space model can be obtained as shown in (4). Hence, one can

design a new observer and obtain a new innovation signal

similar to (5) and (6). Let the innovation signal obtained

from the free space Kalman observer be e1 and that from

equivalent Kalman observer be e2 (see figure 3). For free

space oscillations, e1 has small magnitude whereas it is large

when cantilever interacts with material. e2 on the other hand

is expected to follow an opposite trend. TF-AFM uses only

one innovation signal e1(t) to run detection algorithms. How-

ever, in IM, both the signals e1(t) and e2(t) as shown in Fig.

3 are utilized. A new signal called the innovations mismatch

signal im(t) is defined as im(t) = |e1(t)| − |e2(t)|. Since,

im(t) is formed from the difference of the instantaneous

magnitudes of e1(t) and e2(t), it is expected to respond

faster than either of the innovation signals when they are

considered individually. Hence, whenever there is a change

from interaction to no interaction (or the reverse), im(t)
responds faster than e1 or e2. Also, it will be seen in the

next section that the envelope of the signal im(t) conveys the

topography information of the sample. A low pass filter with

appropriate bandwidth can be used to extract the envelope

of im(t). The low pass filtered version of im(t) is termed as

sm(t). sm(t) can be compared with an appropriate threshold

to infer presence or absence of sample. The cut-off frequency

of the low pass filter is determined from the estimate of how

fast the topography changes are encountered. In probe based

data storage applications sm(t) can be further processed to

detect bits. A square wave ⊓(T ) signal can be used as the

matched filter on sm(t) which provides the area under the

curve corresponding to the bit interval. By comparing this

area with appropriate threshold τ , whether the bit is 1 or 0

can be decided. In case of sequence detection, sm(t) can be

used as the test signal which is explained in the next section.

IV. SEQUENCE DETECTION

A gist of the main concepts of sequence detection is

provided here. The sequence detector processes the entire

sequence of samples from signal sm(t) to decide the maxi-

mum likely sequence of source bits. In a data storage setting

let ā = [a0, a1, · · · , aN−1]
T be the source bit sequence

(ak ∈ {0, 1} for k = 0, 1, · · · , N − 1). This bit sequence

is etched onto the sample. A raised topography denotes a

1 and a lowered topography denotes a 0. Let T denote

the time needed by the cantilever to scan the topography

representing a single bit. Let q be the number of cantilever

oscillations per bit duration T . The sampled sm(t) is denoted

by the vector z̄ = [z0, z1, · · · , z(Nq−1)]
T . Let f(z̄|ā) be

the conditional probability density function of the output

vector z̄ given a source bit sequence ā. The maximum likely

bit sequence is given by ˆ̄a = arg maxā∈{0,1}N f(z̄|ā) =

arg maxā∈{0,1}N

∏N−1
i=0 f(z̄|ā, z̄i−1

0 ). z̄ij is defined as the

vector z̄ij = [zjq, zjq+1, · · · , ziq−1]
T . We also define z̄i =

[ziq, ziq+1, · · · , zi(q+1)−1]
T as the sampled vector corre-

sponding to ith bit interval. The ith state Si is defined

as Si = [ai−m−mI+1, ai−m−mI+2, · · · , ai]T where the

memory in the system is given by the past m + mI

source symbols. Hence, the problem of identifying the

maximum likely sequence of bits can be recast as the

problem of identifying the maximum likely sequence of

states. The conditional pdf f(z̄i|ā, z̄i−1
0 ) can be simpli-

fied by removing the history of the source bits ā and

observed outputs z̄ beyond the assumed memories. In

[5] it is assumed that f(z̄ii−mI
|Si, Si−1) is Gaussian i.e.

f(z̄ii−mI
|Si, Si−1) ∼ N

(

Ȳ(Si, Si−1), C(Si, Si−1)
)

with

the mean vector Ȳ(Si, Si−1) and the covariance matrix

C(Si, Si−1). Ȳ and C can be estimated by a statistical

learning step before doing the actual bit detection. Once the

statistics is available, the maximum likely sequence of states
ˆ̄S can be estimated from the observation vector z̄ as below:

ˆ̄S = argmin
allS̄

N−1
∑

i=0

log

(C(Si, Si−1)

c(Si, Si−1)

)

+(z̄ii−mI
− Ȳ(Si, Si−1))

T C(Si, Si−1)
−1

(z̄ii−mI
− Ȳ(Si, Si−1))

−(z̄ii−mI
− ȳ(Si, Si−1))

T c(Si, Si−1)
−1

(z̄ii−mI
− ȳ(Si, Si−1)),

(19)
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where c(Si, Si−1) is upper mIq × mIq principal minor of

C(Si, Si−1) and ȳ(Si, Si−1) is the first mIq elements of the

mean vector Ȳ(Si, Si−1). With the help of this cost function

(19), the maximum likely sequence of source bits can be

found out employing the Viterbi algorithm (see [4]). We

denote Viterbi detection applied on sm(t) as Viterbi(new).

Viterbi detection on a single innovation based only on the

signal e1(t), as described in [5] is referred to as Viterbi(old).

Detection performances of different techniques are compared

in the next section.

V. SIMULATION RESULTS

In this section, superior performance of IM is verified with

simulation results. Simulations are done with a Simulink

model and MATLAB codes that capture the dynamic mode

AFM setup fairly well. The cantilever is oscillated with its

first resonance frequency f0 = 63.15 kHz and the noisy

measurement of deflection is taken. sep denotes the normal-

ized separation between the cantiliver base and the sample.

When sep is high, the cantilever is oscillating in free air. sep
low indicates that cantilever is interacting with the material

with interaction length of lint = 2 nm. The equivalent

plant model corresponding to lint of 2 nm can be found

using a recursive least squares method [1]. A second Kalman

observer matched to the estimated model is designed. Using

two Kalman observers, signals e1 and e2 as described in

previous section can be generated. The time evolution of

e1 and e2 corresponding to sep is shown in Fig. 4. Fig.

4 shows that for smaller sep (interaction), e1 is stronger

than e2 whereas the reverse happens when sep is high (no

interaction). |e2|− |e1| corresponding to the same separation

pattern is shown in Fig. 5. We also define i′m(t) = −im(t) =
(|e2| − |e1|). Clearly from Fig. 5, the innovations mismatch

signal i′m(t) responds faster than the individual signals e1(t)
or e2(t). When there is a change in topography, envelope

of i′m(t) follows the change rapidly. s′m(t) is generated by

low pass filtering i′m(t) (see Fig. 6). Bit duration is T =
200µsec. Hence, the low pass filter band width is chosen to

allow signal changing at rate 1/T . s′m(t) is less noisy and

conveys topography information. Decision about sep is high

or low can be taken by thresholding s′m(t) with respect to a

threshold τ . Behavior of s′m(t) corresponding to a few more

bit intervals is shown in Fig. 7. It can be seen that even if the

cantilever continues to interact with the sample for longer

time, s′m(t) does not lose its steady value substantially.

Hence, imaging does not suffer from not detecting a long

sequence of 1’s or 0’s. In Fig. 8, a performance comparison

of different bit detection methods is shown. Interaction length

lint is gradually changed from 1 nm to 2 nm. Locally most

powerful (LMP) technique uses matched filtering on e1(t) as

described in section II. Viterbi(old) uses sequence detection

only on e1 as explained in [5] using memories m = 1 and

mI = 2. For IM method, a square signal ⊓(T ) is used as

matched filter on s′m(t) and its output corresponding to each

bit interval is thresholded to decide 1 or 0. Viterbi(new)

uses s′m(t) for sequence detection with the same memory

lengths. It can be seen that IM method provides much better

3200 3400 3600 3800 4000

−1

−0.5

0

0.5

1

Time (µ seconds)

s
e

p
, 

e
1
 a

n
d

 e
2

 

 

sep
e

1

e
2

Fig. 4. Innovations from two observers vs separation

3200 3400 3600 3800 4000

−1

−0.5

0

0.5

1

Time (µ seconds)

|e
2
|−

|e
1
|

Fig. 5. Innovations mismatch signal i′
m
(t) vs separation

3200 3400 3600 3800 4000

−1

−0.5

0

0.5

1

Time (µ seconds)

s
m′

(t
)

 

 

sep

s
m

′
(t)

Fig. 6. Low pass filtered i
′

m
(t) (s′

m
(t)) vs separation

0 1000 2000 3000 4000 5000 6000

−1

−0.5

0

0.5

1

Time (µ seconds)

s
e

p
 &

 s
m′

(t
)

Fig. 7. Low pass filtered i
′

m
(t) (s′

m
(t)) vs separation

1 1.2 1.4 1.6 1.8 2
10

−3

10
−2

10
−1

10
0

l
int

(nm)

B
E

R

 

 

IM
Viterbi (old)
Viterbi (new)
LMP

Fig. 8. Comparison of BER performances of different bit detection
techniques

5504



0 0.5 1 1.5 2 2.5

x 10
4

−2

−1

0

1

Time (× 0.5 µ sec)

s
a

m
p

le
 p

o
s
 &

 s
m

(t
)

 

 

sample pos
s

m
(t)

Fig. 9. sm(t) vs sample position obtained from experimental data

5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

Threshold 

B
E

R

Fig. 10. BER corresponding to the choice of threshold from experimental
data

bit error rate (BER) than LMP. Moreover, it works slightly

better than Viterbi(old). Viterbi(new) is slightly better than

IM. However, signal processing is more complicated. Even

though lint is varied from 1 nm to 2 nm, e2(t) is always

obtained from a Kalman observer matched to the 2 nm

equivalent cantilever model. Hence, it is not necessary to find

equivalent models corresponding to each interaction lengths

between 1 nm and 2 nm. Just one Kalman observer matched

to a suitable equivalent model is necessary to synthesize the

mismatch signal. Signal processing involved in generating

sm(t) is extremely simple (requires a rectifier and a low pass

filter). For the simplicity of IM and availability of analog

circuits for rectification and low pass filtering, IM can be

implemented for real time imaging.

VI. EXPERIMENTAL EVIDENCE

A cantilever with f0 = 71.8 kHz and Q0 = 127.3 is used

for experiments. A mica sheet is used as the sample material

that can be moved up and down in the z direction using

a piezo electric setup. A random bit sequence is generated

and an FPGA based circuit is used to actuate the setup to

place the mica sheet high or low corresponding to bit 1 or

0 respectively. For bit 0, the centilever oscillates in free air.

Interaction occurs when bit is 1. Bit width is T = 340µ sec.

One Kalman observer is matched to free space cantilever

model and the other is matched to a model with fe = 70.8
kHz (100 Hz less than free space model) and the same quality

factor (Qe = Q0). sm(t) is generated from the measured

cantilever deflection and shown in Fig. 9. In Fig. 9, high

sample position indicates interaction length of 1 nm. It can

be clearly seen that even small interaction such as 1 nm

can be identified from sm(t). A square matched filter ⊓(T )
is applied on sm(t) and its output in each bit interval is

recorded. After observing the matched filter outputs for 105

bits, the maximum and the minimum values of it are chosen

(say, Lmax and Lmin). The range [Lmin, Lmax] is equally

divided into 40 points and each point is chosen to be the

decision threshold τ and corresponding BER is calculated.

BER corresponding to the choice for τ is shown in the Fig.

10. From Fig. 10, it can be seen that the minimum BER

that can be achieve is close to 10−2. We remark that the

experimental results are for bit by bit detection which has

the considerable advantage of ease of implementation (no

need for learning and Viterbi based decoding).

VII. CONCLUSIONS AND FUTURE WORK

A new topography imaging method, called the IM tech-

nique is developed in this paper. IM works on the dynamic

mode of AFM operation and hence suitable for soft material

imaging. Older method for imaging and data detection using

dynamic mode AFM called the TF-AFM is briefly explained

and the associated problems are delineated. Simulation re-

sults show that IM method which employs two observers

beats previous bit by bit detection scheme and even the

sequence detection method on a single innovation signal

on performance. A significant advantage of the IM method

is that it is considerably simpler to implement than any

sequence based detection schemes such as the one reported

in [5]. An experiment is also performed validating the

applicability of IM. Even though the advantages of using

IM are clear, a detailed theoretical analysis of performance

of IM is still pending and forms the future work of this

paper.
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